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Abstract. In this paper, we consider the fuzzy possibilistic methods
for solving fuzzy linear programming problems. Possibilistic distribution
on a possibilistic linear function with triangular and L-R fuzzy numbers
has been considered. We apply possibilistic programming on fuzzy linear
programming with coefficients of L-R fuzzy numbers and we compare it
with the proposed method by Inuiguchi on triangular fuzzy numbers.
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1. Introduction

The concept of fuzzy linear programming (FLP) on a general level was first
proposed by Bellman and Zadeh [1], Tanaka et al. [8] and Zimmermann ([10, 11]).
In the framework of the fuzzy decision of bellman and Zadeh, fuzzy mathematical
programming has been developed not only on a general level but also on a more
practical level. Using the fuzzy decision proposed by bellman and Zadeh with linear,
hyperbolic or piecewise linear membership functions has been proved that there
exist equivalent linear programming problems. In such a situation, the resulting
problem becomes a nonlinear programming problem and cannot be solved by a
linear programming technique.

Relations between the FLP and possibility and necessity theory have been studied
by Some authors, see, e.g., [5, 6].

In the first part of the paper, we introduce possibility and necessity measures and
so possibilistic programming on triangular fuzzy numbers proposed by Inuiguchi [8].
After this description, we apply possibilistic programming on FLP problem with
L-R fuzzy number coefficients.
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2. Preliminaries

In this section, we present some definitions [7].

2.1. Fuzzy sets theory.
Let X be an universal set. A fuzzy set Ã in X is characterized by its membership
function µÃ : X → [0, 1]. The value µÃ(x) at X represents the grade of membership
of x in Ã and is interpreted as the degree in which x belongs to Ã.

Definition 2.1. The α-cut of the fuzzy set Ã is the crisp set Ãα defined by

Ãα = {x ∈ X : µÃ(x) ≥ α}.
Definition 2.2. A fuzzy set Ã in X is said to be a convex fuzzy set if and only if
its α-cut sets are convex.

Definition 2.3. Let f : X → Y be a mapping from a set X to a set Y. The extension
principle of Zadeh states that the fuzzy set B̃ in Y induced by the fuzzy set Ã in X
through f as follows:

B = {(y, µB̃(y))|y = f(x), x ∈ X},
with

µB̃(y) =
{

supx∈X,y=f(x) µÃ(x) f−1(y) 6= φ

0 f−1(y) = φ,

where f−1 is the inverse image of y.

Definition 2.4. A fuzzy number is a normalized convex fuzzy set of the real line
R1 whose membership function is piecewise continues. A fuzzy number M̃ is called
positive (negative), denoted by M̃ > 0 (M̃ < 0), if its membership function satisfies,
µM̃ (x) = 0, ∀x < 0(∀x > 0).

Definition 2.5. A fuzzy number Ã is called a L-R fuzzy number if its membership
function has the following form:

µÃ(x) =
{

L(a−x
α ) x ≤ a, α > 0

R(x−a
β ) x ≥ a, β > 0 ,

where L(.) and R(.) are piecewise continuous functions, L(.) is increasing, R(.)
is decreasing and L(0) = R(0) = 1. The fuzzy number Ã described above will
be represented as Ã = (a, α, β)LR. Here L and R are called as the left and right
reference functions, a is the mean value of A, α and β are called the left and right
spread, respectively.

Definition 2.6. A fuzzy number Ã is called a triangular fuzzy number (TFN) if its
membership function µÃ is given by

µÃ(x) =





0 x < al, x > au

x−al

a−al al ≤ x ≤ a
au−x
au−a a < x ≤ au.

The TFN Ã is denoted by the triplet Ã = (al, a, au).
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2.2. Possibility theory.
Suppose we have two fuzzy numbers Ã and B̃. Using the extension principle of
Zadeh, the crisp inequality x ≤ y can be extended to obtain the truth value of the
assertion that Ã is less than or equal to B̃, as follows:

T (Ã ≤ B̃) = sup
x≤y

min(µÃ(x), µB̃(y)).

This truth value T (Ã ≤ B̃) is also called the grade of possibility of dominance of B̃

on Ã and is denoted by pos(Ã ≤ B̃).
In a similar way, the grade (or degree) of possibility that the assertion “Ã is greater
than or equal to B̃” is true, is given by

Pos(Ã ≥ B̃) = sup
x≥y

min(µÃ(x), µB̃(y)).

Also the degree of possibility that the assertion “Ã is equal to B̃” is denoted by
pos(Ã = B̃), and is defined as

Pos(Ã = B̃) = sup
x

min(µÃ(x), µB̃(x)).

According to above discussion, we can define Ã ≤ B̃ if and only if Pos(Ã ≤ B̃) ≥
Pos(B̃ ≤ Ã).
Related to the number ”Pos(Ã ≤ B̃)” there is another number “Nes(Ã ≤ B̃)” which
measures the grade (or degree) of necessity of dominance of B̃ on Ã, given by

Nes(Ã ≤ B̃) = 1− Pos(Ã ≥ B̃).

The number“Nes(Ã ≤ B̃)” can also be used for ranking of fuzzy numbers. For this,
we define Ã ≤ B̃ if and only if Nes(Ã ≤ B̃) ≥ Nes(B̃ ≤ Ã).
In case Ã = (al, a, au) and B̃ = (bl, b, bu) are TFN, then by actual computation of
Nes(Ã ≥ B̃), it can be defined that Ã(≤)B̃ with respect to Nes(Ã ≤ B̃) approach
if a + al ≤ b + bl.

3. Possibilistic programming

In this section, we consider possibilistic programming with LR fuzzy number
coefficients. Firstly, we define possibility and necessity measures.

3.1. Possibility and Necessity measures.
A possibilistic linear function value cannot be determined uniquely since its co-
efficients are ambiguous, i.e. non-deterministic. Thus maximizing a possibilistic
objective function with possibilistic constraint function value that is not greater
than a certain value do not make sense. For two fuzzy sets Ã and B̃ Possibility and
necessity measures of the event that a is in a fuzzy set B̃ are defined as follows[2, 9]:

ΠÃ(B̃) = sup
r

min(µÃ(r), µB̃(r)), (1)

NÃ(B̃) = inf
r

max(1− µÃ(r), µB̃(r)). (2)

Where µB̃ is the membership function of fuzzy set B̃. ΠÃ(B̃) evaluates to what
extent it is possible that the possibilistic variable a restricted by the possibility
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distribution µÃ is in the fuzzy set B̃. On the other hand, NÃ(B̃) evaluates to
what extent it is certain that the possibilistic variable a restricted by the possibility
distribution µA is in the fuzzy set B̃. Let a be a possibilistic variable. In context
to the above example, let B = (−∞, g], i.e. B be a crisp (non fuzzy) set of real
numbers which is not greater than g. We obtain the following indices by possibility
and necessity measures defined by (1) and (2):

Pos(a ≤ g) = ΠÃ((−∞, g]) = sup{µÃ(r) : r ≤ g}, (3)
Nes(a ≤ g) = NÃ((−∞, g]) = 1− sup{µÃ(r) : r > g}. (4)

Pos(a ≤ g) and Nes(a ≤ g) show the possibility and necessity degrees to what
extent a is not greater than g. Those indices are depicted in Figure 1.

Figure 1. Possibility and necessity degree of a ≤ g

Similarly, letting B = [g, +∞), we obtain the following two indices;

Pos(a ≥ g) = ΠÃ([g, +∞)) = sup{µÃ(r) : r ≥ g}, (5)
Nes(a ≥ g) = NÃ([g, +∞)) = 1− sup{µÃ(r) : r < g}. (6)

Pos(a ≥ g) and Nes(a ≥ g) show the possibility and necessity degrees to what
extent a is not smaller than g. Those indices are depicted in Figure 2[3, 4].

Figure 2. Possibility and necessity degrees of a ≥ g
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3.2. Possibilistic programming formulation.
Consider the following linear programming problem

min z = cx

s.t. Ax ≤ b

x ≥ 0, (7)

where c = (c1, . . . , cn) is an n-dimensional row vector, x = (x1, . . . , xn)t is an n-
dimensional column vector, b = (b1, . . . , bm)t is an m-dimensional column vector and
A = [ai,j ] is an m× n matrix. The L-R fuzzy number Ai,j can be determined by a
center ac

ij with a left spread wl
aij

and a right spread wr
aij

, it is represented as Ai,j =<

ac
ij , w

l
aij

, wr
aij

>. cj is estimated as a L-R fuzzy number cj =< cc
j , w

l
cj

, wr
cj

>.
The fuzzy number which restricts the possibilistic linear function value is defined
by the extension principle. Applying the extension principle, for example, to the
objective function of problem (7), f0(x1, . . . , xn) =

∑n
j=1 cjxj , the fuzzy number

F0(x1, . . . , xn) which restricts f0(x1, . . . , xn) is defined by the following membership
function:

µF0(x1,...,xn)(r) = sup
p1,...,pn

min(µc1(p1), . . . , µcn(pn)),

where r = p1x1 + . . . +pnxn. Taking into consideration the fact that cj is L-R fuzzy
numbers < cc

j , w
l
cj

, wr
cj

>, the fuzzy number F0(x1, . . . , xn) also becomes a L-R fuzzy
number, i.e.,

F0(x1, . . . , xn) = <

n∑

j=1

cc
jxj ,

n∑

j=1

wl
cj
|xj |,

n∑

j=1

wr
cj
|xj | >

= <

n∑

j=1

cc
jxj ,

n∑

j=1

wl
cj

xj ,

n∑

j=1

wr
cj

xj > . (8)

The second equality is from the non-negativity of xj ’s of problem (7). Let Fi(x1, . . . , xn)
be a fuzzy number which restricts the left-hand side value of the i-th constraint of
(7), therefore for i = 1, . . . , m,

Fi(x1, . . . , xn) =<

n∑

j=1

ac
ijxj ,

n∑

j=1

wl
aij

xj ,

n∑

j=1

wr
aij

xj > . (9)

Now, we give specific meanings of maximizing a possibilistic linear function value
and the condition that a possibilistic linear function value is not greater than a given
fuzzy number, or particularly, a crisp number, so that the ill-posed problem can be
transformed to a usual linear programming problem. We interpret the constraints
and the objective function.

3.2.1. Constraints:
Assume that the constraints of problem (7) should be satisfied with high certainly.

If the decision maker feels that a certainty degree not less than a is high enough,
the constraints of problem (7) can be treated as follows:

Nes(
n∑

j=1

ãijxj ≤ bi) ≥ a, i = 1, 2, . . . , m, x1, . . . , xn ≥ 0. (10)
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Since possibilistic linear function value fi(x1, . . . , xn) is a possibilistic variable re-
stricted by Fi(x1, . . . , xn), we can substitute fi(x1, . . . , xn) for a and Fi(x1, . . . , xn)
for A in (3)-(6), thus, we get the possibility and certainly degrees to what extent a
possibilistic linear function value is not greater (smaller) than a given real number.
From (9), the fuzzy number Fi(x1, . . . , xn) restricting fi(x1, . . . , xn) =

∑n
j=1 ãijxj is

a L-R fuzzy number <
∑n

j=1 ac
ijxj ,

∑n
j=1 wl

aij
xj ,

∑n
j=1 wr

aij
xj >. This fuzzy number

and the index Nes(
∑n

j=1 ãijxj ≤ bi) are depicted in Figure 3. In order to satisfy
Nes(

∑n
j=1 ãijxj ≤ bi) ≥ a, point p Should be under line l. This is equivalent to the

fact that ti is not greater than bi. By attention to Figure 3, we obtain

ti =
n∑

j=1

ac
ijxj + R−1(1− a)

n∑

j=1

wr
aij

xj ≤ bi. i = 1, . . . , m (11)

Figure 3. Nes(
∑n

j=1 aijxj ≤ bi)

Nes(
∑

aijxj ≤ bi)

∑
ac

ijxj −
∑

wl
aij

xj

∑
ac

ijxj

∑
ac

ijxj +
∑

wr
aij

xj

3.2.2. Objective function:
Assume that the decision maker feels the a certainty is high enough, then maxi-

mization of the objective function can be treated as[3]:

max u

s.t. Nes(
n∑

j=1

cjxj ≥ u) ≥ a, (12)

Problem (12) is illustrated in Figure 4. As shown in the Figure, u is maximized
under the condition that point p is under line l. By the same discussion with the
previous section, problem (12) is equivalent to

max u

s.t.

n∑

j=1

cc
jxj − L−1(1− a)

n∑

j=1

wl
cj

xj ≥ u,

Finally, adding the constraints (11), problem (7) is formulated as the following
750
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Figure 4. Nes(
∑n

j=1 cjxj ≥ u)

Nes(
∑

cjxj ≥ u)

∑
cc
jxj −

∑
wl

cj
xj

∑
cc
jxj

∑
cc
jxj +

∑
wr

cj
xj

linear programming problem:

max
n∑

j=1

cc
jxj − L−1(1− a)

n∑

j=1

wl
cj

xj

s.t.

n∑

j=1

ac
ijxj + R−1(1− a)

n∑

j=1

wr
aij

xj ≤ bi. i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n (13)

Note 3.1. Assume Aij and cj are symmetric triangular fuzzy numbers as follows:

Aij =< ac
ij , w

c
aij

>, cj =< cc
j , w

c
cj

> .

Similarly to the last section, if we set L(x) = R(x) = 1 − x, then problem (7) is
formulated as the following linear programming problem:

max
n∑

j=1

cc
jxj − a

n∑

j=1

wcj xj

s.t.

n∑

j=1

ac
ijxj + a

n∑

j=1

wc
aij

xj ≤ bi. i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n (14)

4. Example

Example 4.1. Consider the following problem:

max z = x1 + 2x2

s.t. 2x1 + 6x2 ≤ 27
8x1 + 6x2 ≤ 45
3x1 + x2 ≤ 15
x1, x2 ≥ 0.
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A1 =< 2, 0.3, 0.7 > B1 =< 6, 0.2, 0.5 >
A2 =< 8, 1, 1.5 > B2 =< 6, 0.1, 0.3 >

A3 =< 3, 0.4, 0.5 > B3 =< 1, 0.2, 0.3 >
C1 =< 1, 0.8, 1 > C2 =< 2, 0.5, 0.7 >

Table 4.1. L-R fuzzy numbers of Example 4.1

a L-R numbers triangular numbers
0 z=12.5680 z=10

0.1 z=12.5085 z=9.4538
0.2 z=12.4790 z=8.9205
0.3 z=12.3792 z=8.3996
0.4 z=12.2088 z=7.8909
0.5 z=11.9676 z=7.5600
0.6 z=11.0562 z=7.2857
0.7 z=11.2762 z=7.0157
0.8 z=10.8322 z=6.7500
0.9 z=10.3396 z=6.4884
1 z=10.0000 z=6.2308

Table 4.2. The optimal values of the objective function of Example 4.1

By solving this problem, we obtain (x1, x2) = (3, 3.5). we will solve this problem
with possibilistic programming method.
Let the above problem be a possibilistic programming problem as following:

max z = c1x1 + c2x2

s.t. a1x1 + b1x2 ≤ 27
a2x1 + b2x2 ≤ 45
a3x1 + b3x2 ≤ 15
x1, x2 ≥ 0,

where ai, bi for i = 1, 2, 3, and cj for j = 1, 2, are possibilistic variables restricted by
fuzzy numbers Ai, Bi for i = 1, 2, 3, and Cj for j = 1, 2, respectively, such that Ai,
Bi and Cj are as shown in Table 4.1. From (13), we obtain the following problem

max z = x1 + 2x2 − L−1(1− a)(0.8x1 + 0.5x2)
s.t. 2x1 + 6x2 + R−1(1− a)(0.7x1 + 0.5x2) ≤ 27

8x1 + 6x2 + R−1(1− a)(1.5x1 + 0.3x2) ≤ 45
3x1 + x2 + R−1(1− a)(0.5x1 + 0.3x2) ≤ 15
x1, x2 ≥ 0.

We set L(x) =
{

0 x < −1√
1 + x −1 ≤ x ≤ 0 and R(x) =

{
1− x2 0 ≤ x ≤ 1

0 x > 1 .

As shown in Table 4.2, solving the above problem by simplex method, the opti-
mal values of the objective function obtained of possibilistic programming on L-R
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fuzzy numbers method are better than the obtained optimal values of possibilistic
programming on triangular fuzzy numbers method.

5. Conclusion

In this paper, we used possibilistic programming with coefficients of L-R fuzzy
numbers, and we compared this method with the proposed method by Inuiguchi
on triangular fuzzy numbers. As observed in Example 4.1, the obtained values of
the objective function by the possibilistic programming on L-R fuzzy numbers are
better than the obtained values of the possibilistic programming on triangular fuzzy
numbers method.
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