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ABSTRACT. In this note we introduce weak ideal systems on fuzzy ideals
of monoids. Moreover, utilizing fuzzy r-ideals and fractionary fuzzy r-ideals
we characterize valuation monoids, almost valuation monoids, pseudovalu-
ation monoids, almost pseud-ovaluation monoids, and pseudo-almost val-
uation monoids. We Also discuss few implications between said monoids.
Finally, we fuzzify [14, Theorem 1 ] which reflects the linking bridge be-
tween different results in this note.
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1. INTRODUCTION AND PRELIMINARIES

The concepts of fuzzy sets and fuzzy relations were first introduced by Zadeh[16].
Fuzzy subgroup and its properties were discussed by Rosenfeld [13]. After this,
the notion of a fuzzy ideal of a ring was introduced by Liu, Malik, Mordeson and
Mukherjee. Bhattacharya and Mukherjee have studied fuzzy relation on groups.
Malik and Mordeson [9] came up with fuzzy relations on rings.

A fuzzy ideal € of a ring R is said to be fuzzy prime, if it is non-constant and
for any two fuzzy ideal p and v of R, the condition po v C £ implies that p C &
or v C & Tt is well known that £ is fuzzy prime if and only if £(0) = 1, &, is a
prime ideal of R and |Im(§)| = 2 [11, Theorem 3. 5. 5]. Fuzzy ideal & is called
fuzzy primary if £ is non-constant and for any two fuzzy ideals p, v of R, pov C ¢
implies p C € or v C /€[11), Theorem 3. 5. 5|. Reader may consult [11] for details
of fuzzy R-submodule and defining operations. A fuzzy ideal p in a noetherian ring
R is called irreducible if p # R and whenever pi A pe = p where pq and pg are fuzzy
ideals of R, the pu; = p or pe = p[12, Definition 4.1].

We recall few standard definitions from the literature which have been introduced
in [9], [6] and [13].
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Let uy = {z € R : u(x) = t}, a level set for every ¢ € [0,1]. For a subset W
of R let Xg/) be the fuzzy subset of K (quotient field of R) such that Xg/) () =1if
x € W and ng)(a:) =t if x € K\W, where t € [0,1). For d € K and t € [0,1], we
let d; denote the fuzzy subset of K defined by: for every x € K, dy(z) =t if x =d
and d;(x) = 0 otherwise. Let R be an integral domain, a fuzzy R-submodule g of
K (quotient field of R) is called a fractionary fuzzy ideal of R if there exists d € R,
d # 0, such that djo § C X%) for some t € [0, 1). Let 3 be a fractionary fuzzy ideal
of R. Then f|g is a fuzzy ideal of R. If B|g is a prime(maximal) fuzzy ideal of R,
then § is called a prime (maximal) fractionary fuzzy ideal of R. If (x) = 0 for all
x € K\R, then § is called an integral fractionary fuzzy ideal of R. Thus, if § is
a prime (maximal) integral fractionary fuzzy ideal of R, then I'm(3) = {0,¢,1} for
some t € [0,1). A prime integral fractionary fuzzy ideal § of R is said to be strongly
prime if for any fractionary fuzzy ideals u, v of R, po v C 3 implies that p C 3 or
v C B[6, Definition 2.1]. Let § be an integral fractionary fuzzy ideal of R then is
strongly primary fuzzy ideal of R if for any fractionary ideals p and v of R, pov C 3
implies that u C 3 or v C 1/f |6, Definition 4.1]. A proper fuzzy ideal p of a ring R
is said to be strongly irreducible if for each pair of fuzzy ideals 8 and o of R, if § A
o C p then either § C p or o C p [15, Definition 2].

Throughout this note a monoid means a commutative cancellative semigroup with
identity with zero adjoined, we will represent the semigroup operation by ordinary
multiplication notation and use 1 to denote the identity of the semigroup. We will
implement [7] convention of allowing a zero element 0 with the property that 0x = 0;
yet zy = 0 implies = 0 or y = 0. Here, a good representative example of a monoid
is the multiplicative monoid of an integral domain. This close relationship has made
it very natural to study results of a multiplicative nature known for integral domains
in the monoid setting. If H is a monoid we represent H* = H\{0}, and a,b € H
we write a|gb to denote a divides b in H, that is, b = ac for some ¢ € H. We call
a,b € H associates if a|gb and b|ga. Associates of 1 in H are called units and the
set of units of H is denoted by H*. Now H is said to be reduced if H* = {1}. The
units of H can be shown to be invertible elements of H. Thus H* is a subgroup of
H and we can consider the quotient monoid H/H* which is obviously reduced and
is denoted by H,..q . There is a quotient field that we have for a domain, in parallel
there is a groupoid for a monoid H. We shall reserve G(H) for the quotient groupoid
of H. Quotient groupoid of a cancellative monoid H is a groupoid G(H) such that
H C G(H) is a submonoid and G(H) = {c 'a:a € H, c € H*} [7, Page 38]. As in
the case of integral domains we can also define various ideal systems on a monoid
H. This fact has been amply demonstrated in [7]. For the sake of completeness we
included some basic definitions, we refer [7, Chapter 2] to readers for the properties
of weak ideal systems of monoids.

Let R be an integral domain with quotient field K. A prime ideal P of R is
called strongly prime if zy € P, where x, y € K, then « € P or y € P (alternatively
P is strongly prime if and only if z7!P C P whenever € K\R [4, Definition,
page2]. Following [4] an integral domain said to be pseudo-valuation domain whose
every prime ideal is strongly prime. Recall [1] an ideal I of D is strongly primary
if, whenever xy € I with xz,y € K implies z € I or y™ € I for some integer n >
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1, and D is an almost pseudo-valuation domain (APVD) if each prime ideal of D
is strongly primary. Following [2] a prime ideal P of R is called a pseudo-strongly
prime ideal if whenever z,y € K and xyP C P, there exist m € N such that 2™ € R
or y™ P C P and an integral domain R is called a pseudo-almost valuation domain
if every prime ideal is a pseudo-strongly prime ideal. Fuzzy ideals in a monoid or
semigroup have been discussed in the literature, fuzzy (weakly) ideals in a semigroup
have been introduced in [3]. Recently, generalized fuzzy prime ideal in an ordered
semigroup has been introduced (redefined) in [10].

In [14, Page 182] author (with T. Shah) has introduced almost valuation monoid,
pseudo-almost valuation monoid, almost pseudo-valuation monoid and discussed few
of their characteristics.

In this note we introduce fuzzy ideal systems on monoids and subsequently, we
discuss fuzzy r-ideal systems on fuzzy subsets, fuzzy ideals and farctionary fuzzy
ideals of a monoid. We also present characterization of valuation monoids, almost
valuation monoids, pseudo-valuation monoids, pseudo-almost valuation monoids and
almost pseudo-valuation monoid through fuzzy r-ideals. Finally, we fuzzify the result
[14, Theorem 1].

For basic definitions and terminologies of monoids please consult [7]. We refer [9],
[13] and [16] for basic notations, terminologies and definitions of fuzzy discussions.

2. Fuzzy IDEAL SYSTEMS

In this section we introduce fuzzy r-system on fuzzy ideals and also fuzzy r-system
on fractionary fuzzy ideals. We begin with the following definition.

Definition 2.1. Consider H be a monoid and P(H) is the power set of H. Let
H C P(H), a fuzzy ideal system r on a monoid P(H) is a map on P(H) — P(H),
defined by 1 — p, (fuzzy subsets) such that for all fuzzy subsets (resp. fuzzy ideals)
B, u € P(H) and ¢ € H the following conditions hold:

(a) 14U {0} C iy

(b) p € B, implies p, C 3,

(c) cpr C (cpt)r-

A fuzzy ideal p is called a fuzzy r-ideal if 4 = p, and is r -finitely generated if
= B, for a finitely generated fuzzy ideal 3 of H. From (a) it follows that for every
fuzzy r -system we have H, = H. If p is a fuzzy r -ideal and X is a fuzzy subset of H
then the set (u: X)={h € H | hX C u} is a fuzzy r -ideal and (p: X) = (1 : X,).
A fuzzy ideal system r on H is said to be a finitary if for each fuzzy subset X € H,
X, = F, where F ranges over the finite fuzzy subsets of X.

The simplest d-system on fuzzy subsets (resp. ideals) is the map from P(H) —
P(H) given by p — pug = . One of the ideal systems of interest is s-system, for
fuzzy subset u C H, we define, us = {0} when p = @ and pH when p # @. If r is
a weak ideal system on fuzzy monoid H then every fuzzy r-ideal (resp. subset) is a
fuzzy s-ideal (resp. subset).

Definition 2.2. A fuzzy subset p of a monoid H is a fuzzy r-ideal of H, if for every
g.h € H, pir(g —h) = pr(g) A pr(h) and pr(gh) > pir(9)V o (h).-

Basic operation between fuzzy r-ideals can be define as.
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Definition 2.3. Let .., 3, are two fuzzy r-ideals of a monoid H, we define operation
AAO ” as.

(@0 B)r(z) = ar(z) o fr(z) = Viar(y) A Br(2) 1y, 2 € H}

We define some terminologies for monoids which are useful for our forthcoming
discussion.

A fuzzy r-ideal (3, of a monoid H is said to be fuzzy prime r-ideal if it is non-
constant and for every two fuzzy r-ideals (p o v),. C (3, implies that either u,. C 3,
or v, C B,. A fuzzy r-ideal §, of a monoid H is said to be fuzzy primary r-ideal if
it is non-constant and for every two fuzzy r-ideals (o v), C B, implies that either
tr C Br or v, € /B, A fuzzy r subset p,. of G(H) is fuzzy H-submodule of G(H)
(a quotient groupoid of H) if yu.(g" = h') = pr(g') A pr(R'), pr(99') = pr(g’) and
ur(0) =1, for every ¢’, b’ € G(H) and g € H. For a subset W of a monoid H let

(t) be the fuzzy subset of G(H) (a quotient groupoid of H) such that Xg,)(h) =1if
h € W and X(t)(h) =tif h e G(H)\W, where t € [0,1). For g € G(H) and ¢ € [0, 1],
we let g; denote the fuzzy bubbet of G(H) such that for every h € G(H), g:(h) =t
if h = g and g;(h) = 0 otherwise. Let H be a monoid, a fuzzy H-submodule 3,
of G(H) (quotient groupoid of H) is called a fractionary fuzzy r-ideal of H if there
exists g € H, g # 0, and g1 € G(H) such that gi0 8, C Xg_t[) for some t € [0, 1).

In [5] star operations on fractionary fuzzy ideals have been introduced, we define
r-ideal system on fractionary fuzzy ideals of monoid. We assume that 8, = {¢’ €
G(H) : B(g) = B(0)}.

We may define an ideal system on fractionary fuzzy r-ideals as.

Definition 2.4. Let H be a fuzzy monoid, an ideal system r on fractionary fuzzy
ideal is the map F'(H) — F(H), where F(H) represent the fractionary subsets (resp.
fractionary fuzzy ideals) of G(H), defined by p — u, such that for all fuzzy subsets
(vesp. fuzzy ideals) 8, € F(H) and ¢ € G(H) the following conditions hold:

(a) pU{0} C i and (g1 0 B)r = g1 0 Br

(b) p € B, implies i, C G,

(¢c) cH C{c},

(d) cptr = (ct)r

(€) (tir)r = pr

If we restrict an ideal system 7 to be only fractionary fuzzy ideals then operation
r is just like a star operation.

Following definition 2.4, a fractionary fuzzy r-ideal p is called a fractionary fuzzy
r-ideal if p = p, and is r -finitely generated if u = (3, for a finitely generated fuzzy
ideal 3 of H.

From definition 2.4(a), it follows that for every fuzzy r -system H, = H and every
fuzzy principal ideal is a fuzzy r -ideal. If p is a fractionary fuzzy r -ideal and X
is a fractionary fuzzy subset of F(H) then the set (u: X) ={h € H | hX C u}
is a fuzzy r -ideal and (p: X) = (1 : X,). A fuzzy ideal system r on H is said to
be finitary if for each fuzzy subset X € H, X, = F,. where F' ranges over the finite
fuzzy subsets of X.

Definition 2.5. Let 5, be a fractionary fuzzy r-ideal of a monoid H. Then f,|x is
a fuzzy ideal of H. If | is a prime(maximal) fuzzy r-ideal of H, then (3, is called
718
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a prime (maximal) fractionary fuzzy r-ideal of H. If 5,.(h) = 0 for all h € G(H)\H
then (3, is called an integral fractionary fuzzy r-ideal of H. Thus, if 3, is a prime
(maximal) integral fractionary fuzzy r-ideal of H, then I'm(3,) = {0,¢,1} for some
tel0,1).
Proposition 2.6. Let {u; : i € I} be the collection of fuzzy r H-submodules of G(H)
and let g € G(H) and d #0. Then
(1) g1 0 (Nipi) = Nilg1 © pi)
(2) 910 (Uipsi) = Ui(g1 0 ps)
Proof. (1) Let g’ € G(H), consider (g1 © (Ni1:))(g') = Aifi(£) = Ailg o pi)(g")
N; (g1 o,uz)( "). Similarly, we can prove (2), let ¢’ € G(H), consider (g10(U;u;))(g") =
ViBi( % ) = Vi(g1 0 pi)(g") = Ui(gr o i) (g')- O
p

Proposition 2.7. Let o, B, be a fractionary fuzzy rideals of H. Then o, +
and o, o B, are fractionary fuzzy r-ideals of H.

Proof. Since «, and ,BT are fractionary fuzzy r-ideals of H, there exist 0 # g, h € H
such that g1 o a,. C XH and hio B, C X() for some s t € [0,1). So (gh)1 o =
giohioa, Chyo X( 5) - X . Similarly, (gh); o 8, C X . Thus (gh); o (e + 3;) =

(gh)1 0 ar + (gh)r o B, C x“) + i € Xjg'™ and also (gh) o (a0 B,) = (g1 0 ar)o
(h108) C S) o X(t) - X(WS) So a,. + 3, and «, o 3, are the fractionary fuzzy
r-ideals of H. O

3. Fuzzy IDEALS AND MONOIDS

In this section we characterized valuation monoid, almost valuation monoid,
pseudo-valuation monoid, almost pseudo-valuation monoid and pseudo-almost valu-
ation monoid by using fuzzy r-ideals. We initiate by recalling some definitions from
[7] and [14].

A monoid H is called a valuation monoid if for all a,b € H, either a/b or b/a [7,
Page 167]. A monoid H said to be almost valuation monoid, if G(H) be a quotient
groupoid of a monoid H and for all z € G(H) either 2™ € H or x~™ € H. Similarly
H is called pseudo-valuation monoid if x € G/H and a € H\H*(where H* is
a set of invertible elements of H) implies z~'a € H [7, Page 182]. Following [14]
Definition 1] H is said to be almost valuation monoid if G(H) be a quotient groupoid
of a monoid H and for all x € G(H) either 2" € H or z~™ € H. An integral domain
R is called almost valuation domain if it is almost valuation monoid [14]. Monoid
H is called r-local, if H possesses exactly one r-maximal r-ideal |7, Definition 6.5].

An r-ideal P € I.(H) is primary or a primary r-ideal if P # H, and a,b € H,
ab € P implies a € P or b € rad(P) [7, Page 61]. Let G(H) be a quotient groupoid
of H then r-ideal P € I,.(H) is strongly primary r-ideal if a,b € G(H) such that
ab € P implies a € P or b € rad(P) [14, Definition 2 (a)]. If H is a monoid and
G(H) be its quotient groupoid then H is an almost pseudo-valuation monoid if every
r-prime ideal P of H is strongly r-primary that is, P satisfies the following property
x,y € G(H) such that xy € P and if ¢ P implies some power of y is contained in
P [14], Definition 2 (b)].
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Fractionary fuzzy ideals of Dedekind domains have been discussed in [8]. In terms
of fuzzy fractionary r-ideals we can define strongly prime and strongly primary fuzzy
r-ideal of monoids. A prime integral fractionary fuzzy r-ideal 3, of a monoid H is
said to be strongly prime r-ideal if any fractionary fuzzy ideals p, and v, of a monoid
H, (powv), C G, implies that either u, C G, or v, C f,.

In terms of fuzzy ideals we can re-define valuation monoid and almost valuation
monoid as.

Definition 3.1. (a) A monoid H is said to be a valuation monoid, if for all ¢’ € G(H)
either (¢'); C ng) or (é)l - Xg)- Equivalently, a monoid H is said to be a
valuation monoid, if 3, be a {0, 1}-valued prime integral fractionary fuzzy r-ideal of
H,g.¢" € GH)and < ¢}, >0 < g, >C B = ¢'g" € Bys, cither ¢ e Hor ¢’ € H
otherwise ¢'~' € H or ¢" ' € H.

(b) A monoid H is said to be almost valuation monoid, if G(H) be a quotient

groupoid of a monoid H and for all ¢’ € G(H) either (¢'); C Xg()) or (g}n )1 C ng).

We re-define psuedo-valuation monoid in terms of fuzzy fractionary r-ideals as.

Definition 3.2. A monoid H with quotient groupoid G(H) is said to be pseudo-
valuation monoid, if every {0, 1}-valued prime integral fractionary fuzzy r-ideal of a
monoid H is a strongly prime fuzzy r-ideal of H.

We fuzzify an important relation between valuation monoids and pseudo-valuation
monoids.

Proposition 3.3. FEvery valuation monoid is a fuzzy pseudo-valuation monoid.

Proof. Let H be a valuation monoid and 8, be a {0, 1}-valued prime integral frac-
tionary r-ideal of H. Suppose ¢, ¢" € G(H) and < ¢} > o < g; >C B, = 2y € Syps,
thus ¢/, " € H. If ¢, ¢" ¢ H then 8,(¢') = B-(9") = 0. Since H is a valuation
monoid so by definition [3.1(a), we have ¢'~t, ¢”"~! € H. Clearly, ¢’ = ¢'¢"¢'~! €
Brss g =¢'g'g ~t € By, which is a contradiction. Either ¢’ € H or ¢" € H, suppose
g’ ¢ H it implies < ¢f > ¢ S,, so g/ll € Brx. Thus < g,l/ >C (3, it implies that G, is
a strongly prime fuzzy ideal of R. 0

In literature (see[6, Theorem 2.3]) relation between {0, 1}-valued fuzzy ideals
and [, of integral domains have been discussed, we needed it for monoids to continue
further discussion. Here, first we define strongly primary fuzzy r-ideal and then we
introduce the relation between {0, 1}-valued fuzzy r-ideals 3, and (53, ). of monoids.

Definition 3.4. Prime integral fractionary fuzzy r-ideal 3, of a monoid H is said
to be strongly primary fuzzy r-ideal if any fractionary fuzzy r-ideals p and v of a
monoid H, (o v), C B, implies that either p, C 8, or v, C v/,

Proposition 3.5. Let 3. be a {0,1}-valued integral fractionary fuzzy r-ideal of a
monoid H. Then the following statements are equivalent.

(1) B is a strongly primary fuzzy r-ideal of a monoid H.

(2) (Br)« is a strongly primary r-ideal of a monoid H.

Proof. (1) = (2) Let 8, is a strongly primary fuzzy r-ideal of a monoid H, and
let ¢’, ¢” € G(H) (quotient groupoid of H) and ¢'.. ¢" € (8,)x. Then < g} > o
720
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< g/l/ >C (,. Since 8, is a strongly primary fuzzy r-ideal of H = < ¢§ > C j,
or < gy >C /B, Sog € (B)« or g € (VB = V(Br)s = (B,)« is a strongly
primary r-ideal of a monoid H.

(2) = (1) On contradictory suppose there exist fractionary fuzzy r-ideals p,., v,
of a monoid H and i, o v, C By, pr G By and v, € +/B,. This implies that there
exist ¢, g € G(H) such that 1.(¢') > Bu(g’) and v,(g") > (VB)(g"), as B is
a {0, 1}-valued ideal, we have (.(¢') = 0 and (v/3,)(¢") = 0 = ¢ ¢ (B,). also
9" & (VBr)s = \/(Br)«. Since ¢'.. g ¢ (Br)«, and so (3.(¢’'¢g"”) = 0. But we have,
0 = Br(g'g") = (1o 0)e(g's") = (10 1)(g'g") > pe(g)A velg") > 0, which is
contradiction. Thus u, C 3, or v, C +/B,, and hence 8, is a strongly primary fuzzy
r-ideal of a monoid H by definition [3.4. O

Proposition 3.6. H is an almost pseudo-valuation monoid if and only if every
{0, 1}-valued prime integral fractionary r-ideal of H is a strongly primary fuzzy r-
ideal of a monoid H.

Proof. Let H is an almost pseudo-valuation monoid, consider 3, be a {0, 1}-valued
prime integral fractionary fuzzy r-ideal of H. Since H is an almost pseudo-valuation
monoid so (5,). is a strongly primary r-ideal of H. Hence (3, is a strongly primary
fuzzy r-ideal of a monoid H by proposition 3.5. Conversely, suppose P, be r-prime
ideal of a monoid H and assume that ¢, ¢’ € G(H) (quotient groupoid of H) and

g .+ g" € P.. Then < g} > o0 < g >C Xg?. But < g7 >C XEST) or < g7

(0)

Thus g € Pror g" € (1/xp, )+ = VPr. Thus H is a almost pseudo-valuation monoid

by [14], Definition 2 (b)]. O

> C ngr).

Remark 3.7. Proposition 3.6 gives us the characterization of almost pseudo-valuation
monoids in terms of fractionary fuzzy r-ideals.

Prime ideal P of H is said to be a pseudo-strongly r-prime ideal if, whenever
x, y € G (quotient groupoid of H) and xyP C P, then there is a positive integer
m > 1 such that either 2™ € H or y™P C P[14] Definition 3 (a)]. Monoid H is said
to be pseudo-almost valuation monoid if and only if for every nonzero x € G(H),
there is a positive integer n > 1 such that either "™ € H or az™™ € H for every
nonunit a € H[14, Definition 4]. Pseudo-strongly prime r-ideal of a monoid and
pseudo-almost valuation monoid can be defined in terms of fuzzy r-ideals as.

Definition 3.8. (a) Any {0, 1}-valued prime integral fractionary fuzzy r-ideal 3, of
a monoid H is said to be a fuzzy pseudo-strongly prime r-ideal if ¢, g € G(H) and
(9’¢g")1 © B then there exist m € N such that (¢"); C Xg) or (¢"™)1 0B C By.

(b) A monoid H is said to be pseudo-almost valuation monoid, if each {0,1}-
valued prime integral fractionary fuzzy r-ideal (3, of a monoid H is a fuzzy pseudo-
strongly prime r-ideal.

Proposition 3.9. FEvery almost pseudo-valuation monoid is a pseudo-almost valu-
ation monotd.

Proof. Suppose 8 be a {0,1}-valued prime integral fractionary fuzzy r-ideal of H
and g € E(H) = {g € G(H) : g" ¢ H for each n > 1}. Since H is an almost
721
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pseudo-valuation monoid so (3 is a strongly primary fuzzy r-ideal. Thus (é)l o C
B = [ is a pseudo-strongly prime fuzzy ideal. Hence H is a pseudo-almost valuation
monoid. |

Proposition 3.10. FEvery almost valuation monoid is a pseudo-almost valuation
monoid.

Proof. Let H is an almost-valuation monoid. Consider (3, be an integral fractionary
fuzzy (prime) r-ideal, if (¢'"); C ng) then we are done, otherwise, (g%h o3 C B
by definition [3.1(b). Hence [, is a pseudo strongly prime fuzzy ideal by definition

3.8(b), and H is a pseudo-almost valuation monoid. O

Finally we fuzzify [14, Theorem 1] to show the linkage between different results
of this note. First we recall few terminologies, following [7, definition 6.4] r-ideal
M is called r-maximal if M # H and there is no r-ideal J such that M C J C H,
and a monoid H is called r-local, if H possesses exactly one r-maximal r-ideal [7|
definition 6.5].

Definition 3.11. A fuzzy r-ideal M is called r-maximal if M # H and there is no
fuzzy r-ideal J such that M C J C H. Similarly, a monoid H is called r-local if H
possesses exactly one r-maximal fuzzy r-ideal.

Theorem 3.12. Let r be a finitary fuzzy ideal system on H and M = H\H* then
the following are equivalent:

(1) H is almost pseudo-valuation monoid.

(2) If P. €r—spec(H) is a {0,1}-valued prime integral fractionary fuzzy r- ideal
and g', g" € G(H), then g'g" € P. implies g € P, or (¢")" € P,.

(3) For all P. € r — spec(H) is a {0, 1}-valued prime integral fractionary fuzzy r-
ideal and ¢' € G(H)\H, we have (ﬁ)l C (P-:P).

(4) H is r-local and or all ¢ € G(H)\H, we have (W)l C (M, : M,).

(5) H is r-local and (M : M) is a valuation monoid with mazimal fuzzy primary
s-ideal M.

(6) H is r-local and there exist a valuation monoid V for H such that /M is a

mazimal fuzzy s-ideal of V.

Proof. (1) = (2) Let H be an almost pseudo-valuation monoid, consider P, be a
{0, 1}-valued prime integral fractionary r-ideal of H and assume that ¢’, ¢’ € G(H)

(quotient groupoid of H) and ¢’¢g” € P.. Then < g; >0 < g/ > C Xg)- But < ¢} >

- XSST) or < gf > C \/XTST). Thus ¢’ € P, or g” € ( ngg)* =P,
(2) = (3) Let P, € r—spec(H) is a {0, 1}-valued prime integral fractionary fuzzy
r- ideal and ¢’ € G(H)\H be given. If p € P, then consider p = (J57)1 0 (g1)" € Pr
implies (J%)1 € Pr. Consequently, (/7)1 0 P C Py, and therefore (7)1 € (P : P).
(3) = (4) We must prove that P, C /Q, for all P € r —spec(H) and ) € r—max

(H). Let P # @ and fix some element g € Q\P, if p € P then (#)l oq ¢ H implies
p"q~1Q C /Q and hence p" = (p"q)q € VQ.
(4) = (5) If ¢’ € GUH)\(M : M) C G(H)\H, then (¢z5m)1 € (M : M), and
therefore (M : M) is a valuation monoid. Since M (M : M) C M, M is an s-ideal
722
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(M:M). Itg e (M : M)\(M : M)* then (g%)l ¢ (M : M) implies ¢ € H,

and since ¢’ ¢ H*, we obtain ¢’ € M. Therefore M is the maximal primary fuzzy
s-ideal of (M : M).

(5) = (6) It is very clear.
(6) = (1) If ¢’ € G(H)\H and o™ € H\H* = M, then (;); € V, and conse-

quently (%)1 oa™€ M C H. O
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