Annals of Fuzzy Mathematics and Informatics Volume 7, No. 5, (May 2014), pp. 715–723 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy ideal systems and some monoids

WAHEED AHMAD KHAN, ABDELGHANI TAOUTI

Received 29 May 2013; Revised 21 August 2013; Accepted 16 September 2013

ABSTRACT. In this note we introduce weak ideal systems on fuzzy ideals of monoids. Moreover, utilizing fuzzy r-ideals and fractionary fuzzy r-ideals we characterize valuation monoids, almost valuation monoids, pseudovaluation monoids, almost pseud-ovaluation monoids, and pseudo-almost valuation monoids. We Also discuss few implications between said monoids. Finally, we fuzzify [14, Theorem 1] which reflects the linking bridge between different results in this note.

2010 AMS Classification: I13A15, 03E72, 13C12

Keywords: r-ideals, Fuzzy r-ideals, Fractionary fuzzy r-ideals, Fuzzy monoids.

Corresponding Author: Waheed Ahmad Khan (sirwak2003@yahoo.com)

1. INTRODUCTION AND PRELIMINARIES

The concepts of fuzzy sets and fuzzy relations were first introduced by Zadeh[16]. Fuzzy subgroup and its properties were discussed by Rosenfeld [13]. After this, the notion of a fuzzy ideal of a ring was introduced by Liu, Malik, Mordeson and Mukherjee. Bhattacharya and Mukherjee have studied fuzzy relation on groups. Malik and Mordeson [9] came up with fuzzy relations on rings.

A fuzzy ideal ξ of a ring R is said to be fuzzy prime, if it is non-constant and for any two fuzzy ideal μ and ν of R, the condition $\mu \circ \nu \subseteq \xi$ implies that $\mu \subseteq \xi$ or $\nu \subseteq \xi$. It is well known that ξ is fuzzy prime if and only if $\xi(0) = 1$, ξ_* is a prime ideal of R and $|Im(\xi)| = 2$ [11, Theorem 3. 5. 5]. Fuzzy ideal ξ is called fuzzy primary if ξ is non-constant and for any two fuzzy ideals μ , ν of R, $\mu \circ \nu \subseteq \xi$ implies $\mu \subseteq \xi$ or $\nu \subseteq \sqrt{\xi}$ [11, Theorem 3. 5. 5]. Reader may consult [11] for details of fuzzy R-submodule and defining operations. A fuzzy ideal μ in a noetherian ring R is called irreducible if $\mu \neq R$ and whenever $\mu_1 \wedge \mu_2 = \mu$ where μ_1 and μ_2 are fuzzy ideals of R, the $\mu_1 = \mu$ or $\mu_2 = \mu$ [12, Definition 4.1].

We recall few standard definitions from the literature which have been introduced in [9], [6] and [13].

Let $\mu_t = \{x \in R : \mu_t(x) \ge t\}$, a level set for every $t \in [0, 1]$. For a subset W of R let $\chi_W^{(t)}$ be the fuzzy subset of K (quotient field of R) such that $\chi_W^{(t)}(x) = 1$ if $x \in W$ and $\chi_W^{(t)}(x) = t$ if $x \in K \setminus W$, where $t \in [0,1)$. For $d \in K$ and $t \in [0,1]$, we let d_t denote the fuzzy subset of K defined by: for every $x \in K$, $d_t(x) = t$ if x = dand $d_t(x) = 0$ otherwise. Let R be an integral domain, a fuzzy R-submodule β of K (quotient field of R) is called a fractionary fuzzy ideal of R if there exists $d \in R$, $d \neq 0$, such that $d_1 \circ \beta \subseteq \chi_R^{(t)}$ for some $t \in [0, 1)$. Let β be a fractionary fuzzy ideal of R. Then $\beta|_R$ is a fuzzy ideal of R. If $\beta|_R$ is a prime(maximal) fuzzy ideal of R, then β is called a prime (maximal) fractionary fuzzy ideal of R. If $\beta(x) = 0$ for all $x \in K \setminus R$, then β is called an integral fractionary fuzzy ideal of R. Thus, if β is a prime (maximal) integral fractionary fuzzy ideal of R, then $Im(\beta) = \{0, t, 1\}$ for some $t \in [0, 1)$. A prime integral fractionary fuzzy ideal β of R is said to be strongly prime if for any fractionary fuzzy ideals μ , ν of R, $\mu \circ \nu \subseteq \beta$ implies that $\mu \subseteq \beta$ or $v \subseteq \beta[6, \text{Definition 2.1}]$. Let β be an integral fractionary fuzzy ideal of R then is strongly primary fuzzy ideal of R if for any fractionary ideals μ and ν of R, $\mu \circ \nu \subseteq \beta$ implies that $\mu \subseteq \beta$ or $\nu \subseteq \sqrt{\beta}$ [6, Definition 4.1]. A proper fuzzy ideal μ of a ring R is said to be strongly irreducible if for each pair of fuzzy ideals θ and σ of R, if $\theta \wedge$ $\sigma \subseteq \mu$ then either $\theta \subseteq \mu$ or $\sigma \subseteq \mu$ [15, Definition 2].

Throughout this note a monoid means a commutative cancellative semigroup with identity with zero adjoined, we will represent the semigroup operation by ordinary multiplication notation and use 1 to denote the identity of the semigroup. We will implement [7] convention of allowing a zero element 0 with the property that 0x = 0; yet xy = 0 implies x = 0 or y = 0. Here, a good representative example of a monoid is the multiplicative monoid of an integral domain. This close relationship has made it very natural to study results of a multiplicative nature known for integral domains in the monoid setting. If H is a monoid we represent $H^* = H \setminus \{0\}$, and $a, b \in H$ we write $a|_{H}b$ to denote a divides b in H, that is, b = ac for some $c \in H$. We call $a, b \in H$ associates if $a|_H b$ and $b|_H a$. Associates of 1 in H are called units and the set of units of H is denoted by H^{\times} . Now H is said to be reduced if $H^{\times} = \{1\}$. The units of H can be shown to be invertible elements of H. Thus H^{\times} is a subgroup of H and we can consider the quotient monoid H/H^{\times} which is obviously reduced and is denoted by H_{red} . There is a quotient field that we have for a domain, in parallel there is a groupoid for a monoid H. We shall reserve G(H) for the quotient groupoid of H. Quotient groupoid of a cancellative monoid H is a groupoid G(H) such that $H \subset G(H)$ is a submonoid and $G(H) = \{c^{-1}a : a \in H, c \in H^*\}$ [7, Page 38]. As in the case of integral domains we can also define various ideal systems on a monoid H. This fact has been amply demonstrated in [7]. For the sake of completeness we included some basic definitions, we refer [7, Chapter 2] to readers for the properties of weak ideal systems of monoids.

Let R be an integral domain with quotient field K. A prime ideal P of R is called strongly prime if $xy \in P$, where $x, y \in K$, then $x \in P$ or $y \in P$ (alternatively P is strongly prime if and only if $x^{-1}P \subset P$ whenever $x \in K \setminus R$ [4, Definition, page2]. Following [4] an integral domain said to be pseudo-valuation domain whose every prime ideal is strongly prime. Recall [1] an ideal I of D is strongly primary if, whenever $xy \in I$ with $x, y \in K$ implies $x \in I$ or $y^n \in I$ for some integer $n \ge$

716

1, and D is an almost pseudo-valuation domain (APVD) if each prime ideal of D is strongly primary. Following [2] a prime ideal P of R is called a pseudo-strongly prime ideal if whenever $x, y \in K$ and $xyP \subseteq P$, there exist $m \in \mathbb{N}$ such that $x^m \in R$ or $y^mP \subseteq P$ and an integral domain R is called a pseudo-almost valuation domain if every prime ideal is a pseudo-strongly prime ideal. Fuzzy ideals in a monoid or semigroup have been discussed in the literature, fuzzy (weakly) ideals in a semigroup have been introduced in [3]. Recently, generalized fuzzy prime ideal in an ordered semigroup has been introduced (redefined) in [10].

In [14, Page 182] author (with T. Shah) has introduced almost valuation monoid, pseudo-almost valuation monoid, almost pseudo-valuation monoid and discussed few of their characteristics.

In this note we introduce fuzzy ideal systems on monoids and subsequently, we discuss fuzzy r-ideal systems on fuzzy subsets, fuzzy ideals and farctionary fuzzy ideals of a monoid. We also present characterization of valuation monoids, almost valuation monoids, pseudo-valuation monoids, pseudo-almost valuation monoids and almost pseudo-valuation monoid through fuzzy r-ideals. Finally, we fuzzify the result [14, Theorem 1].

For basic definitions and terminologies of monoids please consult [7]. We refer [9], [13] and [16] for basic notations, terminologies and definitions of fuzzy discussions.

2. Fuzzy ideal systems

In this section we introduce fuzzy r-system on fuzzy ideals and also fuzzy r-system on fractionary fuzzy ideals. We begin with the following definition.

Definition 2.1. Consider H be a monoid and P(H) is the power set of H. Let $H \subset P(H)$, a fuzzy ideal system r on a monoid P(H) is a map on $P(H) \to P(H)$, defined by $\mu \to \mu_r$ (fuzzy subsets) such that for all fuzzy subsets (resp. fuzzy ideals) $\beta, \mu \in P(H)$ and $c \in H$ the following conditions hold:

- (a) $\mu \cup \{0\} \subseteq \mu_r$
- (b) $\mu \subseteq \beta_r$ implies $\mu_r \subseteq \beta_r$
- (c) $c\mu_r \subset (c\mu)_r$.

A fuzzy ideal μ is called a fuzzy r-ideal if $\mu = \mu_r$ and is r-finitely generated if $\mu = \beta_r$ for a finitely generated fuzzy ideal β of H. From (a) it follows that for every fuzzy r-system we have $H_r = H$. If μ is a fuzzy r-ideal and X is a fuzzy subset of H then the set $(\mu : X) = \{h \in H \mid hX \subseteq \mu\}$ is a fuzzy r-ideal and $(\mu : X) = (\mu : X_r)$. A fuzzy ideal system r on H is said to be a finitary if for each fuzzy subset $X \in H$, $X_r = F_r$ where F ranges over the finite fuzzy subsets of X.

The simplest d-system on fuzzy subsets (resp. ideals) is the map from $P(H) \rightarrow P(H)$ given by $\mu \rightarrow \mu_d = \mu$. One of the ideal systems of interest is s-system, for fuzzy subset $\mu \subset H$, we define, $\mu_s = \{0\}$ when $\mu = \emptyset$ and μH when $\mu \neq \emptyset$. If r is a weak ideal system on fuzzy monoid H then every fuzzy r-ideal (resp. subset) is a fuzzy s-ideal (resp. subset).

Definition 2.2. A fuzzy subset μ of a monoid H is a fuzzy r-ideal of H, if for every $g, h \in H$, $\mu_r(g-h) \ge \mu_r(g) \land \mu_r(h)$ and $\mu_r(gh) \ge \mu_r(g) \lor \mu_r(h)$.

Basic operation between fuzzy r-ideals can be define as.

Definition 2.3. Let α_r , β_r are two fuzzy r-ideals of a monoid H, we define operation " \circ " as.

$$(\alpha \circ \beta)_r(x) = \alpha_r(x) \circ \beta_r(x) = \vee \{\alpha_r(y) \land \beta_r(z) : y, z \in H\}$$

We define some terminologies for monoids which are useful for our forthcoming discussion.

A fuzzy r-ideal β_r of a monoid H is said to be fuzzy prime r-ideal if it is nonconstant and for every two fuzzy r-ideals $(\mu \circ v)_r \subseteq \beta_r$ implies that either $\mu_r \subseteq \beta_r$ or $v_r \subseteq \beta_r$. A fuzzy r-ideal β_r of a monoid H is said to be fuzzy primary r-ideal if it is non-constant and for every two fuzzy r-ideals $(\mu \circ v)_r \subseteq \beta_r$ implies that either $\mu_r \subseteq \beta_r$ or $v_r \subseteq \sqrt{\beta_r}$. A fuzzy r subset μ_r of G(H) is fuzzy H-submodule of G(H)(a quotient groupoid of H) if $\mu_r(g' - h') \ge \mu_r(g') \land \mu_r(h'), \mu_r(gg') \ge \mu_r(g')$ and $\mu_r(0) = 1$, for every $g', h' \in G(H)$ and $g \in H$. For a subset W of a monoid H let $\chi_W^{(t)}$ be the fuzzy subset of G(H) (a quotient groupoid of H) such that $\chi_W^{(t)}(h) = 1$ if $h \in W$ and $\chi_W^{(t)}(h) = t$ if $h \in G(H) \backslash W$, where $t \in [0, 1)$. For $g \in G(H)$ and $t \in [0, 1]$, we let g_t denote the fuzzy subset of G(H) such that for every $h \in G(H), g_t(h) = t$ if h = g and $g_t(h) = 0$ otherwise. Let H be a monoid, a fuzzy H-submodule β_r of G(H) (quotient groupoid of H) is called a fractionary fuzzy r-ideal of H if there exists $g \in H, g \neq 0$, and $g_1 \in G(H)$ such that $g_1 \circ \beta_r \subseteq \chi_H^{(t)}$ for some $t \in [0, 1)$. In [5] star operations on fractionary fuzzy ideals have been introduced, we define

In [5] star operations on fractionary fuzzy ideals have been introduced, we define r-ideal system on fractionary fuzzy ideals of monoid. We assume that $\beta_* = \{g' \in G(H) : \beta(g') = \beta(0)\}$.

We may define an ideal system on fractionary fuzzy r-ideals as.

Definition 2.4. Let H be a fuzzy monoid, an ideal system r on fractionary fuzzy ideal is the map $F(H) \to F(H)$, where F(H) represent the fractionary subsets (resp. fractionary fuzzy ideals) of G(H), defined by $\mu \to \mu_r$ such that for all fuzzy subsets (resp. fuzzy ideals) $\beta, \mu \in F(H)$ and $c \in G(H)$ the following conditions hold:

- (a) $\mu \cup \{0\} \subseteq \mu_r$ and $(g_1 \circ \beta)_r = g_1 \circ \beta_r$
- (b) $\mu \subseteq \beta_r$ implies $\mu_r \subseteq \beta_r$
- (c) $cH \subseteq \{c\}_r$
- (d) $c\mu_r = (c\mu)_r$
- (e) $(\mu_r)_r = \mu_r$

If we restrict an ideal system r to be only fractionary fuzzy ideals then operation r is just like a star operation.

Following definition 2.4, a fractionary fuzzy r-ideal μ is called a fractionary fuzzy r-ideal if $\mu = \mu_r$ and is r-finitely generated if $\mu = \beta_r$ for a finitely generated fuzzy ideal β of H.

From definition 2.4(a), it follows that for every fuzzy r -system $H_r = H$ and every fuzzy principal ideal is a fuzzy r -ideal. If μ is a fractionary fuzzy r -ideal and Xis a fractionary fuzzy subset of F(H) then the set $(\mu : X) = \{h \in H \mid hX \subseteq \mu\}$ is a fuzzy r -ideal and $(\mu : X) = (\mu : X_r)$. A fuzzy ideal system r on H is said to be finitary if for each fuzzy subset $X \in H$, $X_r = F_r$ where F ranges over the finite fuzzy subsets of X.

Definition 2.5. Let β_r be a fractionary fuzzy r-ideal of a monoid H. Then $\beta_r|_H$ is a fuzzy ideal of H. If $\beta_r|_H$ is a prime(maximal) fuzzy r-ideal of H, then β_r is called

a prime (maximal) fractionary fuzzy r-ideal of H. If $\beta_r(h) = 0$ for all $h \in G(H) \setminus H$ then β_r is called an integral fractionary fuzzy r-ideal of H. Thus, if β_r is a prime (maximal) integral fractionary fuzzy r-ideal of H, then $Im(\beta_r) = \{0, t, 1\}$ for some $t \in [0, 1).$

Proposition 2.6. Let $\{\mu_i : i \in I\}$ be the collection of fuzzy r H-submodules of G(H)and let $g \in G(H)$ and $d \neq 0$. Then

(1) $g_1 \circ (\cap_i \mu_i) = \cap_i (g_1 \circ \mu_i)$ (2) $g_1 \circ (\cup_i \mu_i) = \cup_i (g_1 \circ \mu_i)$

Proof. (1) Let $g' \in G(H)$, consider $(g_1 \circ (\cap_i \mu_i))(g') = \wedge_i \beta_i(\frac{g'}{g}) = \wedge_i (g_1 \circ \mu_i)(g') = \cap_i (g_1 \circ \mu_i)(g')$. Similarly, we can prove (2), let $g' \in G(H)$, consider $(g_1 \circ (\cup_i \mu_i))(g') = (g' \circ (g')) = (g' \circ (g')) = (g' \circ (g'))$. $\vee_i \beta_i(\frac{g'}{g}) = \vee_i (g_1 \circ \mu_i)(g') = \cup_i (g_1 \circ \mu_i)(g').$ \square

Proposition 2.7. Let α_r , β_r be a fractionary fuzzy r-ideals of H. Then $\alpha_r + \beta_r$ and $\alpha_r \circ \beta_r$ are fractionary fuzzy r-ideals of H.

Proof. Since α_r and β_r are fractionary fuzzy r-ideals of H, there exist $0 \neq g, h \in H$ such that $g_1 \circ \alpha_r \subseteq \chi_H^{(s)}$ and $h_1 \circ \beta_r \subseteq \chi_H^{(t)}$ for some $s, t \in [0, 1)$. So $(gh)_1 \circ \alpha_r =$ $g_1 \circ h_1 \circ \alpha_r \subseteq h_1 \circ \chi_H^{(s)} \subseteq \chi_H^{(s)}$. Similarly, $(gh)_1 \circ \beta_r \subseteq \chi_H^{(t)}$. Thus $(gh)_1 \circ (\alpha_r + \beta_r) =$ $(gh)_1 \circ \alpha_r + (gh)_1 \circ \beta_r \subseteq \chi_H^{(s)} + \chi_H^{(t)} \subseteq \chi_H^{(t \lor s)}$ and also $(gh)_1 \circ (\alpha_r \circ \beta_r) = (g_1 \circ \alpha_r) \circ$ $(h_1 \circ \beta_r) \subseteq \chi_H^{(s)} \circ \chi_H^{(t)} \subseteq \chi_H^{(t \lor s)}$. So $\alpha_r + \beta_r$ and $\alpha_r \circ \beta_r$ are the fractionary fuzzy r ideals of Hr-ideals of H. \square

3. Fuzzy ideals and monoids

In this section we characterized valuation monoid, almost valuation monoid, pseudo-valuation monoid, almost pseudo-valuation monoid and pseudo-almost valuation monoid by using fuzzy r-ideals. We initiate by recalling some definitions from [7] and [14].

A monoid H is called a valuation monoid if for all $a, b \in H$, either a/b or b/a [7, Page 167]. A monoid H said to be almost valuation monoid, if G(H) be a quotient groupoid of a monoid H and for all $x \in G(H)$ either $x^n \in H$ or $x^{-n} \in H$. Similarly H is called pseudo-valuation monoid if $x \in G/H$ and $a \in H \setminus H^{\times}$ (where H^{\times} is a set of invertible elements of H) implies $x^{-1}a \in H$ [7, Page 182]. Following [14, Definition 1] H is said to be almost valuation monoid if G(H) be a quotient groupoid of a monoid H and for all $x \in G(H)$ either $x^n \in H$ or $x^{-n} \in H$. An integral domain R is called almost valuation domain if it is almost valuation monoid [14]. Monoid H is called r-local, if H possesses exactly one r-maximal r-ideal [7, Definition 6.5].

An r-ideal $P \in I_r(H)$ is primary or a primary r-ideal if $P \neq H$, and $a, b \in H$. $ab \in P$ implies $a \in P$ or $b \in rad(P)$ [7, Page 61]. Let G(H) be a quotient groupoid of H then r-ideal $P \in I_r(H)$ is strongly primary r-ideal if $a, b \in G(H)$ such that $ab \in P$ implies $a \in P$ or $b \in rad(P)$ [14, Definition 2 (a)]. If H is a monoid and G(H) be its quotient groupoid then H is an almost pseudo-valuation monoid if every r-prime ideal P of H is strongly r-primary that is, P satisfies the following property $x, y \in G(H)$ such that $xy \in P$ and if $x \notin P$ implies some power of y is contained in P [14, Definition 2 (b)].

Fractionary fuzzy ideals of Dedekind domains have been discussed in [8]. In terms of fuzzy fractionary r-ideals we can define strongly prime and strongly primary fuzzy r-ideal of monoids. A prime integral fractionary fuzzy r-ideal β_r of a monoid H is said to be strongly prime r-ideal if any fractionary fuzzy ideals μ_r and v_r of a monoid H, $(\mu \circ v)_r \subseteq \beta_r$ implies that either $\mu_r \subseteq \beta_r$ or $v_r \subseteq \beta_r$.

In terms of fuzzy ideals we can re-define valuation monoid and almost valuation monoid as.

Definition 3.1. (a) A monoid H is said to be a valuation monoid, if for all $g' \in G(H)$ either $(g')_1 \subseteq \chi_H^{(0)}$ or $(\frac{1}{g'})_1 \subseteq \chi_H^{(0)}$. Equivalently, a monoid H is said to be a valuation monoid, if β_r be a $\{0,1\}$ -valued prime integral fractionary fuzzy r-ideal of $H, g', g'' \in G(H)$ and $\langle g'_1 \rangle \circ \langle g''_1 \rangle \subseteq \beta_r \Rightarrow g'g'' \in \beta_{r*}$, either $g' \in H$ or $g'' \in H$ otherwise $g'^{-1} \in H$ or $g''^{-1} \in H$.

(b) A monoid H is said to be almost valuation monoid, if G(H) be a quotient groupoid of a monoid H and for all $g' \in G(H)$ either $(g'^n)_1 \subseteq \chi_H^{(0)}$ or $(\frac{1}{g'^n})_1 \subseteq \chi_H^{(0)}$.

We re-define psuedo-valuation monoid in terms of fuzzy fractionary r-ideals as.

Definition 3.2. A monoid H with quotient groupoid G(H) is said to be pseudovaluation monoid, if every $\{0, 1\}$ -valued prime integral fractionary fuzzy r-ideal of a monoid H is a strongly prime fuzzy r-ideal of H.

We fuzzify an important relation between valuation monoids and pseudo-valuation monoids.

Proposition 3.3. Every valuation monoid is a fuzzy pseudo-valuation monoid.

Proof. Let H be a valuation monoid and β_r be a $\{0,1\}$ -valued prime integral fractionary r-ideal of H. Suppose $g', g'' \in G(H)$ and $\langle g'_1 \rangle \circ \langle g''_1 \rangle \subseteq \beta_r \Rightarrow xy \in \beta_{r*}$, thus $g', g'' \in H$. If $g', g'' \notin H$ then $\beta_r(g') = \beta_r(g'') = 0$. Since H is a valuation monoid so by definition 3.1(a), we have $g'^{-1}, g''^{-1} \in H$. Clearly, $g'' = g'g'g''^{-1} \in \beta_{r*}, g' = g'g'g''^{-1} \in \beta_{r*}$, which is a contradiction. Either $g' \in H$ or $g'' \in H$, suppose $g' \notin H$ it implies $\langle g'_1 \rangle \not\subseteq \beta_r$, so $g''_1 \in \beta_{r*}$. Thus $\langle g''_1 \rangle \subseteq \beta_r$ it implies that β_r is a strongly prime fuzzy ideal of R.

In literature (see[6, Theorem 2.3]) relation between $\{0, 1\}$ -valued fuzzy ideals β and β_* of integral domains have been discussed, we needed it for monoids to continue further discussion. Here, first we define strongly primary fuzzy r-ideal and then we introduce the relation between $\{0, 1\}$ -valued fuzzy r-ideals β_r and $(\beta_r)_*$ of monoids.

Definition 3.4. Prime integral fractionary fuzzy r-ideal β_r of a monoid H is said to be strongly primary fuzzy r-ideal if any fractionary fuzzy r-ideals μ and v of a monoid H, $(\mu \circ v)_r \subseteq \beta_r$ implies that either $\mu_r \subseteq \beta_r$ or $v_r \subseteq \sqrt{\beta_r}$.

Proposition 3.5. Let β_r be a $\{0,1\}$ -valued integral fractionary fuzzy r-ideal of a monoid H. Then the following statements are equivalent.

(1) β_r is a strongly primary fuzzy r-ideal of a monoid H.

(2) $(\beta_r)_*$ is a strongly primary r-ideal of a monoid H.

Proof. (1) \Rightarrow (2) Let β_r is a strongly primary fuzzy r-ideal of a monoid H, and let $g', g'' \in G(H)$ (quotient groupoid of H) and $g'._r g'' \in (\beta_r)_*$. Then $\langle g'_1 \rangle \circ$ 720 $\langle g_1^{''} \rangle \subseteq \beta_r$. Since β_r is a strongly primary fuzzy r-ideal of $H \Rightarrow \langle g_1' \rangle \subseteq \beta_r$ or $\langle g_1^{''} \rangle \subseteq \sqrt{\beta_r}$. So $g' \in (\beta_r)_*$ or $g_1^{''} \subseteq (\sqrt{\beta_r})_* = \sqrt{(\beta_r)_*} \Rightarrow (\beta_r)_*$ is a strongly primary r-ideal of a monoid H.

(2) \Rightarrow (1) On contradictory suppose there exist fractionary fuzzy r-ideals μ_r , v_r of a monoid H and $\mu_r \circ v_r \subseteq \beta_r$, $\mu_r \subsetneq \beta_r$ and $v_r \not\subseteq \sqrt{\beta_r}$. This implies that there exist $g', g'' \in G(H)$ such that $\mu_r(g') > \beta_r(g')$ and $v_r(g'') > (\sqrt{\beta_r})(g'')$, as β_r is a {0, 1}-valued ideal, we have $\beta_r(g') = 0$ and $(\sqrt{\beta_r})(g'') = 0 \Rightarrow g' \notin (\beta_r)_*$ also $g'' \notin (\sqrt{\beta_r})_* = \sqrt{(\beta_r)_*}$. Since $g' \cdot_r g'' \notin (\beta_r)_*$, and so $\beta_r(g'g'') = 0$. But we have, $0 = \beta_r(g'g'') \ge (\mu \circ v)_r(g'g'') = (\mu_r \circ v_r)(g'g'') \ge \mu_r(g') \land v_r(g'') > 0$, which is contradiction. Thus $\mu_r \subseteq \beta_r$ or $v_r \subseteq \sqrt{\beta_r}$, and hence β_r is a strongly primary fuzzy r-ideal of a monoid H by definition 3.4.

Proposition 3.6. *H* is an almost pseudo-valuation monoid if and only if every $\{0,1\}$ -valued prime integral fractionary r-ideal of *H* is a strongly primary fuzzy r-ideal of a monoid *H*.

Proof. Let H is an almost pseudo-valuation monoid, consider β_r be a $\{0, 1\}$ -valued prime integral fractionary fuzzy r-ideal of H. Since H is an almost pseudo-valuation monoid so $(\beta_r)_*$ is a strongly primary r-ideal of H. Hence β_r is a strongly primary fuzzy r-ideal of a monoid H by proposition 3.5. Conversely, suppose P_r be r-prime ideal of a monoid H and assume that $g', g'' \in G(H)$ (quotient groupoid of H) and $g'_r g'' \in P_r$. Then $\langle g'_1 \rangle \circ \langle g''_1 \rangle \subseteq \chi^{(0)}_{P_r}$. But $\langle g'_1 \rangle \subseteq \chi^{(0)}_{P_r}$ or $\langle g''_1 \rangle \subseteq \sqrt{\chi^{(0)}_{P_r}}$. Thus $g' \in P_r$ or $g'' \in (\sqrt{\chi^{(0)}_{P_r}})_* = \sqrt{P_r}$. Thus H is a almost pseudo-valuation monoid by [14, Definition 2 (b)].

Remark 3.7. Proposition 3.6 gives us the characterization of almost pseudo-valuation monoids in terms of fractionary fuzzy r-ideals.

Prime ideal P of H is said to be a pseudo-strongly r-prime ideal if, whenever $x, y \in G$ (quotient groupoid of H) and $xyP \subseteq P$, then there is a positive integer $m \ge 1$ such that either $x^m \in H$ or $y^mP \subseteq P[14, \text{Definition 3 (a)}]$. Monoid H is said to be pseudo-almost valuation monoid if and only if for every nonzero $x \in G(H)$, there is a positive integer $n \ge 1$ such that either $x^n \in H$ or $ax^{-n} \in H$ for every nonunit $a \in H[14, \text{Definition 4}]$. Pseudo-strongly prime r-ideal of a monoid and pseudo-almost valuation monoid can be defined in terms of fuzzy r-ideals as.

Definition 3.8. (a) Any $\{0, 1\}$ -valued prime integral fractionary fuzzy r-ideal β_r of a monoid H is said to be a fuzzy pseudo-strongly prime r-ideal if $g', g'' \in G(H)$ and $(g'g'')_1 \circ \beta_r$ then there exist $m \in N$ such that $(g'^m)_1 \subseteq \chi_H^{(0)}$ or $(g''^m)_1 \circ \beta_r \subseteq \beta_r$.

(b) A monoid H is said to be pseudo-almost valuation monoid, if each $\{0, 1\}$ -valued prime integral fractionary fuzzy r-ideal β_r of a monoid H is a fuzzy pseudo-strongly prime r-ideal.

Proposition 3.9. Every almost pseudo-valuation monoid is a pseudo-almost valuation monoid.

Proof. Suppose β be a $\{0,1\}$ -valued prime integral fractionary fuzzy r-ideal of H and $g \in E(H) = \{g \in G(H) : g^n \notin H \text{ for each } n \geq 1\}$. Since H is an almost 721

pseudo-valuation monoid so β is a strongly primary fuzzy r-ideal. Thus $(\frac{1}{g})_1 \circ \beta \subseteq \beta \Rightarrow \beta$ is a pseudo-strongly prime fuzzy ideal. Hence H is a pseudo-almost valuation monoid.

Proposition 3.10. Every almost valuation monoid is a pseudo-almost valuation monoid.

Proof. Let H is an almost-valuation monoid. Consider β_r be an integral fractionary fuzzy (prime) r-ideal, if $(g'^n)_1 \subseteq \chi_H^{(0)}$ then we are done, otherwise, $(\frac{1}{g'^n})_1 \circ \beta_r \subseteq \beta_r$ by definition 3.1(b). Hence β_r is a pseudo strongly prime fuzzy ideal by definition 3.8(b), and H is a pseudo-almost valuation monoid.

Finally we fuzzify [14, Theorem 1] to show the linkage between different results of this note. First we recall few terminologies, following [7, definition 6.4] r-ideal M is called r-maximal if $M \neq H$ and there is no r-ideal J such that $M \subseteq J \subseteq H$, and a monoid H is called r-local, if H possesses exactly one r-maximal r-ideal [7, definition 6.5].

Definition 3.11. A fuzzy r-ideal M is called r-maximal if $M \neq H$ and there is no fuzzy r-ideal J such that $M \subseteq J \subseteq H$. Similarly, a monoid H is called r-local if H possesses exactly one r-maximal fuzzy r-ideal.

Theorem 3.12. Let r be a finitary fuzzy ideal system on H and $M = H \setminus H^{\times}$ then the following are equivalent:

(1) H is almost pseudo-valuation monoid.

(2) If $P_r \in r - spec(H)$ is a $\{0, 1\}$ -valued prime integral fractionary fuzzy r- ideal and $g', g'' \in G(H)$, then $g'g'' \in P_r$ implies $g' \in P_r$ or $(g'')^n \in P_r$.

(3) For all $P_r \in r - spec(H)$ is a $\{0, 1\}$ -valued prime integral fractionary fuzzy rideal and $g' \in G(H) \setminus H$, we have $(\frac{1}{(g')^n})_1 \subseteq (P_r : P_r)$.

(4) *H* is *r*-local and or all $g' \in G(H) \setminus H$, we have $(\frac{1}{(q')^n})_1 \subseteq (M_r : M_r)$.

(5) H is r-local and (M:M) is a valuation monoid with maximal fuzzy primary s-ideal M.

(6) *H* is r-local and there exist a valuation monoid *V* for *H* such that \sqrt{M} is a maximal fuzzy s-ideal of *V*.

Proof. (1) \Rightarrow (2) Let H be an almost pseudo-valuation monoid, consider P_r be a $\{0,1\}$ -valued prime integral fractionary r-ideal of H and assume that $g', g'' \in G(H)$ (quotient groupoid of H) and $g'g'' \in P_r$. Then $\langle g'_1 \rangle \circ \langle g''_1 \rangle \subseteq \chi^{(0)}_{P_r}$. But $\langle g'_1 \rangle \subseteq \chi^{(0)}_{P_r}$ or $\langle g''_1 \rangle \subseteq \chi^{(0)}_{P_r}$. Thus $g' \in P_r$ or $g'' \in (\sqrt{\chi^{(0)}_{P_r}})_* = \sqrt{P_r}$.

(2) \Rightarrow (3) Let $P_r \in r - spec(H)$ is a $\{0, 1\}$ -valued prime integral fractionary fuzzy r- ideal and $g' \in G(H) \setminus H$ be given. If $p \in P_r$, then consider $p = (\frac{p}{g'^n})_1 \circ (g'_1)^n \in P_r$ implies $(\frac{p}{g'^n})_1 \in P_r$. Consequently, $(\frac{p}{g'^n})_1 \circ P_r \subseteq P_r$, and therefore $(\frac{p}{g'^n})_1 \in (P:P)$.

 $(3) \Rightarrow (4)$ We must prove that $P_r \subset \sqrt{Q_r}$ for all $P \in r - spec(H)$ and $Q \in r - \max(H)$. Let $P \neq Q$ and fix some element $q \in Q \setminus P$, if $p \in P$ then $(\frac{1}{p^n})_1 \circ q \notin H$ implies $p^n q^{-1}Q \subset \sqrt{Q}$ and hence $p^n = (p^n q)q \in \sqrt{Q}$.

(4) \Rightarrow (5) If $g' \in G(H) \setminus (M : M) \subset G(H) \setminus H$, then $(\frac{1}{(g')^n})_1 \in (M : M)$, and therefore (M : M) is a valuation monoid. Since $M(M : M) \subset M$, M is an s-ideal 722

of (M:M). If $g' \in (M:M) \setminus (M:M)^{\times}$ then $(\frac{1}{g'^n})_1 \notin (M:M)$ implies $g'^n \in H$, and since $g' \notin H^{\times}$, we obtain $g'^n \in M$. Therefore M is the maximal primary fuzzy *s*-ideal of (M:M).

 $(5) \Rightarrow (6)$ It is very clear.

(6) \Rightarrow (1) If $g' \in G(H) \setminus H$ and $a^n \in H \setminus H^{\times} = M$, then $(\frac{1}{g'})_1 \in V$, and consequently $(\frac{1}{g'})_1 \circ a^n \in M \subset H$.

References

- A. Badawi and E. G. Houston, Powerful ideals, strongly primary ideals, almost pseudovaluation domain, and conducive domains, Comm. Algebra 30 (2002) 1591–1606.
- [2] A. Badawi, On pseudo almost valuation domains, Comm. Algebra 35 (2007) 1167–1181.
- [3] P. Dheena and G. Mohanraj, Fuzzy weakly prime ideals of near-subtraction semigroups, Ann. Fuzzy Math. Inform. 4(2) (2012) 235–242.
- [4] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75(1) (1978) 137–147.
- [5] H. Kim, M. O. Kim, S. M. Park and Y. S. Park, Fuzzy star-operations on an integral domain, Fuzzy Sets and Systems 136 (2003) 105–114.
- [6] M. O. Kim and H. Kim, Strongly prime fuzzy ideals and related fuzzy ideals in an integral domain, J. Chungcheong Math. Soc. 22(3) (2009) 333–351.
- [7] F. H. Koch, Ideal Systems, An introduction to multiplicative ideal systems, Karl Franzens University Graz, Austria, Marcel Dekker, INC 1998.
- [8] K. H. Lee and J. N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998) 105–110.
- D. S. Malik and J. N. Mordeson, Fuzzy relations on rings and groups, Fuzzy sets and systems 43 (1991) 117–123.
- [10] G. Mohanraj, D. Krishnaswamy and R. Hema, On generalized redefined fuzzy prime ideals of ordered semigroups, Ann. Fuzzy Math. Inform. 6(1) (2013) 171–179.
- [11] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra, World Scientific Publishing, Singapore. 1998.
- [12] V. Muraly and B. B. Makaba, On Krull intersection theorem of fuzzy ideals, Int. J. Math. Math. Sci. 2003, no. 4, 251–262.
- [13] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–517.
- [14] T. Shah and Waheed Ahmad Khan, On some generalized valuation monoids, Novi Sad J. Math. 41(2) (2011) 111–116.
- [15] T. Shah and Muhammad Saeed, Fuzzy ideals in Laskerian rings, Mat. Vesnik 65(1) (2013) 74–81.
- [16] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 383–353.

<u>WAHEED AHMAD KHAN</u> (sirwak2003@yahoo.com)

Department of Mathematics and Statistics, Caledonian College of Engineering, P. O box. 2322, Seeb 111, Sultanate of Oman

<u>ABDELGHANI TAOUTI</u> (ganitaouti@yahoo.com.au)

Department of Mathematics and Statistics, Caledonian College of Engineering, P. O. box. 2322, Soch 111, Sultanate of Oman

P. O box. 2322, Seeb 111, Sultanate of Oman