Fuzzy soft semiregularization spaces

VILDAN ÇETKIN, HALIS AYGÜN

Received 18 January 2013; Accepted 27 August 2013

ABSTRACT. The purpose of this study is to introduce fuzzy soft semiregularization space induced by a fuzzy soft topological space. We also investigate some properties of fuzzy soft semiregularization spaces.

2010 AMS Classification: 06D72, 54A05, 54A40, 54D70

Keywords: Fuzzy soft set, Fuzzy soft topology, Fuzzy soft base, Fuzzy soft regular open, Fuzzy soft semiregularization space, Fuzzy soft semiregular space.

Corresponding Author: Vildan Çetkin (vildan.cetkin@kocaeli.edu.tr)

1. INTRODUCTION

Most of the existing mathematical tools for formal modeling, reasoning and computing are crisp, deterministic, and precise in character. But, in real life situation, the problems in economics, engineering, environment, social science, medical science etc. do not always involve crisp data. For this reason, we cannot successfully use the traditional classical methods because of various types of uncertainties presented in these problems. To exceed these uncertainties, some kinds of theories were given like theory of fuzzy sets [28], intuitionistic fuzzy sets [4], rough sets [23], i.e., which we can use as mathematical tools for dealing with uncertainties. Moreover, Zadeh [29] outlined the generalized theory of uncertainty in a much broader perspective. But all these theories have their inherent difficulties as what were pointed out by Molodtsov in [21]. The reason for these difficulties is, possibly, the inadequacy of the parametrization tool of the theories. Consequently, Molodtsov [21] initiated the concept of soft set theory as a new mathematical tool for dealing with vagueness and uncertainties which is free from the above difficulties.

Applications of Soft Set Theory in other disciplines and real life problems are now catching momentum. Molodtsov [21] successfully applied the soft set theory into several directions, such as smoothness of functions, game theory, Riemann integration, Perron integration, theory of measurement, and so on. Maji et al. [19] gave first practical application of soft sets in decision making problems. They have
also introduced the concept of fuzzy soft set, a more generalized concept, which is a combination of fuzzy set and soft set and also studied some of its properties. Ahmad and Kharal also made further contributions to the properties of fuzzy soft sets and fuzzy soft mappings. Soft set and fuzzy soft set theories have a rich potential for applications in several directions, a few of which have been shown by some authors (see [7, 20, 21, 22, 24, 25]).

The algebraic structure of soft set and fuzzy soft set theories dealing with uncertainties has also been studied by some authors. Aktaş and Çağman have introduced the notion of soft groups. Jun applied soft sets to the theory of BCK/BCI-algebras, and introduced the concept of soft BCK/BCI algebras. Jun and Park and Jun et al. reported the applications of soft sets in ideal theory of BCK/BCI-algebras and d-algebras. Feng et al. defined soft semirings and several related notions to establish a connection between soft sets and semirings. Sun et al. presented the definition of soft modules and construct some basic properties using modules and Molodtsov’s definition of soft sets. Aygın and Aygın introduced the concept of fuzzy soft group and in the meantime, discussed some properties and structural characteristic of fuzzy soft group.

The topological structure of fuzzy soft set theory has been considered by Aygın and Aygın. According to this definition a fuzzy soft topology which is a mapping from the parameter set to which satisfies the three certain conditions, i.e., a fuzzy soft topology is a fuzzy soft set on the family of fuzzy soft sets. Also, since the value of a fuzzy soft set under the mapping gives the degree of openness of the fuzzy soft set with respect to the parameter of (X, E). Also, can be thought as a fuzzy soft topology in the sense of Šostak. In this manner, Çetkin et al. investigated the fuzzy soft topological structures by using different parameter sets for the fuzzy soft set and the fuzzy soft topology.

In this study, we extend the concept of a fuzzy semiregular space [1, 16] to the concept of fuzzy soft semiregular space. We also investigate some properties of fuzzy soft semiregularization spaces.

2. Preliminaries

Throughout this paper, X refers to an initial universe, is the set of all parameters for X, the set of all fuzzy sets on X (where , and for \( \lambda \in [0, 1] \), \( \lambda(x) = \lambda \), for all \( x \in X \).

**Definition 2.1** ([2, 18]). \( f_A \) is called a fuzzy soft set on X, where is a mapping from E into \( I^X \), i.e., \( f_e \triangleq f(e) \) is a fuzzy set on X, for each \( e \in A \) and \( f_e = 0 \), if \( e \notin A \), where 0 is zero function on X. \( f_e \), for each \( e \in E \), is called an element of the fuzzy soft set \( f_A \).

\( (X, E) \) denotes the collection of all fuzzy soft sets on X and is called a fuzzy soft universe ([18]).

**Definition 2.2** ([18]). For two fuzzy soft sets \( f_A \) and \( g_B \) on X, we say that \( f_A \) is a fuzzy soft subset of \( g_B \) and write \( f_A \sqsubseteq g_B \) if \( f_e \leq g_e \), for each \( e \in E \).

**Definition 2.3** ([18]). Two fuzzy soft sets \( f_A \) and \( g_B \) on X are called equal if \( f_A \sqsubseteq g_B \) and \( g_B \sqsubseteq f_A \).
Definition 2.4 ([18]). Union of two fuzzy soft sets $f_A$ and $g_B$ on $X$ is the fuzzy soft set $h_C = f_A \cup g_B$, where $C = A \cup B$ and $h_e = f_e \lor g_e$, for each $e \in E$. That is, $h_e = f_e \lor \bar{e} = f_e$ for each $e \in A - B$, $h_e = \bar{e} \lor g_e = g_e$ for each $e \in B - A$ and $h_e = f_e \lor g_e$, for each $e \in A \cap B$.

Definition 2.5 ([2, 18]). Intersection of two fuzzy soft sets $f_A$ and $g_B$ on $X$ is the fuzzy soft set $h_C = f_A \cap g_B$, where $C = A \cap B$ and $h_e = f_e \land g_e$, for each $e \in E$.

Definition 2.6. The complement of a fuzzy soft set $f_A$ is denoted by $f_A^c$, where $f^c : E \rightarrow I^X$ is a mapping given by $f^c_e = \bar{e} - f_e$, for each $e \in E$.

Clearly $(f_A^c)_e^c = f_A$.

Definition 2.7 ([18]). (Null fuzzy soft set) A fuzzy soft set $f_E$ on $X$ is called a null fuzzy soft set and denoted by $\Phi$, if $f_e = \bar{e}$, for each $e \in E$.

Definition 2.8. (Absolute fuzzy soft set) A fuzzy soft set $f_E$ on $X$ is called an absolute fuzzy soft set and denoted by $\bar{E}$, if $f_e = \bar{e}$, for each $e \in E$. Clearly $(E)^c = \Phi$ and $\Phi^c = \bar{E}$.

Definition 2.9. ($\lambda$-absolute fuzzy soft set) A fuzzy soft set $f_E$ on $X$ is called a $\lambda$-absolute fuzzy soft set and denoted by $\bar{E}^\lambda$, if $f_e = \bar{e}$, for each $e \in E$. Clearly, $(\bar{E}^\lambda)^c = \bar{E}^{1-\lambda}$.

Proposition 2.10 ([2]). Let $\Delta$ be an index set and $f_A, g_B, h_C, (f_A)_i \triangleq (f_i)_A, (g_B)_i \triangleq (g_i)_B, (h_C)_i \triangleq (h_i)_C$, for all $i \in \Delta$. Then we have the following properties:

1. $f_A \cap f_A = f_A$,
2. $f_A \cap g_B = g_B \cap f_A$,
3. $f_A \cup (g_B \cup h_C) = (f_A \cup g_B) \cup h_C$,
4. $f_A \cap (g_B \cap h_C) = (f_A \cap g_B) \cap h_C$,
5. $f_A \cap \bigcap_{i \in \Delta} (g_B)_i = \bigcup_{i \in \Delta} (f_A \cap (g_B)_i)$.
6. $f_A \cup (\bigcap_{i \in \Delta} (g_B)_i) = \bigcup_{i \in \Delta} (f_A \cup (g_B)_i)$.
7. $\Phi \subseteq f_A \subseteq \bar{E}$.
8. $(f_A^c)_i^c = f_A$.
9. $(\bigcap_{i \in \Delta} (f_A)_i)^c = \bigcup_{i \in \Delta} (f_A)_i^c$.  

Figure 1. A fuzzy soft set $f_E$
Let \( \tau \) be a mapping from \( E \) to \([0, 1]^{|X,E|} \). Then \( \tau \) is called a fuzzy soft topology on \( X \) if it satisfies the following conditions for each \( e \in E \):

- (O1) \( \tau_e(\Phi) = \tau_e(\overline{E}) = 1 \).
- (O2) \( \tau_e(f_A \cap g_B) \geq \tau_e(f_A) \wedge \tau_e(g_B) \), for all \( f_A, g_B \in \overline{X,E} \).
- (O3) \( \tau_e(\bigcup_{i \in \Delta}(f_A)_i) \geq \bigwedge_{i \in \Delta} \tau_e((f_A)_i) \), for all \( (f_A)_i \in \overline{X,E} \), \( i \in \Delta \).

A fuzzy soft topology is called enriched (stratified) if it provides that (O1)', \( \tau_e(\overline{E}) = 1 \).

Then the pair \((X, \tau_E)\) is called a fuzzy soft topological space (fsts, for short). The value \( \tau_e(f_A) \) is interpreted as the degree of openness of a fuzzy soft set \( f_A \) with respect to parameter \( e \in E \).

Let \( \tau^1_E \) and \( \tau^2_E \) be fuzzy soft topologies on \( X \). We say that \( \tau^1_E \) is finer than \( \tau^2_E \) (\( \tau^2_E \) is coarser than \( \tau^1_E \)), denoted by \( \tau^2_E \sqsubseteq \tau^1_E \), if \( \tau^2_E(f_A) \leq \tau^1_E(f_A) \) for each \( e \in E, f_A \in \overline{X,E} \).

Example 3.2 ([6]). Let \( T \) be a fuzzy topology on \( X \) in Šostak’s sense, that is, \( T \) is a mapping from \( I^X \) to \( I \). Take \( E = I \) and define \( \overline{T} : E \rightarrow I^X \) as \( \overline{T}(e) \triangleq \{ \mu : T(\mu) \geq e \} \) which is levelwise fuzzy topology of \( T \) in Chang’s sense, for each \( e \in I \). However, it is well known that each Chang’s fuzzy topology can be considered as Šostak fuzzy topology by using fuzzifying method. Hence, \( \overline{T}(e) \) satisfies (O1), (O2) and (O3).

According to this definition and by using the decomposition theorem of fuzzy sets [17], if we know the resulting fuzzy soft topology, then we can find the first fuzzy topology. Therefore, we can say that a fuzzy topology can be uniquely represented as a fuzzy soft topology.

Example 3.3. Let \( E = \mathbb{N} \) be the set of natural numbers and \( \tau : E \rightarrow [0, 1]^{|X,E|} \) be defined as follows:

\[
\tau_e(f_A) = \begin{cases} 
1, & \text{if } f_A = \Phi, \overline{E}, \forall e \in E. \\
\frac{1}{e}, & \text{otherwise.}
\end{cases}
\]

It is easy to testify that \( \tau_E \) is a fuzzy soft topology on \( X \).

Proposition 3.4 ([6]). Let \( \{ \tau_k \}_{k \in K} \) be a family of fuzzy soft topologies on \( X \). Then \( \tau = \bigwedge_{k \in K} \tau_k \) is also a fuzzy soft topology on \( X \), where \( \tau_e(f_A) = \bigwedge_{k \in K} (\tau_k)_e(f_A) \), for each \( e \in E, f_A \in \overline{X,E} \).

Definition 3.5 ([6]). A mapping \( \eta : E \rightarrow [0, 1]^{|X,E|} \) is called a fuzzy soft cotopology on \( X \) if it satisfies the following conditions for each \( e \in E \):

- (C1) \( \eta_e(\Phi) = \eta_e(\overline{E}) = 1 \).
(C2) \( \eta_e(f_A \cup g_B) \geq \eta_e(f_A) \land \eta_e(g_B) \), for all \( f_A, g_B \in (X,E) \).

(C3) \( \eta_e(\bigcap_{i \in \Delta} (f_A_i)) \geq \bigwedge_{i \in \Delta} \eta_e((f_A_i)) \), for all \( (f_A_i) \in (X,E), i \in \Delta \).

The pair \((X, \eta_E)\) is called a fuzzy soft cotopological space.

Let \( \tau_E \) be a fuzzy soft topology on \( X \), then the mapping \( \eta : E \rightarrow [0,1]^{(X,E)} \) defined by \( \eta_e(f_A) = \tau_e(f_A^X) \), for each \( e \in E \) is a fuzzy soft cotopology on \( X \). Let \( \eta_E \) be a fuzzy soft cotopology on \( X \), then the mapping \( \tau : E \rightarrow [0,1]^{(X,E)} \) defined by \( \tau_e(f_A) = \eta_e(f_A^X) \), for each \( e \in E \), is a fuzzy soft topology on \( X \).

**Definition 3.6** ([6]). A mapping \( \beta : E \rightarrow [0,1]^{(X,E)} \) is called a fuzzy soft base on \( X \) if it satisfies the following conditions for each \( e \in E \):

- (B1) \( \beta_e(\Phi) = \beta_e(E) = 1 \).
- (B2) \( \beta_e(f_A \cap g_B) \geq \beta_e(f_A) \land \beta_e(g_B) \), for all \( f_A, g_B \in (X,E) \).

**Theorem 3.7** ([6]). Let \( \beta_E \) be a fuzzy soft base on \( X \). Define a map \( \tau_\beta : E \rightarrow [0,1]^{(X,E)} \) as follows:

\[
(\tau_\beta)_e(f_A) = \bigvee \left\{ \bigwedge_{j \in \Lambda} \beta_e((f_A)_j) \mid f_A = \bigcup_{j \in \Lambda} (f_A)_j \right\}, \quad \forall e \in E.
\]

Then \( (\tau_\beta)_E \) is the coarsest fuzzy soft topology on \( X \) for which \( (\tau_\beta)_e(f_A) \geq \beta_e(f_A) \), for all \( e \in E, f_A \in (X,E) \).

**Definition 3.8.** If \( \beta_E \) is a base on \( X \), then \( (\tau_\beta)_E \) is called the fuzzy soft topology generated by \( \beta_E \). \((X, (\tau_\beta)_E)\) is called a fuzzy soft topological space generated by a base \( \beta_E \) on \( X \).

**Theorem 3.9** ([8]). Let \( (X, \tau_E) \) be a fuzzy soft topological space. Define a mapping \( C_\tau : X \times (X,E) \times I_0 \rightarrow (X,E) \) as follows:

\[
C_\tau(e, f_A, r) = \cap \{ g_B \in (X,E) \mid f_A \subseteq g_B, \tau_e(g_B) \geq r \}.
\]

Then, for \( e \in E, f_A, g_B \in (X,E) \) and \( r, s \in I_0 \), the mapping \( C_\tau \) satisfies the following conditions:

- (C1) \( C_\tau(e, \Phi, r) = \Phi \).
- (C2) \( f_A \subseteq C_\tau(e, f_A, r) \).
- (C3) \( \text{If } f_A \subseteq g_B, \text{ then } C_\tau(e, f_A, r) \subseteq C_\tau(e, g_B, r) \).
- (C4) \( \text{If } r \leq s, \text{ then } C_\tau(e, f_A, r) \subseteq C_\tau(e, f_A, s) \).
- (C5) \( C_\tau(e, f_A \cup g_B, r) = C_\tau(e, f_A, r) \cup C_\tau(e, g_B, r) \).
- (C6) \( C_\tau(e, f_A \cap g_B, r) = C_\tau(e, f_A, r) \cap C_\tau(e, g_B, r) \).

**Theorem 3.10** ([8]). Let \( (X, \tau_E) \) be a fuzzy soft topological space. Define a mapping \( I_\tau : X \times (X,E) \times I_0 \rightarrow (X,E) \) by:

\[
I_\tau(e, f_A, r) = \bigcup \{ g_B \in (X,E) \mid g_B \subseteq f_A \text{ and } \tau_e(g_B) \geq r \}.
\]

Then, we have the following:

- (1) \( I_\tau(e, f_A, r) = (C_\tau(e, f_A, r))^c \).
- (2) \( \text{For } e \in E, f_A, g_B \in (X,E) \) and \( r, s \in I_0 \), the mapping \( I_\tau \) satisfies the following conditions:

-- 691
(11) \( I_\tau(e, \bar{E}, r) = \bar{E} \).
(12) \( I_\tau(e, f_A, r) \subseteq f_A \).
(13) If \( f_A \subseteq g_B \) and \( r \leq s \), then \( I_\tau(e, f_A, s) \subseteq I_\tau(e, g_B, r) \).
(14) \( I_\tau(e, f_A \cap g_B, r) = I_\tau(e, f_A, r) \cap I_\tau(e, g_B, r) \).
(15) \( I_\tau(e, I_\tau(e, f_A, r), r) = I_\tau(e, f_A, r) \).

4. Fuzzy Soft Semiregularization Spaces

In this section, we study the relationships between fuzzy soft semiregularization spaces and fuzzy soft semiregular spaces.

Definition 4.1. Let \((X, \tau_E)\) be a fuzzy soft topological space.
(a) A fuzzy soft set \( f_A \) is said to be fuzzy soft regularly open if there exists \( r_0 \in I_0 \) such that \( f_A = I_\tau(e, C_\tau(e, f_A, r), r) \) for all \( r \leq r_0 \) and \( e \in E \).
(b) A fuzzy soft set \( g_B \) is said to be fuzzy soft regularly closed if there exists \( r_1 \in I_0 \) such that \( g_B = C_\tau(e, I_\tau(e, g_B, r), r) \) for all \( r \leq r_1 \) and \( e \in E \).

Lemma 4.2. Let \((X, \tau_E)\) be a fuzzy soft topological space. Then we have the following statements.
(1) A fuzzy soft set \( f_A \in (X, E) \) is fuzzy soft regularly open if and only if \( f_A^c \) is fuzzy soft regularly closed.
(2) If \( f_A = I_\tau(e, C_\tau(e, f_A, r), r) \), for all \( e \in E \), \( r \leq r_0 \), then \( f_A = I_\tau(e, f_A, r) \) for all \( e \in E \), \( r \leq r_0 \).

Proof. (1) We easily prove it from the following result: for each \( e \in E \), \( r \leq r_0 \), \( f_A = I_\tau(e, C_\tau(e, f_A, r), r) \), we have
\[
\begin{align*}
f_A^c & = (I_\tau(e, C_\tau(e, f_A, r), r))^c \\
& = C_\tau(e, (I_\tau(e, C_\tau(e, f_A, r), r))^c, r) \\
& = C_\tau(e, I_\tau(e, f_A^c, r), r).
\end{align*}
\]
(2) For all \( e \in E \), \( r \leq r_0 \), we have \( f_A = I_\tau(e, C_\tau(e, f_A, r), r) \). Hence \( I_\tau(e, f_A, r) = I_\tau(e, I_\tau(e, C_\tau(e, f_A, r), r), r) \) and \( I_\tau(e, f_A, r) = I_\tau(e, C_\tau(e, f_A, r), r) = f_A \), from (15) of Theorem 3.10(2).

Example 4.3. Let \( X = \{x, y\} \) be a classical set and \( E = \{e_1, e_2, e_3\} \) be the parameter set of \( X \). Let \( f_E, g_E \in (X, E) \) be as follows:
\[
f_e(x) = 0.3, f_e(y) = 0.4, g_e(x) = 0.6, g_e(y) = 0.2, \quad \forall e \in E.
\]
We define fuzzy soft topology \( \tau_E : E \rightarrow [0, 1]^{(X, E)} \) as follows:
\[
\tau_e(h_E) = \begin{cases} 
1, & \text{if } h_E = \Phi, \bar{E}, \\
\frac{1}{2}, & \text{if } h_E = f_E, \\
\frac{1}{3}, & \text{if } h_E = g_E, \\
\frac{3}{4}, & \text{if } h_E = f_E \cap g_E, \\
\frac{1}{4}, & \text{if } h_E = f_E \cup g_E, \\
0, & \text{otherwise}.
\end{cases}
\]

Theorem 3.9 and Theorem 3.10, we obtain the following:
\[
\bar{E} = I_\tau(e, C_\tau(e, \bar{E}, r), r), \quad \forall r \in I_0, \\
f_E = I_\tau(e, C_\tau(e, f_E, r), r), \quad 0 < r \leq \frac{1}{2},
\]
\( f_E \sqcup g_E = I_\tau(e, C_\tau(e, g_E, r), r), 0 < r \leq \frac{1}{2}, \)
\( g_E = I_\tau(e, C_\tau(e, g_E, r), \frac{1}{2} < r \leq \frac{2}{3}, \)
\( f_E = I_\tau(e, C_\tau(e, f_E \sqcap g_E, r), r), 0 < r \leq \frac{1}{2}, \)
\( f_E \sqcap g_E = I_\tau(e, C_\tau(e, f_E \sqcap g_E, r), r), \frac{1}{2} < r \leq \frac{2}{3}, \)
\( f_E \sqcup g_E = I_\tau(e, C_\tau(e, f_E \sqcup g_E, r), r), 0 < r \leq \frac{1}{2}. \)

Hence \( f_E \) and \( f_E \sqcup g_E \) are fuzzy soft regularly open. But \( g_E \) and \( f_E \sqcap g_E \) not fuzzy soft regularly open. We have \( g_E = I_\tau(e, g_E, r), 0 < r \leq \frac{2}{3}, e \in E \) but \( g_E \neq I_\tau(e, C_\tau(e, g_E, r), r), 0 < r \leq \frac{2}{3}. \) Hence the converse of Lemma 4.2 (2) is not true.

In the following theorem, we construct the fuzzy soft topology generated by fuzzy soft regularly open sets.

**Theorem 4.4.** Let \((X, \tau_E)\) be a fuzzy soft topological space and \( \Theta_\tau \) be a family of all fuzzy soft regularly open sets. Define a mapping \( \beta_\tau : E \rightarrow [0, 1]^{\Theta_\tau} \) by
\[
(\beta_\tau)_e(f_A) = \bigvee \{ r \in I_0 \mid f_A = I_\tau(e, C_\tau(e, f_A, r), r) \}
\]

Then \((\beta_\tau)_E\) is a fuzzy soft base on \( X \) such that \( \tau_{\beta_\tau} \sqsubseteq \tau. \)

**Proof.** (B1) It immediately follows from the definition of the mapping \( \beta_\tau. \)

(B2) Suppose there exist \((f_A)_1, (f_A)_2 \in \Theta_\tau \) and \( e \in E \) such that

\[
(\beta_\tau)_e((f_A)_1 \sqcap (f_A)_2) < (\beta_\tau)_e((f_A)_1) \land (\beta_\tau)_e((f_A)_2).
\]

From the definition of \( (\beta_\tau)_e \) there exist \( r_1, r_2 \in I_0 \) with for each \( 0 < r \leq r_1, r_2, \)

\[
(f_A)_i = I_\tau(e, C_\tau(e, (f_A)_i, r), r)
\]

such that

\[
(\beta_\tau)_e((f_A)_1 \sqcap (f_A)_2) < r_1 \wedge r_2 \leq (\beta_\tau)_e((f_A)_1) \land (\beta_\tau)_e((f_A)_2).
\]

Put \( r_0 = r_1 \wedge r_2. \) Since \( I_\tau(e, (f_A)_i, r) = (f_A)_i \) for all \( 0 < r \leq r_1, r_2 \) from Lemma 4.2(2), we have for each \( 0 < r \leq r_0 \)
\[
I_\tau(e, C_\tau(e, (f_A)_1 \sqcap (f_A)_2, r), r) \equiv I_\tau(e, (f_A)_1 \sqcap (f_A)_2, r) \equiv I_\tau(e, (f_A)_1, r) \sqcap I_\tau(e, (f_A)_2, r) = (f_A)_1 \sqcap (f_A)_2. \quad (A)
\]

On the other hand, since \((f_A)_i = I_\tau(e, C_\tau(e, (f_A)_i, r), r), \) for each \( 0 < r \leq r_0, \) we have
\[
I_\tau(e, C_\tau(e, (f_A)_1 \sqcap (f_A)_2, r), r) \equiv I_\tau(e, C_\tau(e, (f_A)_1, r) \sqcap C_\tau(e, (f_A)_2, r), r) = I_\tau(e, C_\tau(e, (f_A)_1, r) \sqcap C_\tau(e, (f_A)_2, r), r) = (f_A)_1 \sqcap (f_A)_2. \quad (B)
\]

From (A) and (B), we have for each \( 0 < r \leq r_0, \)

\[
(f_A)_1 \sqcap (f_A)_2 = I_\tau(e, C_\tau(e, (f_A)_1 \sqcap (f_A)_2, r), r).
\]

Thus \( (\beta_\tau)_e((f_A)_1 \sqcap (f_A)_2) \geq r_0, \) for each \( e \in E. \) It is a contradiction. Hence,

\[
(\beta_\tau)_e((f_A)_1 \sqcap (f_A)_2) \geq (\beta_\tau)_e((f_A)_1) \land (\beta_\tau)_e((f_A)_2) \land \forall e \in E, (f_A)_1, (f_A)_2 \in \Theta_\tau.
\]

Finally, we will show that \( (\tau_{\beta_\tau})_E \sqsubseteq \tau_E. \) Suppose there exist \( f_A \in (X, E), e \in E \) and \( r_1 \in I_0 \) such that
A fuzzy soft topological space $(X, \tau)$.

From Theorem 3.7, there exists a family $\{(f_A)_i \in \Theta_r \mid f_A = \bigcup_{i \in \Gamma} (f_A)_i\}$ such that $(\tau_{\beta_r})_e(f_A) > r_1 > \tau_e(f_A)$.

For each $i \in \Gamma$, since $(\beta_r)_e((f_A)_i) > r_1$, there exists $r_i \in I_0$ with for each $0 < r \leq r_i$,

$$(f_A)_i = I_r(e, C_r(e, (f_A)_i), r, r)$$

such that $(\beta_r)_e((f_A)_i) \geq r_i > r_1$.

On the other hand, for $i \in \Gamma$, since $I_r(e, (f_A)_i, r_i) = (f_A)_i$ from Lemma 4.2 (2), we have $\tau_e((f_A)_i) \geq r_i$. Thus,

$$\tau_e(f_A) \geq \bigwedge_{i \in \Gamma} \tau_e((f_A)_i) \geq \bigwedge_{i \in \Gamma} r_i \geq r_1.$$

It is a contradiction. Hence, $(\tau_{\beta_r})_E \subseteq \tau_E$. \hfill \qed

**Example 4.2** In Example 4.1, we have $\Theta_r = \{E, F, F \cup gE\}$ and $(\tau_{\beta_r})_E$ as follows:

$$(\tau_{\beta_r})_e(h_C) = \begin{cases} 1, & \text{if } h_C = \Phi, E, \\ \frac{1}{2}, & \text{if } h_C = F, \\ \frac{1}{2}, & \text{if } h_C = F \cup gE, \\ 0, & \text{otherwise}. \end{cases}, \quad \forall e \in E.$$  

Moreover, we have $(\tau_{\beta_r})_E \subseteq \tau_E$.

We simply write $(\tau_r)_E$ instead of $(\tau_{\beta_r})_E$.

**Definition 4.5.** A fuzzy soft topological space $(X, (\tau_r)_E)$ is said to be the fuzzy soft semiregularization space (fssrs, for short) of $(X, \tau_E)$. A fuzzy soft topological space $(X, \tau_E)$ is said to be fuzzy soft semiregular if $\tau_E = (\tau_r)_E$.

**Lemma 4.6.** Let $(X, (\tau_r)_E)$ be the fssrs of a fsts $(X, \tau_E)$. Then we have the following properties:

1. $I_r(e, C_r(e, f_A, r), r) = I_r(e, C_r(e, I_r(e, C_r(e, f_A, r), r), r), r)$, for all $f_A \in (X, E), e \in E$ and $r \in I_0$.
2. If $h_C = I_r(e, C_r(e, f_A, r), r)$ for $0 < r \leq r_0$ and $e \in E$, then $(\tau_e)_e \geq r_0$.
3. If $g_B = C_r(e, I_r(e, f_A, r), r)$ for $0 < r \leq r_0$ and $e \in E$, then $g_B = C_r(e, I_r(e, f_A, r), r)$ for $0 < r \leq r_0$.
4. If $h_C = I_r(e, C_r(e, f_A, r), r)$ and $C_r(e, f_A, r) = C_r(e, f_A, r)$ for $0 < r \leq r_0$ and $e \in E$, then $h_C = I_r(e, C_r(e, f_A, r), r)$ for $0 < r \leq r_0$ and $e \in E$.

**Proof.** (1) Since $I_r(e, C_r(e, f_A, r), r) \subseteq C_r(e, I_r(e, C_r(e, f_A, r), r), r)$ from (C2) of Theorem 3.9, we have

$I_r(e, C_r(e, f_A, r), r) \subseteq I_r(e, C_r(e, I_r(e, C_r(e, f_A, r), r), r), r)$. (D)

Conversely, since $I_r(e, C_r(e, f_A, r), r) \subseteq C_r(e, f_A, r)$, we have
Let
\[ \mathcal{C}_r(e, \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r), r) \subseteq \mathcal{C}_r(e, f_A, r) \]
\[ \Rightarrow \mathcal{I}_r(e, \mathcal{C}_r(e, \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r), r), r) \subseteq \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r). \] (E)

Thus, by (D) and (E), we have
\[ \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r) = \mathcal{I}_r(e, \mathcal{C}_r(e, \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r), r), r). \]

(2) From (1), put \( h_C = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r) \) for \( 0 < r \leq r_0, e \in E. \) Then, for \( 0 < r \leq r_0 \) and \( e \in E, \) \( h_C = \mathcal{I}_r(e, \mathcal{C}_r(e, \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r), r). \) Hence, \( h_C \) is fuzzy soft regularly open. Thus \( (\tau)_e(h_C) \geq r_0, \) for \( e \in E. \)

(3) Since by Theorem 3.10(1), for \( 0 < r \leq r_0 \) and \( e \in E, \)
\[ g_B^C = (\mathcal{C}_r(e, \mathcal{I}_r(e, f_A, r), r))^C = \mathcal{I}_r(e, (\mathcal{I}_r(e, f_A, r))^C, r) = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A^r, r), r), \]
by (2), \( (\tau)_e(g_B^C) \geq r_0. \) It implies that for \( 0 < r \leq r_0 \) and \( e \in E, \)
\[ \mathcal{C}_r(e, \mathcal{I}_r(e, f_A, r), r) = \cap \{ h_C \mid \mathcal{I}_r(e, f_A, r) \subseteq h_C \} \]
\[ (\tau)_e(h_C) \geq r_0 \}
\[ = \mathcal{C}_r(e, \mathcal{I}_r(e, f_A, r), r) = g_B. \]

(4) Let \( h_C = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r) \) for \( 0 < r \leq r_0 \) and \( e \in E. \) Then for \( 0 < r \leq r_0 \) and \( e \in E, \)
\[ h_C^C = (\mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r))^C = \mathcal{I}_r(e, (\mathcal{C}_r(e, f_A, r))^C, r) = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A^r, r), r). \] (by (3))

It implies, for \( 0 < r \leq r_0 \) and \( e \in E, \)
\[ h_C = (\mathcal{C}_r(e, \mathcal{I}_r(e, f_A, r), r))^C = \mathcal{I}_r(e, (\mathcal{I}_r(e, f_A, r))^C, r) = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r) = \mathcal{I}_r(e, \mathcal{C}_r(e, f_A, r), r), \]
\[ \mathcal{C}_r(e, \mathcal{I}_r(e, f_A, r), r) = \mathcal{C}_r(e, f_A, r). \]

Theorem 4.7. Let \((X, (\tau)_E)\) be the fssrs of a fsts \((X, \tau_E)\) and \( \beta : E \rightarrow [0, 1]^{\theta_r} \)
be a base of the fssrs \((X, (\tau)_E)\). If \( \mathcal{C}_r(e, (f_A)_i, r) = \mathcal{C}_r(e, (f_A)_i, r) \) for \( 0 < r \leq r_i \)
such that \( (\beta)_e((f_A)_i) = r_i \) for each \( (f_A)_i \in \Theta_r, e \in E. \) Then \((X, (\tau)_E)\) is fuzzy semiregular.

Proof. We only show that \( (\tau)_E \subseteq ((\tau)_E)_E \) because \( (\tau)_E \supseteq ((\tau)_E)_E \) from Theorem 4.4. Suppose there exist \( f_A \in (X, E), e \in E \) and \( r_1 \in I_0 \) such that
\[ ((\tau)_E)_e(f_A) > r_1 > ((\tau)_E)_e(f_A). \]

From Theorem 3.7, there exists a family \{ \((f_A)_i \in \theta_r \mid f_A = \bigcup_{i \in \Gamma} (f_A)_i \) \} such that
\[ (\tau)_e(f_A) \geq \bigwedge_{i \in \Gamma} ((\beta)_e((f_A)_i)) > r_1 > ((\tau)_E)_e(f_A). \]

For each \( i \in \Gamma, \) since \( (\beta)_e((f_A)_i) > r_1, \) there exist \( r_i \in I_0 \) with for each \( 0 < r \leq r_i \)
and \( e \in E, \)
\[ (f_A)_i = \mathcal{I}_r(e, \mathcal{C}_r(e, (f_A)_i), r), r) \]

695
such that 
\[
(\beta_r)_e((f_A)_i) \geq r_i > r_1.
\]
Since $C_{r_1}(e, (f_A)_i, r) = C_r(e, (f_A)_i, r)$ for $0 < r \leq r_i$ and $e \in E$, we have
\[
(f_A)_i = \mathcal{I}_r(e, C_r(e, (f_A)_i, r), r) = \mathcal{I}_{r_i}(e, C_{r_i}(e, (f_A)_i, r), r). \quad \text{by (Lemma 4.6(4))}
\]
It implies $(f_A)_i \in \Theta_s$ with $(\beta_{r_i})_e((f_A)_i) \geq r_i$. Thus,
\[
((\tau_s)_e(f_A) \geq \bigwedge_{i \in \Gamma} (\beta_{r_i})_e((f_A)_i) \geq \bigwedge_{i \in \Gamma} r_i \geq r_1.
\]
It is a contradiction. Hence, $(\tau_s)_E \subseteq (\tau_s)_E$. □

References

VILDAN ÇETKIN (vildan.cetkin@kocaeli.edu.tr, vcetkin@gmail.com)
Department of Mathematics, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey

HALIS AYGÜN (halis@kocaeli.edu.tr)
Department of Mathematics, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey