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Abstract. Similarity measure is a very important problem in fuzzy
soft set theory. In this paper, seven similarity measures of fuzzy soft sets
are introduced, which are based on the normalized Hamming distance, the
normalized Euclidean distance, the generalized normalized distance, the
Type-2 generalized normalized distance, the Type-2 normalized Euclidean
distance, the Hausdorff distance and the Chebyshev distance. Secondly,
some properties of these similarity measures are analyzed. Thirdly, com-
parison analysis on these similarity measures is provided. Moreover, an
example is given to illustrate the application of these different similarity
measures of fuzzy soft sets in decision making.
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1. Introduction

There are many uncertain problems in our real life. In order to deal with these
uncertainties, rough sets, fuzzy sets, D-S evidence theory, vague sets, intuitionistic
fuzzy sets, interval mathematics were introduced. But all these theories have their
difficulties as pointed out in [15]. Molodtsov initiated soft set theory [15] as a new
mathematical tool for dealing with uncertainties.

Fuzzy soft set, which is an extension of classical soft set, was introduced by Maji
[13]. A lot of works about fuzzy soft set theory have been studied in operators and
decision making. Ahmad et al. [1] defined arbitrary fuzzy soft union and fuzzy soft
intersection, and proved Demorgan laws in fuzzy soft set theory. Rehamn et al. [18]
studied some operations of fuzzy soft sets and gave fundamental properties of fuzzy
soft sets. Roy and Maji [19] proposed a novel method of object recognition from an
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imprecise multi-observer data and a decision making application of fuzzy soft set.
Feng et al. [8] presented an adjustable approach to fuzzy soft set based decision
making and gave some illustrations. Neog et al. ([16], [3]) studied an application
of fuzzy soft sets in decision making problems using fuzzy soft matrices. Kong [11]
researched application of fuzzy soft set in decision making based on grey theory. N.
Cagman et al. [4] studied fuzzy parameterized soft set theory, their related properties
and its application in decision making. Yao [24] introduced the granularity of fuzzy
soft set based on α-dominance class and α-covering approximation space. Guan
et al. [9] introduced a new order relation on fuzzy soft sets, which is called soft
information order. Cagman [5] redefined the fuzzy soft set and their operations,
and gave an example which showed that the fuzzy soft aggregation operator was
successfully applied to many problems containing uncertainties. Zhang [25] studied
the parameter reduction of fuzzy soft sets based on fuzzy rough sets. Basu et al.
[2] used a balanced solution of a fuzzy soft set based decision making problem in
medical science. Deng et al. [7] introduced an object-parameter approach to predict
unknown data in incomplete fuzzy soft sets. Celik et al. [6] researched applications
of fuzzy soft sets in ring theory.

As we all known, similarity measure is a very important issue in fuzzy soft sets.
In recent years, similarity measures between two fuzzy soft sets have been studied
from different aspects and applied in various fields, such as decision making, pattern
recognition, region extraction, coding theory, image processing and so on. For ex-
ample, similarity measures [14] have been researched in fuzzy soft sets, which were
based on distance, set theoretic approach and matching function. D.K.Sut [21] and
Dr. P. Rajarajeswari [17] used the notion of similarity measure in [14] to make
decision. Several similarity measures [12] based on four types quasi-metrics were
introduced in fuzzy soft sets. Nor Hashimah Sulaiman [20] researched a set theo-
retic similarity measure for fuzzy soft sets and applied it in group decision making.
However, the literature of [14] and [12] didn’t systematically study the similarity
measures of fuzzy soft sets from the point of distance, and the computational costs
of similarity measures in [14] and [12] are higher than that in this paper.

We all know that there are various distance measures in mathematics. So in
this paper, we will study some new similarity measures of fuzzy soft sets based on
different distance measures systematically, and analyze some properties of them and
compare these similarity measures in different contexts. Moreover, an example is
given to illustrate the application of these similarity measures in decision making.

The rest of this paper is organized as follows. In section 2, we will review some
notions of fuzzy soft set. In section 3, firstly, some new similarity measures of fuzzy
soft sets are introduced based on the normalized Hamming distance, the normalized
Euclidean distance, the generalized normalized distance, the Type-2 generalized nor-
malized distance, the Type-2 normalized Euclidean distance, the Hausdorff distance
and the Chebyshev distance. Secondly, some properties of these similarity measures
are analyzed. Thirdly, applicable scope of these similarity measures is studied. In
section 4, an example is given to illustrate the application of these different similar-
ity measures of fuzzy soft sets in decision making. Finally, conclusions are stated in
section 5.
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2. Preliminaries

In this section, we will review some related definitions of fuzzy soft set. Given an
initial universe U = {x1, x2, · · · , xn} and a parameter set E = {e1, e2, · · · , em}.
Definition 2.1 ([15]). A pair (F,E) is called a soft set over U , if F is a mapping
of E into the set of all subsets of U .

In other words, a soft set is a parameterized family of subsets of U . Every set
F (e) (e ∈ E) from this family may be considered as the set of e-elements of the soft
set, or as the set of e-approximate elements of the soft set.

Maji firstly study on hybrid structures involving both fuzzy set and soft set. Fuzzy
soft set which was regarded as a generalized model of soft set was introduced.

Definition 2.2 ([13]). Let U be the universe and A be the parameter set. P (U)
denotes the set of all fuzzy subsets of U , a pair (F, A) is called a fuzzy soft set over
U , where F : A → P (U) is a mapping from A into P (U).

In order to explain the concept of fuzzy soft set clearly, let us see the following
example.

Example 2.3 ([14]). Suppose a fuzzy soft set (F, E) describes attractiveness of
the shirts which the consumers are going to wear. U={x1, x2, x3, x4, x5}, where
{xi, i = 1, 2, 3, 4, 5} represents the set of all shirts under consideration. Let P (U)
be the set of all fuzzy subsets of U . Also let E = {e1, e2, e3, e4}, where e1 denotes
colorful, e2 denotes bright, e3 denotes cheap, e4 denotes warm. Let

F (e1) =
{

x1
0.5 , x2

0.9 , x3
0 , x4

0 , x5
0

}
. F (e2) =

{
x1
1.0 , x2

0.8 , x3
0.7 , x4

0 , x5
0

}
.

F (e3) =
{

x1
0 , x2

0 , x3
0 , x4

0.6 , x5
0

}
. F (e4) =

{
x1
0 , x2

1.0 , x3
0 , x4

0 , x5
0.3

}
.

So, fuzzy soft set (F,E) is a family {F (ei), i = 1, 2, 3, 4}.
According to the characters of the fuzzy soft set, we know that every fuzzy soft

set can be represented in the form of a tabular. So we can represent the fuzzy soft
set in example 2.3 by tabular as follows.

Table 1. fuzzy soft set (F, E)

(F,E) e1 e2 e3 e4

x1 0.5 1.0 0 0
x2 0.9 0.8 0 1.0
x3 0 0.7 0 0
x4 0 0 0.6 0
x5 0 0 0 0.3

Definition 2.4 ([1]). Let U be a universe and E be a set of parameters. Then the
pair (U,E) denotes the set of all fuzzy soft sets on U with parameters from E and
is called a fuzzy soft space.

Definition 2.5 ([13]). A soft set (F,A) over U is said to be null fuzzy soft set
denoted by Φ, if ∀e ∈ A, F (e) = ∅.
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Definition 2.6 ([13]). A soft set (F, A) over U is said to be absolute fuzzy soft set
denoted by Ã, if ∀e ∈ A, F (e) = U .

Definition 2.7 ([1]). For two fuzzy soft sets (F, A) and (G, B) over a common
universe U , we say that (F,A) is a fuzzy soft subset of (G,B), if (i)A ⊆ B, (ii)∀e ∈ A,
F (e) ⊆ G(e), and is written as (F, A)⊆̃(G,B).

Definition 2.8 ([1]). Let (F, A) and (G,B) be two fuzzy soft sets, (F,A) and (G,B)
are said to be fuzzy soft equal if and only if (F,A) is a fuzzy soft subset of (G,B)
and (G,B) is a fuzzy soft subset of (F,A), it can be represented as (F,A) = (G,B).

Definition 2.9 ([1]). Union of two fuzzy soft sets (F,A) and (G,B) over a common
universe U is a fuzzy soft set (H, C), where C = A ∪B and ∀e ∈ C,

H (e) =





F (e) , if e ∈ A−B;
G (e) , if e ∈ B −A;
F (e) ∪G (e) , if e ∈ A ∩B.

and it is written as (F, A)
⋃̃

(G,B) = (H,C).

Definition 2.10 ([1]). Let (F,A) and (G,B) be two fuzzy soft sets over a common
universe U with A∩B 6= ∅. Restricted intersection of two fuzzy soft sets (F, A) and
(G,B) is a fuzzy soft set (H,C), where C = A∩B and ∀e ∈ C, H (e) = F (e)∩G (e).
We write (F,A)

⋂̃
(G,B) = (H, C).

Definition 2.11 ([13]). The complement of a fuzzy soft set (F, A) is denoted by
(F, A)C and is defined by (F, A)C =

(
FC , A

)
where FC : A → P (U) is a mapping

given by FC (α) = [F (α)]C , ∀α ∈ A.

Definition 2.12 ([23]). A and B be two fuzzy sets on X = {x1, x2, · · · , xn}, A =
{µA(xi), i = 1, 2, · · ·n.}, B = {µB(xi), i = 1, 2, · · ·n.}, where µA(xi) represents the
membership degree of xi in A, µB(xi) represents the membership degree of xi in B.

The Hamming distance is defined as

dh (A,B) =
n∑

i=1

|µA (xi)− µB (xi)|.
The normalized Hamming distance is defined as

dnh (A,B) = 1
n

n∑
i=1

|µA (xi)− µB (xi)|.
The Euclidean distance is defined as
de (A,B) = (

n∑
i=1

|µA (xi)− µB (xi)|2) 1
2 .

The normalized Euclidean distance is defined as
dne (A,B) = 1

n (
n∑

i=1

|µA (xi)− µB (xi)|2) 1
2 .

The Hausdorff distance is defined as
dh(A,B) = max |µA(xi)− µB(xi)|.

Definition 2.13 ([12]). (F, A) and (G,B) be two fuzzy soft sets, the Chebyshev
quasi-distance of them is defined as

(2.1) dc((F,A), (G, B)) =
‖A∆B‖

2 ‖A ∪B‖ +
1
2

min
ei∈A∩B

{max
xj∈U

|F (ei)(xj)−G(ei)(xj)|}
672
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where A∆B represents the symmetric difference between two sets A and B, A∆B =
(A ∪B)\(A ∩B). ‖•‖ denotes the cardinality of a set.

3. New similarity measures based on distance measures

Distance and similarity measures have attracted a lot of attentions in the last few
decades due to the fact that they can be applied to many areas such as pattern recog-
nition, cluster analysis, approximate reasoning, image processing, medical diagnosis
and decision making. A lot of distance and similarity measures have been developed
for fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets and so on, but there is
little research on fuzzy soft sets. Consequently, it is very necessary to develop some
distance and similarity measures under fuzzy soft sets. We address this issue based
on the axiomatic definitions of the distance and similarity measures.

In this section, we firstly give the axiomatic definitions of the distance and simi-
larity measures as follows.

Definition 3.1. Let (F, A) and (G,B) be two fuzzy soft sets over (U,E). Then
distance measure between (F, A) and (G,B) is defined as d ((F,A) , (G, B)), which
satisfies the following properties.

(D1) 0 ≤ d ((F,A) , (G,B)) ≤ 1;
(D2) d ((F,A) , (G,B)) = 0, if (F,A) = (G,B);
(D3) d ((F,A) , (G,B)) = d ((G, B) , (F, A));

(D4) Let (H, C) be a fuzzy soft set, if (F,A)
∼⊆ (G,B)

∼⊆(H, C).
then d((F,A), (G,B)) ≤ d((F,A), (H,C)) and d((G,B), (H,C)) ≤ d((F,A), (H, C)).

Definition 3.2 ([12]). Let (F, A) and (G,B) be two fuzzy soft sets over (U,E).
Then similarity measure between (F, A) and (G,B) is defined as s ((F,A) , (G,B)),
which satisfies the following properties.

(S1) 0 ≤ s ((F,A) , (G, B)) ≤ 1;
(S2) s ((F,A) , (G,B)) = 1, if (F,A) = (G,B);
(S3) s ((F,A) , (G,B)) = s ((G,B) , (F,A));

(S4) Let(H, C) be a fuzzy soft set, if (F, A)
∼⊆ (G,B)

∼⊆ (H,C),
then s((F, A), (H, C)) ≤ s((F, A), (G,B)) and s((F,A), (H,C)) ≤ s((G,B), (H,C)).

3.1 Distance and new similarity measures of fuzzy soft sets
In this paper, we assume that the fuzzy soft sets (F, A) and (G, B) have the same

parameter set, namely, A = B.
Drawing on the well-known Hamming distance and Euclidean distance, we define

a normalized Hamming distance and a normalized Euclidean distance in fuzzy soft
sets as follows.

The normalized Hamming distance in fuzzy soft sets is defined as

(3.1) d1 ((F, A) , (G,B)) =
1

mn

m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|

The normalized Euclidean distance in fuzzy soft sets is defined as

(3.2) d2 ((F, A) , (G,B)) =
1

mn
(

m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2
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Example 3.3. Let U = {x1, x2, x3} be a set of three houses under consideration
of a decision maker to purchase. E = {e1, e2, e3} be a parameter set, where e1, e2

and e3 represent cheap, big and beautiful, respectively. The fuzzy soft set (F,E)
describes attractiveness of the houses to the first decision maker, and the fuzzy soft
set (G,E) describes attractiveness of the houses to the second decision maker. Let
(F, E) and (G,E) are represented by two tables as follows.

Table 2. fuzzy soft set (F, E)

(F, E) e1 e2 e3

x1 0.6 0.9 0.9
x2 0.5 0.8 0.7
x3 0.8 0.7 0.6

Table 3. fuzzy soft set (G,E)

(G,E) e1 e2 e3

x1 0.4 0.7 1.0
x2 0.6 0.7 0.5
x3 0.5 0.7 0.8

We use Eq.(3.1) and Eq.(3.2) to calculate the distance between (F,E) and (G,E).
d1((F, E), (G,E))

= 1
3×3

3∑
i=1

3∑
j=1

(0.2 + 0.1 + 0.3 + 0.2 + 0.1 + 0 + 0.1 + 0.2 + 0.2)

≈ 0.156
d2((F, E), (G,E))

= 1
3×3 (

3∑
i=1

3∑
j=1

(0.22 + 0.12 + 0.32 + 0.22 + 0.12 + 02 + 0.12 + 0.22 + 0.22))
1
2

≈ 0.069

We will further extend Eq.(3.1) and Eq.(3.2) into a generalized normalized dis-
tance in fuzzy soft sets as follows

(3.3) d3 ((F, A) , (G,B)) =
1

mn
(

m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|p)
1
p , (p ∈ N+)

Clearly, if p = 1, then Eq.(3.3) is reduced to Eq.(3.1). If p = 2, Eq.(3.3) is reduced
to Eq.(3.2).

From Eq.(3.1), we know that

d′ =
1
n

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|

indicates the distance between the i − th parameter of (F,A) and (G,B), and
d1 ((F, A) , (G,B)) indicates the distance among all parameters of (F, A) and (G,B).
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From this perspective, we define another generalized normalized distance of (F, A)
and (G,B) as follows

(3.4) d4 ((F, A) , (G,B)) =
1
m

m∑

i=1

[
1
n

(
n∑

j=1

|F (ei) (xj)−G (ei) (xj)|p)
1
p ], p ∈ N+

Eq.(3.4) is called a Type-2 generalized normalized distance in fuzzy soft sets.
It is clear that Eq.(3.4) is different from Eq.(3.3). But if p = 1, Eq.(3.4) is

also reduced to Eq.(3.1). If p = 2, Eq.(3.4) becomes Type-2 normalized Euclidean
distance Eq.(3.5).

(3.5) d5 ((F, A) , (G,B)) =
1
m

m∑

i=1

[
1
n

(
n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2 ]

Example 3.4. Consider the fuzzy soft sets given in example 3.3, we use Eq.(3.5)
to calculate the distance between the fuzzy soft sets (F,E) and (G,E).

d5((F, E), (G,E))

= 1
3

3∑
i=1

[ 13 (
3∑

j=1

|F (ei)(xj)−G(ei)(xj)|2)]
= 1

9 (
√

0.02 + .001 + 0.09 +
√

0.04 + 0.01 + 0 +
√

0.01 + 0.04 + 0.04)
≈ 0.097

Theorem 3.5. d4 ((F,A) , (G, B)) is a normalized distance measure between fuzzy
soft sets (F, A) and (G,B).

Proof. It is easy to see that d4 ((F, A) , (G,B)) satisfies the properties (D1)-(D3).
Therefore we only prove it satisfies the property (D4).

Let(F, A)
∼⊆ (G,B)

∼⊆ (H,C), then for ∀ei ∈ E, ∀xj ∈ U ,

0 ≤ F (ei) (xj) ≤ G (ei) (xj) ≤ H (ei) (xj) .

It follows that

|F (ei) (xj)−G (ei) (xj)| ≤ |F (ei) (xj)−H (ei) (xj)| ,

|G (ei) (xj)−H (ei) (xj)| ≤ |F (ei) (xj)−H (ei) (xj)| ,

thus

1
n

(
n∑

j=1

|F (ei)(xj)−G(ei)(xj)|p) 1
p ≤ 1

n
(

n∑

j=1

|F (ei)(xj)−H(ei)(xj)|p) 1
p , p ∈ N+.

1
n

(
n∑

j=1

|G(ei)(xj)−H(ei)(xj)|p) 1
p ≤ 1

n
(

n∑

j=1

|F (ei)(xj)−H(ei)(xj)|p) 1
p , p ∈ N+

So we have
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d4 ((F, A) , (G,B)) ≤ d4 ((F, A) , (H, C)) ,

d4 ((G, B) , (H, C)) ≤ d4 ((F, A) , (H, C)) .

Thus the property (D4) is obtained. ¤

Except the normalized Hamming distance, the normalized Euclidean distance, the
generalized normalized distance, the Type-2 generalized normalized distance and the
Type-2 normalized Euclidean distance, we will next take the Hausdorff distance and
Chebyshev distance into consideration.

If we apply the Hausdorff metric to the distance measure, then a generalized
normalized Hausdorff distance of fuzzy soft sets (F, A) and (G,B) is given as

(3.6) d6 =
1
m

(
m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|p}) 1
p , p ∈ N+

Now we will discuss a special case of the generalized normalized Hausdorff distance
of fuzzy soft sets.

If p = 1, then Eq.(3.6) becomes a normalized Hamming-Hausdorff distance as

(3.7) d7((F,A), (G, B)) =
1
m

m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|},m = ‖A ∩B‖

Theorem 3.6. d7 ((F,A) , (G, B)) is a normalized distance measure between fuzzy
soft sets (F, A) and (G,B).

Proof. It is easy to see that d7 ((F, A) , (G,B)) satisfies the properties (D1)-(D3).
Therefore we only prove it satisfies the property (D4).

Since (F, A)
∼⊆ (G,B)

∼⊆ (H,C), then for ∀ei ∈ E, ∀x ∈ U ,

0 ≤ F (ei) (x) ≤ G (ei) (x) ≤ H (ei) (x) .

It follows that

|F (ei) (x)−G (ei) (x)| ≤ |F (ei) (x)−H (ei) (x)| ,

|G (ei) (x)−H (ei) (x)| ≤ |F (ei) (x)−H (ei) (x)| ,

thus

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|} ≤ max
ei∈A∩B,x∈U

{|F (ei)(x)−H(ei)(x)|},

max
ei∈A∩B,x∈U

{|G(ei)(x)−H(ei)(x)|} ≤ max
ei∈A∩B,x∈U

{|F (ei)(x)−H(ei)(x)|}.

So we have
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d7 ((F, A) , (G,B)) ≤ d7 ((F, A) , (H, C)) ,

d7 ((G, B) , (H, C)) ≤ d7 ((F, A) , (H, C)) .

According to the definition 3.1, (D4) for Eq.(3.7) is obtained. ¤

Example 3.7. Consider the fuzzy soft sets given in example 3.3, we use Eq.(3.7)
to calculate the distance between the fuzzy soft sets (F,E) and (G,E).

d7((F, E), (G,E))

= 1
3

3∑
i=1

max
ei∈E,x∈U

{|F (ei)(x)−G(ei)(x)|}
= 1

3 (max{0.2, 0.1, 0.3}+ max{0.2, 0.1, 0}+ max{0.1, 0.2, 0.2})
≈ 0.233

Next, we will take the distance of fuzzy soft sets (F, A) and (G, B) based on
Chebyshev distance into consideration.

(3.8) d8((F, A), (G,B)) = min
ei∈A∩B

{max
x∈U

|F (ei)(x)−G(ei)(x)|

Theorem 3.8. d8 ((F,A) , (G, B)) is a normalized distance measure between fuzzy
soft sets (F, A) and (G,B).

Proof. The proof is similar to that of Theorem 3.6. ¤

Example 3.9. Consider the fuzzy soft sets given in example 3.3, we use Eq.(3.8)
to calculate the distance between the fuzzy soft sets (F,E) and (G,E).

d8((F, E), (G,E))
= min

ei∈E
{max

x∈U
|F (ei)(x)−G(ei)(x)|}

= min
ei∈E

(max{0.2, 0.1, 0.3},max{0.2, 0.1, 0},max{0.1, 0.2, 0.2})
= 0.2

It is well known that the similarity measure and distance measure are dual con-
cept. The larger the distance is, the smaller the similarity measure is. Hence we
may use distance measures to define similarity measures.

According to [26], let f be a monotone decreasing function and dmax be the
maximal distance. Because

0 ≤ d ((F, A) , (G,B)) ≤ dmax,

f (dmax) ≤ f(d ((F,A) , (G,B))) ≤ f(0),
this implies

0 ≤ f (d ((F, A) , (G,B)))− f (dmax)
f (0)− f (dmax)

≤ 1,

therefore we will define the similarity measure between fuzzy soft sets (F, A) and
(G,B) as follows

(3.9) s ((F, A) , (G,B)) =
f (d ((F, A) , (G,B)))− f (dmax)

f (0)− f (dmax)
677
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If we choose a monotone decreasing function f (x) = 1−x, then the corresponding
similarity measures between (F, A) and (G,B) will be obtained.

The similarity measures based on the normalized Hamming distance and the
normalized Euclidean distance of soft sets were proposed in [10]. In this paper,
these similarity measures of soft sets were extended into fuzzy soft sets.

Definition 3.10. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the normalized Hamming distance between them is
defined as

(3.10) s1 ((F, A) , (G,B)) = 1− 1
mn

m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|

Definition 3.11. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the normalized Euclidean distance between them is
defined as

(3.11) s2 ((F,A) , (G, B)) = 1− 1
mn

(
m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2

According to the generalized normalized distance, the Type-2 generalized normal-
ized distance, the Type-2 normalized Euclidean distance, the Hamming-Hausdorff
distance and the Chebyshev distance are proposed. Based on these distance mea-
sures, we will define five similarity measures of fuzzy soft sets as follows.

Definition 3.12. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the generalized normalized distance between them is
defined as

(3.12) s3 ((F, A) , (G,B)) = 1− 1
mn

(
m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|p)
1
p , p ∈ N+

Definition 3.13. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the Type-2 generalized normalized distance between
them is defined as

(3.13) s4 ((F,A) , (G, B)) = 1− 1
m

m∑

i=1

[
1
n

(
n∑

j=1

|F (ei) (xj)−G (ei) (xj)|p)
1
p ], p ∈ N+

Definition 3.14. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the Type-2 normalized Euclidean distance between them
is defined as

(3.14) s5 ((F, A) , (G,B)) = 1− 1
m

m∑

i=1

[
1
n

(
n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2 ]

Definition 3.15. Suppose (F,A) and (G,B) be two fuzzy soft sets over U , the sim-
ilarity measure based on the Hamming-Hausdorff distance between them is defined
as

(3.15) s6((F, A), (G,B)) = 1− 1
m

m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|}
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Definition 3.16. Suppose (F, A) and (G,B) be two fuzzy soft sets over U , the
similarity measure based on the Chebyshev distance between them is defined as

(3.16) s7((F, A), (G,B)) = 1− min
ei∈A∩B

{max
x∈U

|F (ei)(x)−G(ei)(x)|}

3.2 Properties of distance and new similarity measures of fuzzy soft
sets

We have proposed several distance and similarity measures of fuzzy soft sets, in
this subsection, we will research their properties.

Proposition 3.17. If (F, E) is a soft set, then di

(
(F, E) ,

(
FC , E

))
= 1, (i =

1, 7, 8).

Proposition 3.18. di

(
(F,A) ,

(
FC , A

))
= 0, (i = 1, 2, 3, 4, 5, 6, 7, 8), if (F, A) is a

0.5 fuzzy soft set.

Remark 3.19. Let (F, A) is a fuzzy soft set. If ∀ei ∈ A, ∀xj ∈ U , F (ei)(xj) = 0.5,
(F, A) is called a 0.5 fuzzy soft set.

Proposition 3.20. (F,A) and (G,B) are two fuzzy soft sets, according to Eq.(3.4)
and Eq.(3.5), the larger value of p is, the smaller distance of (F,A) and (G,B) is.

Proposition 3.21. If (F,E) is a soft set, then si

(
(F, E) ,

(
FC , E

))
= 0, (i = 1, 6, 7).

Proposition 3.22. (F, A) and (G,B) are two fuzzy soft sets, according to Eq.(3.12)
and Eq.(3.13), the larger value of p is, the larger similarity of (F,A) and (G,B) is.

Proposition 3.23. si

(
(F, A) ,

(
FC , A

))
= 1, (i = 1, 2, 3, 4, 5, 6, 7), if (F, A) is a 0.5

fuzzy soft set.

Theorem 3.24. s2 ≥ s5 ≥ s1 ≥ s6.

Proof. We only need prove s1 ≥ s6, s5 ≥ s1 and s2 ≥ s5.
Firstly, we prove s1 ≥ s6.

1
n

n∑

j=1

|F (ei)(xj)−G(ei)(xj)| ≤ max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|}

if and only if

1
mn

m∑

i=1

n∑

j=1

|F (ei)(xj)−G(ei)(xj)| ≤ 1
m

m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|}

thus

1− 1
mn

m∑

i=1

n∑

j=1

|F (ei)(xj)−G(ei)(xj)| ≥ 1− 1
m

m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|}

So we have s1 ≥ s6.
s5 ≥ s1 and s2 ≥ s5 can be proved similarly. ¤
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Remark 3.25. We don’t consider the order of s3, s4 and s7. Because according to
Eq.(3.12) and Eq.(3.13), the values of s3 and s4 depend on the value of p, according
to Eq.(3.16), the order of s7 depends on the value of every object about every
parameter in fuzzy soft sets (i.e. because the value of every object about every
parameter is different, the order of s7 is variable).

3.3 Comparison of these new similarity measures
In this paper, seven similarity measures of fuzzy soft sets based on seven distance

measures are proposed, but these similarity measures of fuzzy soft sets are not
always fit to every example. Then what are these similarity measures of fuzzy soft
sets suitable for? We will next analyze these similarity measures of fuzzy soft sets
through some examples.

It is hard to say which similarity measure is the best, but we obtain the following
results.

(1) s1, s2, s5, s6 are suitable for general fuzzy soft sets that they have the same
parameter set. According to theorem 3.24, the value of the similarity measure s2 is
the largest and the value of the similarity measure s6 is the smallest for the same
example.

(2) s2 and s5 are not suitable for computing the similarity measure between clas-
sical soft set and its complement. Because the similarity measure between classical
soft set and its complement is 0, which represents that they are completely dissimi-
lar. If we use s2 or s5 to calculate the similarity measure between classical soft set
and its complement,the value of it is not 0. But if we use s1, s6 or s7 to calculate
the similarity measure between classical soft set and its complement, the value of it
is 0.

(3) s6 is not suitable for computing the similarity measure of fuzzy soft sets (F, A)
and (G,B), if (F, A) and (G,B) satisfy the condition as follows, for ∀e ∈ A

⋂
B,

max
e∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|} = 1.

Because it is unreasonable that if the maximal difference value between two fuzzy
soft sets about every parameter is 1, then two fuzzy soft sets are completely dissim-
ilar.

Next, we use an example to illustrate this result.

Example 3.26. (F,E) and (G,E) are two fuzzy soft sets, we will calculate similarity
measure between (F,E) and (G,E) by s6.

Table 4. fuzzy soft set (F, E)

(F, E) e1 e2 e3

h1 0.5 0 1
h2 0.5 0 1
h3 0 1 1
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Table 5. fuzzy soft set (G,E)

(G, E) e1 e2 e3

h1 0.5 0 1
h2 0.5 0 1
h3 1 0 0

s6 = 1− 1
m

m∑
i=1

max
ei∈E,x∈U

{|F (ei)(x)−G(ei)(x)|}
= 1− 1

3 (max{0, 0, 1}+ max{0, 0, 1}+ max{0, 0, 1})
= 1− 1

3 (1 + 1 + 1)
= 0

We find that the values of h1 and h2 in (F,E) are the same as the values of h1

and h2 in (G, E), but the similarity measure of them is 0, this is not reasonable.
(4) s7 is not suitable for computing the similarity measure of fuzzy soft sets (F, A)

and (G,B), if (F, A) and (G,B) satisfy the condition as follows, for ∃e ∈ A
⋂

B,
∀x ∈ U , such that F (e)(x) = G(e)(x).

Because it is unreasonable that if the values of two fuzzy soft sets about a certain
parameter are equal, then two fuzzy soft sets are completely similar.

Next, we give an example to illustrate this result.

Example 3.27 ([22]). Suppose that one who suffers from certain pneumonia has
seven symptoms as follows: fever, cough, laryngological, body pain, headache, chill
and fatigue. Let U = {yes, no} be the Universe. Let E = {e1, e2, e3, e4, e5, e6, e7} be
the parameter set of symptoms, where e1 = fever, e2 = cough, e3 = laryngological,
e4 = body pain, e5 = headache, e6 = chill, e7 = fatigue. The fuzzy soft set for
ill person suffering from the pneumonia is given in table 6. The fuzzy soft set for
another diagnosed person is given in table 7.

Table 6. Model fuzzy soft set for ill person

(F, E) e1 e2 e3 e4 e5 e6 e7

yes 1 1 1 1 1 1 1
no 0 0 0 0 0 0 0

Table 7. fuzzy soft set for another person

(G,E) e1 e2 e3 e4 e5 e6 e7

yes 1 0 0 0 0 0 0
no 0 1 1 1 1 1 1

We use s7 to calculate the similarity measure of two patients.
681



Qinrong Feng et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 4, 669–686

s7 = 1− min
ei∈E

{max
x∈U

|F (ei)(x)−G(ei)(x)|}
= 1−min{0, 1, 1, 1, 1, 1, 1}
= 1− 0
= 1

Similarity of (F,E) and (G,E) is 1, it means that the second patient also suffered
from pneumonia, we know that one who suffers from certain pneumonia has seven
symptoms: fever, cough, laryngological, body pain, headache, chill and fatigue, but
the second patient has only one symptom, so he can’t suffer from pneumonia. Conse-
quently, using s7 to calculate the similarity measure of two patients is unreasonable.

(5) If A 6= B, s1, s2, s3, s4, s5 is not suitable for computing the similarity measure
of (F,A) and (G,B). Because A 6= B, we don’t determine the number of parameter
set so that we can’t use s1, s2, s3, s4, s5 to calculate the similarity measure of fuzzy
soft sets (F, A) and (G,B). But s6 or s7 can be used to compute the similarity
measure of (F, A) and (G,B).

(6) Suppose (F,A) and (G,B) be two fuzzy soft sets, if A ⊆ B, to compute the
similarity measure of them, we can extend A until both of them have the same
parameter set. The values of the added parameters are all zero in A.

For example, A = {e1, e2, e3}, B = {e1, e2, e3, e4, e5}, if we want to calculate the
similarity measure of (F,A) and (G,B), we can add e4, e5 into A such that they
have the same parameter set, and for fuzzy soft set (F,A), ∀x ∈ U , F (e4)(x) = 0,
F (e5)(x) = 0. But the approaches in [14] can only compute similarity measures of
fuzzy soft sets with the same parameter set.

(7) The similarity measure based on Hamming quasi-metric between two fuzzy
soft sets was studied in [12]. Next we will compare it with the similarity measure in
this paper.

The similarity measure based on Hamming quasi-metric [12] is defined as follows.

(3.17)

SH((F, A), (G,B)) = 1− ‖A∆B‖
2 ‖A ∪B‖ −

1
2 ‖U‖ min

e∈A∩B
{
∑

u∈U

|F (e)(u)−G(e)(u)|}

where A∆B represents the symmetric difference between two sets A and B, A∆B =
(A ∪B)\(A ∩B). ‖•‖ denotes the cardinality of a set.

In order to illustrate the limitation of similarity measure in [12], an example is
given as follows.

Example 3.28. Suppose (F,A) and (G, B) be two fuzzy soft sets, we use Eq.(3.17)
and Eq.(3.10) to calculate similarity measure between two fuzzy soft sets (F, A) and
(G,B).

SH((F, A), (G,B))
= 1− ‖A∆B‖

2‖A∪B‖ − 1
2‖U‖ min

e∈A∩B
{ ∑

u∈U

|F (e)(u)−G(e)(u)|}
= 1− 0

2×3 − 1
2×3 min{0, 1, 1.4}

= 1
The result shows that (F, A) and (G,B) are complete similar (the similarity mea-

sure is 1 between two objects). However, (F, A) and (G,B) aren’t complete similar.
The reason is that (F, A) 6= (G,B).
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Table 8. fuzzy soft set (F, A)

(F, E) e1 e2 e3

x1 0.7 0.8 1.0
x2 0.9 0.3 0.7
x3 0.5 0.6 0.2

Table 9. fuzzy soft set (G,B)

(G,E) e1 e2 e3

x1 0.7 0.2 0.3
x2 0.9 0.5 0.4
x3 0.5 0.4 0.6

We use the similarity measure Eq.(3.10) to calculate similarity measure between
two fuzzy soft sets (F,A) and (G, B) as follows.

s1 ((F,A) , (G, B))

= 1− 1
mn

m∑
i=1

n∑
j=1

|F (ei) (xj)−G (ei) (xj)|
= 1− 1

3×3 (0 + 0 + 0 + 0.6 + 0.2 + 0.2 + 0.7 + 0.3 + 0.4)
≈ 0.733

The similarity measure is 0.733 between two fuzzy soft sets (F,A) and (G,B).
Obviously, (F, A) and (G,B) aren’t complete similar. It shows that the similarity
measure based on Hamming distance in this paper is more reasonable than that in
[12].

4. Application of similarity measures based on distances of fuzzy soft
sets in decision making

We know that similarity measures are applied to many areas such as pattern
recognition, cluster analysis, approximate reasoning, image processing, medical di-
agnosis and decision making. In this section, a numerical example [21] is given to
illustrate the application of these proposed different similarity measures of fuzzy soft
sets to make decision.

Suppose the authority of an institution wants to give award to the performing
students in an academic year. We assume that after some screening rounds, three
students are available for the award. Let our universe set contain only two elements
“yes(y) and no(n)”, i.e. U = {y, n}. Here the set of parameters E is the set of cer-
tain approximations determined by the authority. Let E = {e1, e2, e3, e4, e5, e6, e7},
where e1 = sincerity, e2 = extracurricular activity, e3 = pleasing personality, e4 =
good moral character, e5 = sports activity, e6 = communication skills, e7 = exam-
ination performance. Our model fuzzy soft set for the performing students is given
in Table 10. Similarly, we construct the fuzzy soft sets for the three students under
consideration as given in Table 11, 12 and 13.
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Table 10. Model fuzzy soft set for performing student

(F, E) e1 e2 e3 e4 e5 e6 e7

y 1 1 0 1 0 0 1
n 0 0 1 0 1 1 0

Table 11. Fuzzy soft set for the first student under consideration

(F1, E) e1 e2 e3 e4 e5 e6 e7

y 0.3 0 0.7 0.2 0.9 0.1 0
n 0.6 0.8 0.2 0.3 0.5 0.2 0.1

Table 12. Fuzzy soft set for the second student under consideration

(F2, E) e1 e2 e3 e4 e5 e6 e7

y 0.1 0.4 0.5 0.2 0.3 0.1 0.7
n 0.3 0.4 0.2 0.1 0.9 0.7 0.1

Table 13. Fuzzy soft set for the third student under consideration

(F3, E) e1 e2 e3 e4 e5 e6 e7

y 0.3 0 0.2 0.5 0.6 0.1 0
n 0.5 0.7 0.1 0.2 0.5 0.4 0.7

We will use similarity measures s1, s2, s5, s6, s7 to evaluate these students.

(4.1) s1 ((F,A) , (G, B)) = 1− 1
mn

m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|

(4.2) s2 ((F,A) , (G, B)) = 1− 1
mn

(
m∑

i=1

n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2

(4.3) s5 ((F, A) , (G,B)) = 1− 1
m

m∑

i=1

[
1
n

(
n∑

j=1

|F (ei) (xj)−G (ei) (xj)|2) 1
2 ]

(4.4) s6((F, A), (G,B)) = 1− 1
m

m∑

i=1

max
ei∈A∩B,x∈U

{|F (ei)(x)−G(ei)(x)|}

(4.5) s7((F, A), (G,B)) = 1− min
ei∈A∩B

{max
x∈U

|F (ei)(x)−G(ei)(x)|}
The evaluate results are showed by table 14.
Similarity measures that we introduced in this paper were used to give the order

of these students. The result is invariable (the second student > the third student
684



Qinrong Feng et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 4, 669–686

Table 14. Evaluate Results

Similarity Eq. first student second student third student
s1 0.350 0.586 0.414
s2 0.810 0.871 0.827
s5 0.486 0.687 0.561
s6 0.143 0.429 0.243
s7 0.300 0.700 0.500

> the first student) by using different similarity measures to calculate the similar-
ity between the model student and the candidate student. So the authority of an
institution should give award to the second student.

From this example, we find that all similarity measures proposed in this paper are
reasonable. For the same example, the results of decision making which are based
on different distance measures in this paper and based on set-theoretic in reference
[21] are consistent, but the costs of computation of similarity measures in this paper
is lower than that in [21].

5. Conclusions

In this paper, firstly, some new similarity measures which are based on different
distance measures are introduced in fuzzy soft sets. Secondly, some properties of
these similarity measures are analyzed. Thirdly, applicable scope of these similarity
measures is studied. Moreover, a numerical example is given to illustrate the appli-
cation of these different similarity measures of fuzzy soft sets in decision making.

In the future, we will use the similarity measures which are proposed in this
paper in group decision making. And we will study the distance measures and
similarity measures of the generalized models of fuzzy soft sets, such as vague soft
sets, intuitionistic fuzzy soft sets, probability fuzzy soft sets and so on.
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