Annals of Fuzzy Mathematics and Informatics Volume 7, No. 4, (April 2014), pp. 661–668 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic fuzzy prime ideals of BCK-algebras

SALEEM ABDULLAH

Received 23 March 2013; Accepted 4 August 2013

ABSTRACT. We consider the intuitionistic fuzzification of the concept of prime ideals in commutative BCK-algebras, and investigate some of their properties. We show that if P is a prime ideal of commutative BCK-algebra

X iff $\widetilde{P} = \langle X_P, \overline{X}_P \rangle$ is an intuitionistic fuzzy prime ideal of X. We also prove that An IFS $A = \langle \mu_A, \lambda_A \rangle$ of commutative BCK-algebra X is an intuitionistic fuzzy prime ideal of X if and only if for all $s, t \in [0, 1]$, the set's $U(\mu_A, t)$ and $L(\lambda_A, s)$ are prime ideals of X.

2010 AMS Classification: 06F35, 08A72

Keywords: BCK-algebra, Intuitionistic fuzzy ideal, Intuitionistic fuzzy prime ideal

Corresponding Author: Saleem Abdullah (saleemabdullah81@yahoo.com)

1. INTRODUCTION

The concept of fuzzy set was defined by Zadeh [25]. Since then these ideas have been applied to other algebraic structures such as semigroup, group, ring, etc. The idea of "intuitionistic fuzzy set" was introduced by Atanassov [5, 6], as generalization of the notion of fuzzy set. In 1966, Imai and Iseki introduced two classes of abstract algebras, BCK-algebras and BCI-algebras [12, 13]. BCI-algebras are generalizations of BCK-algebras which were studied by many researchers [3, 10, 11, 14, 15, 20, 21, 2, 4, 1]. In 1995, Jun [17] applied the concept of fuzzy set to BCK-algebras. He got some interesting results. Yaqoob, Mostafa and Ansari [24] applied the theory of cubic sets to KU-ideals of KU-algebras and obtained some results on cubic KU-ideals. Jun et al. [18] studied further properties of fuzzy ideals and fuzzy sub-algebras of BCKalgebras. In 1990, Biswas introduced the concept of anti fuzzy subgroup of group [8], also see [9, 22, 23]. Recently, Hong and Jun, modifying Biswas idea, applied the concept to BCK-algebras. So, they defined the notion of anti fuzzy ideal of BCK algebras and obtain some useful results on it. In 1999, Jeong applied the Biswas concept to prime ideal in BCK-algebras. So, he defined the notion of anti fuzzy prime ideal of BCK-algebras and obtained some useful results [19]. In 2000, Jun and Kim, using the Atanassov's idea to BCK-algebras [17]. So, they established the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigated some of their properties.

In this paper, we introduce the notion of intuitionistic fuzzy prime ideals of commutative BCK-algebras. We establish the intuitionistic fuzzification of the concept of prime ideals in BCK-algebras, and investigate some of their properties. We show that every intuitionistic fuzzy prime ideal of commutative BCK-algebra X is an intuitionistic fuzzy ideal of X. We also show that if P is a prime ideal of commutative

BCK-algebra X iff $\tilde{P} = \langle X_P, X_P \rangle$ is an intuitionistic fuzzy prime ideal of X. We also prove that an IFS $A = \langle \mu_A, \lambda_A \rangle$ of commutative BCK-algebra X is an intuitionistic fuzzy prime ideal of X if and only if for all $s, t \in [0, 1]$, the set's $U(\mu_A, t)$ and $L(\lambda_A, s)$ are prime ideals of X.

2. Preliminaries

Definition 2.1 ([13, 14]). Algebra (X, *, 0) of type (2, 0) is called BCK-algebra, if for all $x, y \in X$, the following axioms hold:

(1) $(x * y) * (x * z) \le (z * y)$ $(2) \ (x * (x * y) \le y)$ (3) $x \leq x$ (4) $x \leq y, y \leq x \Longrightarrow x = y$ (5) $0 \le x$ Where $x \leq y$ is defined by x * y = 0.

Definition 2.2 ([14]). A subset I of BCK-algebra (X, *, 0) is called an ideal of X, if for any $x, y \in X$

(i) $0 \in I$ (ii) x * y and $y \in I \Longrightarrow x \in I$

Definition 2.3 ([14]). An ideal I of BCK-algebra (X, *, 0) is called closed ideal, if $0 * x \in I$, for all $x \in I$.

Definition 2.4 ([7]). An ideal of commutative BCK-algebras X is said to be prime if $x \wedge y \in I$ implies $x \in I$ or $y \in I$.

Definition 2.5. Let X be non empty set. A fuzzy subset μ of the set X is a mapping $\mu: X \longrightarrow [0,1]$. The complement of fuzzy set μ of a set X is denoted by $\mu(x) = 1 - \mu(x)$, for all $x \in X$.

Definition 2.6. A fuzzy ideal μ of commutative algebra X is called anti fuzzy prime ideal of X if

$$\mu(x \wedge y) \ge \min\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.

Definition 2.7 ([5, 6]). An intuitionistic fuzzy set (in short, IFS) in a non-empty set X is an object having the form $A = \{\langle x, \mu_A(x), \lambda_A(x) \rangle | x \in X\}$, where the function $\mu_A: X \longrightarrow [0,1]$ and $\lambda_A: X \longrightarrow [0,1]$ denoted the degree of membership (namely $\mu_A(x)$ and the degree of nonmembership (namely $\lambda_A(x)$) of each element $x \in X$ to 662

the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. For the simplicity, we use the symbol form $A = \langle \mu_A, \lambda_A \rangle$.

Definition 2.8 ([16]). Let X be a BCK-algebra. An intuitionistic fuzzy set $A = \langle \mu_A, \lambda_A \rangle$ of BCK-algebra X is called an intuitionistic fuzzy subalgebra of X if.

(i) $\mu_A(x * y) \ge \min\{ \mu_A(x), \mu_A(y) \}$ (ii) $\lambda_A(x * y) \le \max\{ \lambda_A(x), \lambda_A(y) \}$ for all $x, y \in X$.

Definition 2.9 ([16]). An intuitionistic fuzzy set $A = \langle \mu_A, \lambda_A \rangle$ in X is called an intuitionistic fuzzy ideal of X, if it satisfies the following axioms:

(IF1) $\mu_A(0) \ge \mu_A(x)$ and $\lambda_A(0) \le \lambda_A(x)$ (IF2) $\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}$ (IF3) $\lambda_A(x) \le \min\{\lambda_A(x * y), \lambda_A(y)\},$ for all $x, y \in X.$

Definition 2.10 ([16]). An intuitionistic fuzzy ideal $A = \langle \mu_A, \lambda_A \rangle$ of a BCK-algebra X is called an intuitionistic fuzzy closed-ideal of X, if the following axiom satisfies

(IF4) $\mu_A(0 * x) \ge \mu_A(x)$ and $\lambda_A(0 * x) \le \lambda_A(x)$ for all $x \in X$.

Theorem 2.11 ([16]). Every intuitionistic fuzzy ideal of BCK-algebra X is an intuitionistic fuzzy subalgebra of BCK-algebra X.

Theorem 2.12. A non empty subset I of BCK-algebra X is an ideal of BCK-algebra X if and only if $\tilde{P} = \langle X_P, \bar{X}_P \rangle$ is an intuitionistic fuzzy ideal.

Proposition 2.13. Every Prime ideal of commutative BCK-algebra X is an ideal of X.

3. Major Section

Definition 3.1. An intuitionistic fuzzy ideal $A = \langle \mu_A, \lambda_A \rangle$ of a BCK-algebra X is called an intuitionistic fuzzy prime ideal of X if

(IFP1) $\mu_A(x \wedge y) \leq \max\{ \mu_A(x), \mu_A(y) \}$ (IFP2) $\lambda_A(x \wedge y) \geq \min\{ \lambda_A(x), \lambda_A(y) \}$ for all $x, y \in X$.

Example 3.2. Let $X = \{0, x, y, z\}$ with Cayley table as follows:

*	0	x	y	z
0	0	0	0	0
x	x	0	0	0
y	y	x	0	0
z	z	y	x	0

It is easy to verify that (X, *, 0) is commutative BCK-algebra. Define an IFS $A = \langle \mu_A, \lambda_A \rangle$ as: $\mu_A(0) = 1, \mu_A(x) = 0.9, \mu_A(y) = 0.5, \mu_A(z) = 0$ and $\lambda_A(0) = 0, \lambda_A(x) = 0.1, \lambda_A(y) = 0.5, \lambda_A(z) = 1$. By routine calculations $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of X.

Theorem 3.3. If $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X, then the sets $J = \{x \in X/\mu_A(x) = \mu_A(0)\}$ and $K = \{x \in X/\lambda_A(x) = \lambda_A(0)\}$ are prime ideals of X.

Proof. Straightforward.

Corollary 3.4. If $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X, then the sets $P_1 = \{x \in X/\mu_A(x) = 0\}$ and $P_2 = \{x \in X/\lambda_A(x) = 0\}$ are either empty or prime ideals of X.

Proposition 3.5. If $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X, then the sets $I = \{x \in X/\mu_A(x) = 1\}$ and $I = \{x \in X/\lambda_A(x) = 1\}$ are either empty or prime ideals of X.

Proposition 3.6. Every intuitionistic fuzzy prime ideal of a commutative BCK-algebra X is an intuitionistic fuzzy ideal of commutative BCK-algebra X.

Proof. Straightforward.

Remark 3.7. An intuitionistic fuzzy ideal of a commutative BCK-algebra X need not be an intuitionistic fuzzy prime ideal of X. Shown in the following example.

Example 3.8. Let $X = \{0, x, y, z\}$ be a BCK-algebra with Cayley table as follows:

*	0	x	y	z
0	0	0	0	0
x	x	0	0	x
y	y	x	0	y
z	z	z	z	0

Then the BCK-algebra X is commutative. Define an IFS $A = \langle \mu_A, \lambda_A \rangle$, $\mu_A : X \longrightarrow [0,1]$ by $\mu_A(0) = 1$, $\mu_A(x) = \mu_A(y) = 0.5$, $\mu_A(z) = 0$ and $\lambda_A(0) = 0$, $\lambda_A(x) = \lambda_A(y) = 0.5$, $\lambda_A(z) = 1$. Routine calculations give that $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy ideal of X but not intuitionistic fuzz prime ideal of X.

Proposition 3.9. Let P be an ideal of a commutative BCK-algebra X. Then, P is a prime ideal of X iff $\stackrel{\sim}{P} = \langle X_P, \overline{X}_P \rangle$ is an intuitionistic fuzzy prime ideal of X.

Proof. Suppose that P is a prime ideal of X. Then, by Proposition 2.13, P is an ideal of X. Since by Theorem 2.12, $\tilde{P} = \langle X_P, \bar{X}_P \rangle$ is an intuitionistic fuzzy ideal of

X. Let for any $x, y \in X$. Then, we have two case's (i) $x \wedge y \in P$ and (ii) $x \wedge y \notin P$. Case (i) if $x \wedge y \in P$, then $X_P(x \wedge y) = 1$, since P is a prime ideal of X, so either $x \in P$ or $y \in P$ this implies $X_P(x) = 1$ or $X_P(y) = 1$. Thus, $X_P(x \wedge y) = 1 = \max\{X_P(x), X_P(y)\}$ and $\overline{X}_P(x \wedge y) = 1 - X_P(x \wedge y) = 0$, and $\overline{X}_P(x) = 1 - X_P(x) = 0$ or $\overline{X}_P(y) = 1 - X_P(y) = 0$ this implies $\overline{X}_P(x \wedge y) = 0 = \min\{\overline{X}_P(x), \overline{X}_P(y)\}$. Case (ii) if $x \wedge y \notin P$, then $X_P(x \wedge y) = 0$ and $X_P(x) \ge 0$ and $X_P(y) \ge 0$ this

imply $X_P(x \wedge y) = 0 \leq \max\{X_P(x), X_P(y)\}$, and $\overline{X}_P(x \wedge y) = 1$ and $X_P(x) \geq 0$, $X_P(y) \geq 0$ this imply $\overline{X}_P(x) \leq 1$ and $\overline{X}_P(y) \leq 1$ this imply $\overline{X}_P(x \wedge y) = 1 \geq \frac{1}{664}$

 $\min\{\overline{X}_P(x), \overline{X}_P(y)\}$. Hence $\widetilde{P} = \langle X_P, \overline{X}_P \rangle$ be an intuitionistic fuzzy prime ideal of X.

Conversely, suppose that $x \wedge y \in P$ and $x \notin P$, for any $x, y \in X$. Then,

$$0 = X_P(x \land y) = 1 - X_P(x \land y) \ge 1 - \max\{X_P(x), X_P(y)\}$$
$$= \min\{1 - X_P(x), 1 - X_P(y)\} = \min\{\bar{X}_P(x), \bar{X}_P(y)\} = \bar{X}_P(y)$$

this implies $0 \ge X_P(y)$ this implies $X_P(y) = 0$, so that $X_P(y) = 1$. Thus, $y \in P$. Similarly, if $x \land y \in P$ and $y \notin P$, for any $x, y \in X$. Hence, P is a prime ideal of X. This completes the proof.

Proposition 3.10. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy set of a commutative BCK-algebra X. Then, $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of X iff μ_A and $\overset{c}{\lambda}_A$ are fuzzy prime ideals of X, where $\overset{c}{\lambda}_A = 1 - \lambda_A$.

Proof. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Since by Proposition 3.6, $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy ideal, so by [16, Page 843, Lemma 3.11], μ_A and λ_A^c are fuzzy ideals of X. Let for any $x, y \in X$. Then,

$$\mu_A(x \wedge y) \leq \max\{\mu_A(x), \mu_A(y)\} \\ \lambda_A(x \wedge y) \geq \min\{\lambda_A(x), \lambda_A(y)\}$$

Now

$$1 - \lambda_A(x \wedge y) \leq 1 - \min\{\lambda_A(x), \lambda_A(y)\}$$

$$\stackrel{c}{\lambda_A}(x \wedge y) \leq \max\{1 - \lambda_A(x), 1 - \lambda_A(y)\}$$

$$\stackrel{c}{\lambda_A}(x \wedge y) \leq \max\{\stackrel{c}{\lambda_A}(x), \stackrel{c}{\lambda_A}(y)\}$$

Hence μ_A and λ_A are fuzzy prime ideal of X.

The converse part is easy, we omit the proof.

Proposition 3.11. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy ideal of a commutative BCK-algebra X. Then $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of X iff $\overset{c}{\mu}_A$ and λ_A are anti fuzzy prime ideals of X, where $\overset{c}{\mu}_A = 1 - \mu_A$.

Proof. Proof is same as above Proposition.

Proposition 3.12. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Then, $\Box A = \langle \mu_A, \overset{c}{\mu}_A \rangle$ is an intuitionistic fuzzy prime ideal of X, where $\overset{c}{\mu}_A = 1 - \mu_A$.

Proof. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Then since by Proposition 3.6, $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy ideal of X, so by [16, Page 843, Theorem 3.12], $\Box A = \langle \mu_A, \overset{c}{\mu}_A \rangle$ is an intuitionistic fuzzy ideal of X. For any $x, y \in X$, then

$$\mu_A(x \wedge y) \le \max\{\mu_A(x), \mu_A(y)\}\$$

$$665$$

Now

$$\begin{array}{lll} 1-\mu_A(x\wedge y) & \geq & 1-\max\{\mu_A(x),\mu_A(y)\}\\ & \overset{c}{\mu}_A(x\wedge y) & \geq & \min\{1-\mu_A(x),1-\mu_A(y)\}\\ & \overset{c}{\mu}_A(x\wedge y) & \geq & \min\{\overset{c}{\mu}_A(x),\overset{c}{\mu}_A(y)\} \end{array}$$

Hence $\Box A = \langle \mu_A, \overset{c}{\mu}_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCKalgebra X.

Proposition 3.13. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Then $\diamond A = \langle \overset{c}{\lambda}_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of X, where $\overset{c}{\lambda}_{A} = 1 - \lambda_{A}$.

Proof. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Then since by Proposition 3.6 $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy ideal of X, so by [16, Page 843, Theorem 3.12] $\diamond A = \langle \lambda_A^c, \lambda_A \rangle$ is an intuitionistic fuzzy ideal of X. Let for any $x, y \in X$. Then,

$$\mu_A(x \land y) \leq \max\{\mu_A(x), \mu_A(y)\} \\ \lambda_A(x \land y) \geq \min\{\lambda_A(x), \lambda_A(y)\}$$

Now

$$egin{array}{rcl} 1-\lambda_A(x\wedge y)&\leq&1-\min\{\lambda_A(x),\lambda_A(y)\}\ &\dot\lambda_A(x\wedge y)&\leq&\max\{1-\lambda_A(x),1-\lambda_A(y)\}\ &\dot\lambda_A(x\wedge y)&\leq&\max\{\dot\lambda_A(x),\dot\lambda_A(y)\} \end{array}$$

Hence, $\diamond A = \langle \stackrel{c}{\lambda}_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCKalgebra X.

Theorem 3.14. Let $A = \langle \mu_A, \lambda_A \rangle$ be an IFS in a commutative BCK-algebra X. Then, $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCKalgebra X if and only if $\Box A = \langle \mu_A, \overset{c}{\mu}_A \rangle$ and $\Diamond A = \langle \overset{c}{\lambda}_A, \lambda_A \rangle$ are an intuitionistic fuzzy prime ideals of X.

Definition 3.15. Let $A = \langle \mu_A, \lambda_A \rangle$ be an intuitionistic fuzzy set of a BCK-algebra X. Then for $s,t \in [0,1]$, the set $U(\mu_A,t) = \{x \in X/\mu_A(x) \ge t\}$ is called upper t-level cut of μ_A and the set $L(\lambda_A, s) = \{x \in X | \lambda_A(x) \leq s\}$ is called lower s-level cut of λ_A .

Theorem 3.16. An IFS $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X if and only if for all $s, t \in [0, 1]$, the set's $U(\mu_A, t)$ and $L(\lambda_A, s)$ are prime ideals of X.

Proof. Suppose $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. Then since by Proposition 3.6 $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X. So by [16, Page 843, Theorem3.13] $U(\mu_A, t)$ and $L(\lambda_A, t)$ are ideal of X. Let $x \wedge y \in U(\mu_A, t)$ this implies $\mu_A(x \wedge t)$ $y \ge t$ and $\mu_A(x \land y) \le \max\{\mu_A(x), \mu_A(y)\}$ this implies $\max\{\mu_A(x), \mu_A(y)\} \ge \mu_A(x \land y)$

 $y \ge t$ implies that $\max\{\mu_A(x), \mu_A(y)\} \ge t$ this implies $\mu_A(x) \ge t$ or $\mu_A(y) \ge t$. so that $x \in U(\mu_A, t)$ and $y \in U(\mu_A, t)$. Hence $U(\mu_A, t)$ is a prime ideal of X. Similarly $L(\lambda_A, s)$ is a prime of X.

Conversely, let $U(\mu_A, t)$ and $L(\lambda_A, s)$ be prime ideals of X. Then by [7] $U(\mu_A, t)$ and $L(\lambda_A, s)$ are ideals of X. Since by [16, Page 843, Theorem 3.13] $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy ideal of X. On contrary $A = \langle \mu_A, \lambda_A \rangle$ is not an intuitionistic fuzzy prime ideal of X. Then there exist $x, y \in X$ such that

which is a contradiction. Hence, $A = \langle \mu_A, \lambda_A \rangle$ is an intuitionistic fuzzy prime ideal of a commutative BCK-algebra X.

References

- S. Abdullah, T. Anwar, N. Amin and M. Taimur, Anti-fuzzy ideals in BE-algebras, Ann. Fuzzy Math. Inform. 6(3) (2013) 487–494.
- [2] S. Abdullah, M. Aslam, N. Amin and M. Taimur Direct product of finite fuzzy subsets in LA-semigroups, Ann. Fuzzy Math. Inform. 3(2) (2012) 281–292.
- [3] S. Abdullah, N. Yaqoob, B. Satyanarayana and S. M. Qurashi, Direct product of intuitionistic fuzzy H-ideals of BCK-algebras, Int. J. Algebra Stat. 1(1) (2012) 8–16.
- [4] M. Aslam and S. Abdullah, M. Imran and M. Ibrar, Direct product of intuitionistic fuzzy set in LA-semigroups-II, Ann. Fuzzy Math. Inform. 2(2) (2011) 151–160.
- [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986) 87–96.
- [6] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61(2) (1994) 137–142.
- [7] J. Ahsan, E. Y. Deeba and A. B. Thaheem, On prime ideals of BCK-algebras, Math. Japon. 36 (1991) 875–882.
- [8] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35(1) (1990) 121–124.
- [9] F. Yousafzai, N. Yaqoob, S. Haq and R. Manzoor, A note on intuitionistic fuzzy Γ-LAsemigroups, World Appl. Sci. J. 19(12) (2012) 1710–1720.
- [10] S. Y. Huang, BCI-algebras, Science Press, China (2006).
- [11] Y. Huang and Z. Chen, On ideals in BCK-algebra, Math. Japon. 50 (1999) 211-226.
- $\left[12\right]$ K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8(1) (1980) 125–130.
- [13] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978) 1–26.
- [14] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976) 351–366.
- [15] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 42 (1966) 19–22.
- [16] Y. B. Jun, Intuitionistic fuzzy ideal of BCK-algebras, Int. J. Math. Math. Sci. 24(12) (2000) 839–849.
- [17] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon. 42(2) (1995) 333-335.
- [18] Y. B. Jun, S. M. Hong, S. J. Kim and S. Z. Song, Fuzzy ideals and fuzzy subalgebras of BCK-algebras, J. Fuzzy Math. 7(2) (1999) 411–418.
- [19] W. K. Jeong, On anti fuzzy prime ideals in BCK-algebras, J. Chungcheong Math. Soc. 12 (1999) 15–21.
- [20] Y. Liu and J. Meng, Sub-implicative ideals and sub-commutative ideals in BCI-algebras, Soochow J. Math. 26 (2000) 441–453.

- [21] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co. Seoul (1994).
- [22] N. Yaqoob, M. Akram and M. Aslam, Intuitionistic fuzzy soft groups induced by (t,s)-norm, Indian J. Sci. Tech. 6(4) (2013) 4282–4289.
- [23] M. Akram and N. Yaqoob, Intuitionistic fuzzy soft ordered ternary semigroups, Int. J. Pure Appl. Math. 84(2) (2013) 93–107.
- [24] N. Yaqoob, S. M. Mostafa and M. A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebra 2013, Art. ID 935905, 10 pp.
- [25] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>SALEEM ABDULLAH</u> (saleemabdullah81@yahoo.com) Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

668