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Abstract. Coupled coincidence and fixed point problems have been
in the focus of the research interest for last few years. The problem was
introduced in fuzzy metric spaces only recently in 2011. In this paper
we work out a coupled coincidence point theorem for a compatible pair
of mappings in fuzzy metric spaces. The space endowed with a partial
ordering. We use a combination of analytic and order theoretic concepts
in our theorem. The result is illustrated with an example.
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1. Introduction and Preliminaries

Fuzzy concepts, after its introduction by Zadeh [23] in 1965, have made quick
headways in almost all branches of pure and applied mathematics. The flexibility in
fuzzy concepts allows the fuzzifications of different mathematical structures in more
than one ways. Metric space has also been fuzzified following several approaches,
some of these can be found in [6, 11, 12]. We consider here the definition of fuzzy
metric space suggested by George and Veeramani [6] which is a modification of the
definition given in [12], done for topological reasons. Fuzzy fixed point theory has
mostly developed on this fuzzy metric space. This is probably because the space
has certain salient features necessary for a successful development of a metric fixed
point theory, one of these being that the topology on this space is Hausdorff topology.
Some references on fuzzy fixed point problems discussed in this space are noted in
[2, 5, 6, 7, 15, 16, 18]. In the following we first describe this space to the extent of
our requirement in this paper.
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Definition 1.1 ([22]). A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a t-norm if
the following properties are satisfied:
(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a for all a ∈ [0, 1],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Generic examples of t−norm are a ∗1 b = min{a, b}, a ∗2 b = ab
max{a,b,λ} for

0 < λ < 1, a ∗3 b = ab, a ∗4 b = max{a + b− 1, 0}.
The following is the definition given by George and Veeramani[6].

Definition 1.2 ([6]). The 3-tuple (X, M, ∗) is called a fuzzy metric space in the
sense of George and Veeramani if X is a non-empty set, ∗ is a continuous t-norm
and M is a fuzzy set on X2 × (0,∞) satisfying the following conditions for each
x, y, z ∈ X and t, s > 0:
(i)M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) and
(v) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a GV-fuzzy metric space. For t > 0, 0 < r < 1, the open ball
B(x, r, t) with center x ∈ X is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is
called the topology on X induced by the fuzzy metric M . This topology is Hausdorff
and first countable [6].
A metric space (X, d) can be considered as a fuzzy metric space (X, M, ∗) with
a ∗ b = min{a, b} and M defined as M(x, y, t) = t

t+d(x,y) .
Amongst other inequivalently defined fuzzy metric spaces, we will only consider this
space and hence will refer to it simply as a fuzzy metric space.

Example 1.3 ([6]). Let X = R. Let a ∗ b = a.b for all a, b ∈ [0,∞). For each
t ∈ (0,∞) , let

M(x, y, t) = e−
|x−y|

t ,

for all x, y ∈ X. Then (X,M, ∗) is a fuzzy metric space.

Definition 1.4 ([6]). Let (X, M, ∗) be a fuzzy metric space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if

limn→∞M(xn, x, t) = 1 for all t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence if for each 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said
to be complete.
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The following lemma, which was originally proved for the fuzzy metric space
introduced by Kramosil and Mishilek [12] is also true in the present case.

Lemma 1.5 ([7]). Let (X, M, ∗) be a fuzzy metric space. Then M(x, y, .) is nonde-
creasing for all x, y ∈ X.

Lemma 1.6 ([19]). M is a continuous function on X2 × (0,∞).

The concept of coupled fixed point was introduced by Guo et al [8]. Bhaskar et al
[1] proved a coupled contraction mapping theorem in partially ordered metric spaces.
Coupled coincidence point results were proved by Lakshmikantham et al [13] for two
commuting mappings and by Chaudhury et al [3] for compatible pair of mappings.
There are several results in this direction of research in metric spaces. Some of
these are noted in [14, 17, 20]. It is our purpose in this paper to prove a coupled
coincidence point theorem for two mappings in complete fuzzy metric spaces.
Let (X,¹) be a partially ordered set and F be a self map on X. The mapping F is
said to be non-decreasing if for all x1, x2 ∈ X, x1 ¹ x2 implies F (x1) ¹ F (x2) and
non-increasing if for all x1, x2 ∈ X, x1 ¹ x2 implies F (x1) º F (x2)[1].

Definition 1.7 ([1]). Let (X,¹) be a partially ordered set and F : X × X → X
be a mapping. The mapping F is said to have the mixed monotone property if F
is non-decreasing in its first argument and is non-increasing in its second argument,
that is, if for all x1, x2 ∈ X, x1 ¹ x2 implies F (x1, y) ¹ F (x2, y) for fixed y ∈ X
and if for all y1, y2 ∈ X, y1 ¹ y2 implies F (x, y1) º F (x, y2), for fixed x ∈ X.

Definition 1.8 ([13]). Let (X,¹) be a partially ordered set and F : X×X → X and
g : X → X be two mappings. The mapping F is said to have the mixed g-monotone
property if F is monotone g-non-decreasing in its first argument and is monotone
g-non-increasing in its second argument, that is, if for all x1, x2 ∈ X, gx1 ¹ gx2

implies F (x1, y) ¹ F (x2, y) for all y ∈ X and if for all y1, y2 ∈ X, gy1 ¹ gy2 implies
F (x, y1) º F (x, y2), for any x ∈ X.

Definition 1.9 ([1]). Let X be a nonempty set. An element (x, y) ∈ X×X is called
a coupled fixed point of the mapping F : X ×X → X if

F (x, y) = x, F (y, x) = y.

Further Lakshmikantham and Ćirić have introduced the concept of coupled coin-
cidence point.

Definition 1.10 ([13]). Let X be a nonempty set. An element (x, y) ∈ X ×X is
called a coupled coincidence point of the mappings F : X ×X → X and g : X → X
if

gx = F (x, y), gy = F (y, x).

Definition 1.11 ([3]). Let (X, d) be a metric space. The mappings F and g where
F : X ×X → X and g : X → X, are said to be compatible if

lim
n→∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0
and

lim
n→∞

d(g(F (yn, xn)), F (g(yn), g(xn))) = 0,
621



Binayak S. Choudhury et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 4, 619–628

whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) =

x and lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y for some x, y ∈ X.

In fuzzy metric spaces coupled fixed point results were first successfully proved by
Zhu et al [24]. After that coupled coincidence point and coupled fixed point results
in this space have appeared in works of Hu [9], Choudhury et al [4], Jain et al [10].
In particular, compatibility was defined by Hu [9] as the fuzzy counterpart of the
concept introduced in Choudhury et al [3].

Definition 1.12 ([4, 9]). Let (X,M, ∗) be a fuzzy metric space. The mappings F
and g where F : X ×X → X and g : X → X, are said to be compatible if for all
t > 0

lim
n→∞

M(g(F (xn, yn)), F (g(xn), g(yn), t) = 1
and

lim
n→∞

M(g(F (yn, xn)), F (g(yn), g(xn), t) = 1,

whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) =

x and lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y for some x, y ∈ X.

2. Major section

Theorem 2.1. Let (X,¹) be a partially ordered set and (X, M, ∗) be a complete
fuzzy metric space where a ∗ b ≥ a.b for all a, b ∈ [0, 1]. Let F : X × X → X
and g : X → X be two mappings that F has the mixed g-monotone property and
satisfying the following conditions:
(i)F (X ×X) ⊆ gX,
(ii) g is continuous and monotonic increasing,
(iii) (g, F ) is a compatible pair,
(iv) M(F (x, y), F (u, v), t) ≥ γ(M(gx, gu, t) ∗M(gy, gv, t)), (2.1)
for all x, y, u, v ∈ X, t > 0 with gx ¹ gu and gy º gv, where γ : [0, 1] → [0, 1] is a
continuous function such that γ(a) >

√
a for each 0 ≤ a ≤ 1. Also suppose that X

has the following properties:
(a) if a non-decreasing sequence {xn} → x, then xn ¹ x for all n ≥ 0, (2.2)
(b) if a non-increasing sequence {yn} → y, then yn º y for all n ≥ 0. (2.3)

If there exist x0, y0 ∈ X such that gx0 ¹ F (x0, y0) and gy0 º F (y0, x0), then there
exists x, y ∈ X such that gx = F (x, y) and gy = F (y, x), that is, F and g have a
coupled coincidence point in X.

Proof. Let x0, y0 be two points in X be such that gx0 ¹ F (x0, y0) and gy0 º
F (y0, x0). We define the sequence {xn} and {yn} in X as follows:

gx1 = F (x0, y0) and gy1 = F (y0, x0)
gx2 = F (x1, y1) and gy2 = F (y1, x1)

and, in general, for all n ≥ 0,
gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn). (2.4)

This construction is possible by the condition F (X ×X) ⊆ gX.
Next, we prove that for all n ≥ 0,

gxn ¹ gxn+1 (2.5)
and
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gyn º gyn+1. (2.6)
Since gx0 ¹ F (x0, y0) and gy0 º F (y0, x0), in view of gx1 = F (x0, y0) and gy1 =
F (y0, x0), we have gx0 ¹ gx1 and gy0 º gy1. Therefore (2.5) and (2.6) hold for
n = 0.
Let (2.5) and (2.6) hold for some n = m. As F has the mixed g-monotone property
and gxm ¹ gxm+1 and gym º gym+1, from (2.4), we get
gxm+1 = F (xm, ym) ¹ F (xm+1, ym) and F (ym+1, xm) ¹ F (ym, xm) = gym+1. (2.7)
Also, for the same reason, we have
gxm+2 = F (xm+1, ym+1) º F (xm+1, ym) and F (ym+1, xm) º F (ym+1, xm+1) =
gym+2. (2.8)
Then from (2.7) and (2.8),

gxm+1 ¹ gxm+2 and gym+1 º gym+2.
Then, by induction, it follows that (2.5) and (2.6) hold for all n ≥ 0.
Let for all t > 0, n ≥ 0,

δn(t) = M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t).

By using (2.5) and (2.6), from (2.1) and (2.4) we have for all t > 0 and n ≥ 1,

M(gxn, gxn+1, t) = M(F (xn−1, yn−1), F (xn, yn), t)
≥ γ(M(gxn−1, gxn, t) ∗M(gyn−1, gyn, t))
= γ(δn−1(t)).

Therefore for all t > 0 and n ≥ 1
M(gxn, gxn+1, t) ≥ γ(δn−1(t)). (2.9)

Similarly, by using (2.5) and (2.6), from (2.1) and (2.2) we have, for all t > 0 and
n ≥ 1,

M(gyn, gyn+1, t) = M(F (yn−1, xn−1), F (yn, xn), t)
≥ γ(M(gyn−1, gyn, t) ∗M(gxn−1, gxn, t))
= γ(δn−1(t)).

Therefore for all t > 0 and n ≥ 1
M(gyn, gyn+1, t) ≥ γ(δn−1(t)). (2.10)

From (2.9) and (2.10) we obtain for all t > 0 and n ≥ 1,
δn(t) ≥ γ(δn−1(t)) ∗ γ(δn−1(t)) ≥ (γ(δn−1(t)))2 > δn−1(t). (2.11)

(by the properties of ∗ and γ).
Thus for each t > 0, {δn(t); n ≥ 0} is an increasing sequence in [0, 1] and hence
tends to a limit a(t) ≤ 1. We claim that a(t) = 1 for all t > 0. If there exists t0 > 0
such that a(t0) < 1, then taking limit as n −→ ∞ for t = t0 in the first part of the
above inequality, we get a(t0) ≥ (γ(a(t0)))2 > a(t0), which is a contradiction. Hence
a(t) = 1 for every t > 0, that is, for all t > 0,

lim
n→∞

δn(t) = lim
n→∞

M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t) = 1. (2.12)

Now we prove that {gxn} and {gyn} are Cauchy sequences. Let, to the contrary,
at least one of {gxn} and {gyn} be not a Cauchy sequence. Then there exist ε, λ ∈
(0, 1) such that for each integer k, there are two integers l(k) and m(k) such that
m(k) > l(k) ≥ k and

either M(gxl(k), gxm(k), ε) ≤ 1− λ, for all k,
623
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or M(gyl(k), gym(k), ε) ≤ 1− λ, for all k .

In either case we have, for all k > 0,
rk(ε) = M(gxl(k), gxm(k), ε) ∗M(gyl(k), gym(k), ε) ≤ 1− λ. (2.13)

By choosing m(k) to be the smallest integer exceeding l(k) for which (2.13) holds,
we have, for all k > 0,
M(gxl(k), gxm(k)−1, ε) ∗M(gyl(k), gym(k)−1, ε) > 1− λ.
By continuity of M , we can have some α with 0 < 2α < ε such that, for all k > 0,

M(gxl(k), gxm(k)−1, ε− 2α) ∗M(gyl(k), gym(k)−1, ε− 2α) > 1− λ. (2.14)
From (2.13), (2.14) and by the triangle inequality for all k > 0, we have

1− λ ≥ rk(ε) ≥ M(gxl(k), gxm(k)−1, ε− α) ∗M(gxm(k)−1, gxm(k), α)
∗M(gyl(k), gym(k)−1, ε− α) ∗M(gym(k)−1, gym(k), α)

= M(gxl(k), gxm(k)−1, ε− α) ∗M(gyl(k), gym(k)−1, ε− α) ∗ δm(k)−1(α)
> (1− λ) ∗ δm(k)−1(α).

Taking the limit as k →∞, we get by (2.12),
lim

k→∞
rk(ε) = 1− λ.

Since M(x, y, t1) ≥ M(x, y, t2) whenever t1 ≥ t2, it follows that M(x, y, ε) ≤ 1 − λ
implies M(x, y, ε1) ≤ 1− λ for all x, y ∈ X whenever ε1 ≤ ε.
Hence the above derivation is valid if ε is replaced by any smaller value. Thus we
conclude that

lim
k→∞

rk(ε1) = 1− λ for all ε1 ≤ ε. (2.15)

Again, by the triangle inequality for all k > 0,

rk(ε) = M(gxl(k), gxm(k), ε) ∗M(gyl(k), gym(k), ε)
≥ M(gxl(k), gxl(k)+1, α) ∗M(gxl(k)+1, gxm(k)+1, ε− 2α)

∗M(gxm(k)+1, gxm(k), α) ∗M(gyl(k), gyl(k)+1, α)
∗M(gyl(k)+1, gym(k)+1, ε− 2α) ∗M(gym(k)+1, gym(k), α).

Hence, for all k > 0, we have
rk(ε) ≥ δl(k)(α) ∗ δm(k)(α) ∗M(gxl(k)+1, gxm(k)+1, ε− 2α)

∗M(gyl(k)+1, gym(k)+1, ε− 2α). (2.16)
From (2.1) and (2.4), we have, for all k > 0,

M(gxl(k)+1, gxm(k)+1, ε− 2α) = M(F (xl(k), yl(k)), F (xm(k), ym(k)), ε− 2α)
≥ γ(M(gxl(k), gxm(k), ε− 2α)

∗M(gyl(k), gym(k), ε− 2α))
= γ(rk(ε− 2α)).

Therefore for all k > 0,
M(gxl(k)+1, gxm(k)+1, ε− 2α) ≥ γ(rk(ε− 2α)). (2.17)
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Also from (2.1) and (2.4) we have, for all k > 0,

M(gym(k)+1, gyl(k)+1, ε− 2α) = M(F (ym(k), xm(k)), F (yl(k), xl(k)), ε− 2α)
≥ γ(M(gxl(k), gxm(k), ε− 2α)

∗M(gyl(k), gym(k), ε− 2α))
= γ(rk(ε− 2α)).

Therefore for all k > 0,
M(gyl(k)+1, gym(k)+1, ε− 2α) ≥ γ(rk(ε− 2α)). (2.18)

Inserting (2.17) and (2.18) in (2.16) we obtain, for all k > 0,
rk(ε) ≥ δl(k)(α) ∗ δm(k)(α) ∗ γ(rk(ε− 2α)) ∗ γ(rk(ε− 2α))

≥ δl(k)(α) ∗ δm(k)(α) ∗ (γ(rk(ε− 2α)))2 (since a ∗ b ≥ a.b).
Letting k → ∞ and using (2.12) and (2.15) we get, by continuity of ∗ and the
properties of γ,

1− λ ≥ (γ(1− λ))2 > (1− λ), (2.19)
which is a contradiction. Therefore, {gxn} and {gyn} are Cauchy sequences.
Since X complete, there exist x, y ∈ X such that

lim
n→∞

gxn = x and lim
n→∞

gyn = y. (2.20)

Therefore, lim
n→∞

gxn+1 = lim
n→∞

F (xn, yn) = x, lim
n→∞

gyn+1 = lim
n→∞

F (yn, xn) = y.

Since, (g, F ) is a compatible pair and using continuity of g, we have
lim

n→∞
g(gxn+1) = gx = lim

n→∞
g(F (xn, yn)) = lim

n→∞
F (gxn, gyn),

lim
n→∞

g(gyn+1) = gy = lim
n→∞

g(F (yn, xn)) = lim
n→∞

F (gyn, gxn).

By (2.5), (2.6) and (2.20), we have {gxn} is a non-decreasing sequence with gxn → x
and {gyn} is a non-increasing sequence with gyn → y as n →∞. Then by (2.2) and
(2.3) we have for all n ≥ 0,

gxn ¹ x and gyn º y.
Since, g is monotonic increasing, so

g(gxn) ¹ gx and g(gyn) º gy. (2.21)
Now we show that gx = F (x, y) and gy = F (y, x) for all x, y ∈ X.
By using (2.1),(2.4) and (2.21), for all t > 0, n ≥ 0, we have

M(F (x, y), g(gxn+1), t) = M(F (x, y), g(F (xn, yn)), t).

Taking n →∞ on the both sides of the above inequality, we obtain

lim
n→∞

M(F (x, y), g(gxn+1), t) = lim
n→∞

M(F (x, y), g(F (xn, yn), t),

M(F (x, y), gx, t) = lim
n→∞

M(F (x, y), (F (gxn, gyn)), t),

= lim
n→∞

(F (gxn, gyn)), F (x, y), t),

≥ lim
n→∞

[γ(M(g(gxn), gx, t) ∗M(g(gyn), gy, t))],

= γ(M(gx, gx, t) ∗M(gy, gy, t)),
= γ(1 ∗ 1),
= 1,

which implies that gx = F (x, y). (2.22)
Similarly, we can prove gy = F (y, x). (2.23)
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Therefore, from (2.22) and (2.23) we conclude that (x, y) is a coupled coincidence
point of F and g. Hence proof is completed. ¤

Example 2.2. Let X = [0, 1]. Then (X,¹) is a partially ordered set with the
natural ordering of the real numbers. Let

M(x, y, t) = e−
|x−y|

t for all x, y ∈ X.
Then (X, M, ∗) be a complete fuzzy metric space, where a ∗ b = a.b for all a, b ∈ X.
Let the mapping g : X → X be defined as

g(x) = x2, for all x ∈ X.
Let the mapping F : X ×X → X be defined as

F (x, y) =
{

x2−y2

3 , if x, y ∈ [0, 1], x º y,
0, otherwise .

Here F satisfies the mixed g-monotone property. Let γ : [0, 1] → [0, 1] be defined as
γ(a) = a

1
3 for each a ∈ (0, 1).

Let {xn} and {yn} be two sequences in X such that
lim

n→∞
F (xn, yn) = a, lim

n→∞
gxn = a,

lim
n→∞

F (yn, xn) = b and lim
n→∞

gyn = b. Then a = 0 and b = 0.
Now for all n ≥ 0,

gxn = x2
n, gyn = y2

n,

F (xn, yn) =

{
x2

n−y2
n

3 , if xn º yn,
0, otherwise .

and

F (yn, xn) =

{
y2

n−x2
n

3 , if yn º xn,
0, otherwise ,

Then it follows that
limn→∞M(g(F (xn, yn)), F (gxn, gyn), t) = 1

and
limn→∞M(g(F (yn, xn)), F (gyn, gxn), t) = 1.

Therefore, the mappings F and g are compatible in X. Also, let x0 = 0 and
y0 = c(> 0) are two points in X such that

gx0 = g0 = 0 ≤ F (0, c) = F (x0, y0) and gy0 = gc = c2 ≥ c2

3 = F (c, 0) =
F (y0, x0).
Now we consider the following cases:

Case-I. For x º y and u º v.

M(F (x, y), F (u, v), t) = e−[
| (x2−y2)

3 − (u2−v2)
3 |

t ]

= e−[
| (x2−u2)

3 − (y2−v2)
3 |

t ]

≥ e−[| (x2−u2)
3t |].e−[| (y2−v2)

3t |]

= [M(gx, gu, t)]
1
3 .[M(gy, gv, t)]

1
3

= γ(M(gx, gu, t) ∗M(gy, gv, t)).
626
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Case-II. For x º y and u ≺ v.

M(F (x, y), F (u, v), t) = e−[
|x2−y2|

3t ]

= e−[
|(u2+x2−y2−u2|

3t ]

= e−[| (x2−u2)
3t |].e−[| (u2−y2)

3t |]

≥ e−[| (x2−u2)
3t |].e−[| (v2−y2)

3t |]

= [M(gx, gu, t)]
1
3 .[M(gy, gv, t)]

1
3

= γ(M(gx, gu, t) ∗M(gy, gv, t)).

Case-III. For x ≺ y and u º v.

M(F (x, y), F (u, v), t) = e−[
|u2−v2|

3t ]

= e−[
|(u2+x2−v2−x2|

3t ]

= e−[| (x2−v2)
3t |].e−[| (u2−x2)

3t |]

= e−[| (x2−u2)
3t |].e−[| (x2−v2)

3t |]

≥ e−[| (x2−u2)
3t |].e−[| (y2−v2)

3t |]

= [M(gx, gu, t)]
1
3 .[M(gy, gv, t)]

1
3

= γ(M(gx, gu, t) ∗M(gy, gv, t)).

Case-IV. For x ≺ y and u ≺ v.
This case is obviously satisfied. Here all conditions of the theorem 2.1 are satisfied
and (0, 0) is the coupled coincidence point of F and g in X.

Remark 2.3. Since commuting mappings are compatible, our present theorem gen-
eralizes the result in [21]. In the example 2.2, (g, F ) is not a commuting pair. So
the result of theorem 2.1 is an actual improvement over the result [21].
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