
Annals of Fuzzy Mathematics and Informatics

Volume 7, No. 4, (April 2014), pp. 579–606

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Fuzzy flip-flop as fuzzy systems

Himadrishekhar Gupta, Swapan Raha

Received 28 March 2013; Accepted 3 July 2013

Abstract. In this paper, an attempt is made to study the problem
of constructing a mathematical model with the parametric operations of
fuzzy systems which can be used for hardware implementation of a fuzzy
flip-flop. The generation of parametric classes of fuzzy systems by means
of basic fuzzy operations are considered. The algebraic representation of
fuzzy flip-flop circuit is taken into consideration. The algebraic fuzzy flip-
flop is one example of the general fuzzy flip-flop concept which has been
defined as an extension of the binary J-K flip-flop. Some properties of
fuzzy flip-flops are discussed with the help of analytical methods. The
fuzzy flip-flop is defined using complement, min and max operations for
fuzzy negation, t-norms and s-norms respectively. A rule-base for a fuzzy
flip-flop is developed and approximate reasoning methodology is used to
generate the next state of the flip-flop when the present state and the
present input are known. Results have been extensively discussed with
examples.
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1. Introduction

The development of basic building blocks for a fuzzy system is intrinsically
important, however, the real advantage comes when such techniques are used in
application systems. Dynamical systems used in engineering applications have both
inputs and outputs. The relationship between the two is a critical feature of the
system’s behaviour — and thus an important part of its model. A crisp flip-flop is
a basic building block of a sequential logic circuit which realises the input - output
behaviour of such a system. The function of a flip-flop could be realised through
a combination of logic gates and latching action. It is mainly used as a single bit
memory element. A series of flip-flops where, the logic operations are performed
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sequentially is called a sequential circuit. Sequential circuits which are controlled
by a repetitive clock signal are called synchronous circuits. Asynchronous circuits
are controlled by some random events. A crisp flip-flop has two stable states. It
has a number of inputs which can be either 0 or 1. The output of a crisp flip-flop is
generated by a set of rules, represented by means of either an external state diagram
or a state table.

A fuzzy flip-flop is a basic building block of a fuzzy sequential circuit. A fuzzy flip-
flop contains fuzzy inputs and fuzzy outputs. The function of a fuzzy flip-flop could
be realised through a combination of fuzzy logic gates and latching action. It can be
used as a memory element in a fuzzy logic based function realisation. Unlike a crisp
flip-flop a fuzzy flip-flop can have an infinite number of states. A fuzzy sequential
machine could be realised through a number of fuzzy flip-flops and circuits realising
basic fuzzy operators. Accordingly, a fuzzy flip-flop can have a number of inputs and
only one output. The output of a fuzzy flip-flop actually determines the next state
of the flip-flop. The next state of a fuzzy flip-flop corresponding to different inputs
and present state can be described by a series of fuzzy rules. Nowadays, the high
speed fuzzy controller hardware system uses this form of knowledge representation
[23]. Some work has been done on the field of intelligent non-industrial robots as an
interface for accessing information [20]. The fuzzy flip-flop can also be successfully
used in such applications in robotics.

The fuzzy model of flip-flops originates from fuzzy set theory, having the character
of being intuitive. The fuzziness of the input and output results from the natural
description of the behaviour of the system. It consists of meanings and definitions
of terms like ‘high’, ‘low’, ‘medium’, and linguistic modifiers like ‘very’, ‘not very’,
‘more or less’ etc. These are broad concepts that demand subjective meaning. With
respect to the definition of the fuzzy sets for each such concepts discussed here,
different structures may be imposed on the membership space and assumptions
about the membership functions can be made [1]. The fuzzy outputs are generated
by means of an inference engine using a fuzzy rule base, the present state and current
input. The fuzzy rule base actually represents the human knowledge and the fuzzy
inference procedure reproduces the human decision and behaviour [25]. In some
decision making problems, conflicting criteria is a major concern. The Pareto sets
deal with this problem efficiently [3]. An analytical approach has been studied in
this paper. The analytical approach to fuzzy normed linear spaces is studied by N.
Thillaigovindan and S. Anita Shanthi [21]. The objective of this paper is to study
the behaviour of fuzzy flip-flops under different input and state conditions. Fuzzy
flip-flop has been studied from different angles such as Bacterial Memetic Algorithm
[2], Non-Associative Fuzzy Flip-Flop with Dual set-reset feature [14].

As the next state function could be different for different implementation under
fuzzy logic, many different functions could serve the purpose of realisation. Ac-
cordingly, we have examined both the set and reset type fuzzy J-K flip-flops since
these two characteristics are not equivalent in a fuzzy sense. These characteristics
are obtained from the formal definition of the crisp J-K flip-flop and are modified
with the help of fuzzy set theory. The fuzzy flip-flop has become an important part
of the fuzzy sequential system, because the computers capable of performing fuzzy
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computations is a reality nowadays. Some significant work has already been done in
this field.

The paper is organized into seven sections. After a brief Introduction on the
research reported in this paper in Section 1, we introduce a few definitions of some
basic concepts and their properties as required to make the paper readable in Section
2. The concept of a fuzzy flip-flop is introduced in Section 3. Three different types
of fuzzy flip-flops — set, reset and their combination are presented in a subsection
of Section 3. Section 4 is devoted to an analytical study of fuzzy flip-flop. Repre-
sentation of fuzzy flip-flop with a set of fuzzy rules is considered in section 5. With
this development, an attempt is made to study Fuzzy flip-flop as a fuzzy system
in section 6. The paper is briefly concluded in section 7. A comprehensive list of
references is provided at last.

2. Preliminaries

Here is a recapitulation about the crisp flip-flop. It is a single bit memory element.
It can be classified in four types according to it’s input-output behaviour. The types
are T-flip-flop, D flip-flop, S-R flip-flop and J-K flip-flop. Among these types T
flip-flop and D flip-flop are single input, whereas S-R and J-K are double input flip-
flops. Each flip-flop has a pair of complementary outputs. The S-R flip-flop has a
forbidden combination when both the inputs are ON. This difficulty is removed in
J-K flip-flop, so the J-K flip-flop demands more attention of all the flip-flops due to
it’s general and well defined nature.

The characteristic equation for the J-K flip-flop in the minimal disjunctive form
is Q(t + δt) = JQ(t) + Q(t)K and in the minimal conjunctive form is Q(t + δt) =
(J + Q(t))(K + Q(t)), where Q(t) and Q(t + δt) are states at time t and t + δt .
J,K are inputs. The state table of the J-K flip-flop is as in Table 2. Another way of

J K Q(t) Q(t + δt)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 1. State table for the J-K flipflop

representing Table 2 is as given in Table 2.
Postulates of the J-K flip-flop: From the Table 2 it is clear that there exists
four postulates of the crisp J-K flip. The postulates, according to the Table 2 can
be framed as follows:
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Q F J K
0 0 0 Φ
0 1 1 Φ
1 0 Φ 1
1 1 Φ 0

Table 2. Steering table for the J-K flip flop

P1 : F (0, 0, Q) = Q
P2 : F (0, 1, Q) = 0
P3 : F (1, 0, Q) = 1
P4 : F (1, 1, Q) = 1−Q

3. Fuzzy flip-flop

The fuzzy version of the flip-flops are studied by many scientists from different
view points and approaches. Among them, Koczy, Hirota and Ozawa established a
general algebraic model of a J-K flip-flop [6, 7, 12, 13]. This approach explored the
possibilities based on algebraic operations for modelling fuzzy memory and learning
systems. The work of Hirota and Pedrycz [8] was on the development of designing
a framework for dealing with fuzzy computation using fuzzy J-K flip-flops. They
have indicated some links between the fuzzy logic and many valued logics. Different
methods of designing the combination part of the sequential circuit was introduced
by them. Lovassy, Koczy and Gal proposed an evolutionary approach for optimizing
fuzzy flip-flop networks. They also proposed the fuzzy flip-flop neural network archi-
tecture that can be used for learning and approximating various simple transcenden-
tal functions. Lovassy and Koczy explored for the uniqueness of the definition of the
non-associative fuzzy flip-flops. L.Gneiwek and J. Kluska studied the family of fuzzy
J-K flip-flops based on bouunded product [4]. Ozawa, Hirota and Omori studied the
circuit of Algebraic Fuzzy flip-flop [16], Yamakawa studied a simple fuzzy computer
system applying max and min operations [22], B. Kosko explored the Fuzzy entropy
and conditioning [11], in an earlier work we studied the Fuzzy mathematical machine
as a fuzzy system [17]. The concept of fuzzy finite state machine is also studied by
Pamy Sebastian and T.P Johnson [19]. The fuzzy flip-flops can be represented by
means of fuzzy functions and the fuzzy functions can also be minimised [10] resulting
the study of the fuzzy flip-flops easier. These and some other researches in this field
have made a robust base for futher research.

Definition 3.1. A fuzzy flip-flop is an electronic device whose states and inputs
are represented by fuzzy sets defined over respective universe of discourses. It has a
single output. The output of a fuzzy flip-flop is generated by means of a Fuzzy Rule
Base(FRB) and an inference mechanism.

The defuzzification of all the fuzzy states lead to the properties of it’s crisp coun-
terparts. Different rules generate different fuzzy flip-flops.
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3.1. Fuzzy J-K flip-flop. The fuzzy version of a J-K flip-flop is studied here for
it’s clarity in behaviour. The J-K flip-flop can also be converted to D-type or T-
type of flip-flops by suitable arrangement of logic gates. As we have seen, from the
logic-table of a J-K flip-flop it’s behaviour can be formulated as in the following
[5, 15, 18].

(3.1) Q(t + δt) = JQ(t) + Q(t)K.

Q represents the negation of the internal state Q, whereas J, K are inputs. The
mathematical model in fuzzy version can be represented as

(3.2) Q(t + δt) = {J ∧ (1−Q(t))} ∨ {(1−K) ∧Q(t)}.
We can write 3.2 in a more general way using t-norm T and s-norm T ′ as in the

following:

(3.3) Q(t + δt) = (J T C(Q(t))) T ′ (C(K) T Q(t)).

One of the most common t−norm and t−conorm frequently used as fuzzy inter-
section and fuzzy union are min and max operation. The equation 3.3 is modified
with these operations as in the following:

(3.4) Q(t + δt) = max(min(J, 1−Q),min(1−K, Q)

where J,K, Q ∈ [0, 1]. Although here max and min are used for it’s simplicity and
clarity but, different other norms could be used instead of them [9, 24]. For the sake
of convenience, Q(t + δt) will be referred to as F hereinafter.

Let us construct a fuzzified version of the table 2 which will be suitable to study
the properties of a fuzzy J-K flip-flop. Since Φ implies 0 or 1, we replace it with
the entire interval [0,1]. Instead of 0 we use the linguistic variable ‘very small’ and
instead of 1 we use the linguistic variable ‘very large’, and we represent these with
ε and µ respectively. We can now construct the following table using those fuzzy
identifiers.

Q F J K
ε ε ε [0, 1]
ε µ µ [0, 1]
µ ε [0, 1] µ
µ µ [0, 1] ε

Table 3. State table for the fuzzy JK flip flop

We shall be able to construct the rule bases from the Table 3.

3.2. Generalised fuzzy J-K flip-flop. In this section, we consider two different
types of fuzzy J-K flip-flops — the set type and the reset type behavioural models.
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3.2.1. Reset type fuzzy J-K flip-flop. Postulates of the reset type fuzzy J-K
flip-flop :

Let FR = max(min(J, 1−Q), min(1−K,Q))
a. FR(0, 0, Q) = max(min(0, 1−Q),min(1, Q)

= max(0, Q)
= Q

b. FR(0, 1, Q) = max(min(0, 1−Q),min(1− 1, Q))
= max(min(0, 1−Q),min(0, Q))
= max(0, 0)
= 0

c. FR(1, 0, Q) = max(min(1, 1−Q),min(1− 0, Q))
= max(min(1, 1−Q),min(1, Q))
= max(1−Q,Q)

d. FR(1, 1, Q) = max(min(1, 1−Q),min(1− 1, Q))
= max(1−Q, 0)
= 1−Q.

In case of a fuzzy flip-flop, there may be infinite number of fuzzy inputs and
internal states, each combination producing a typical fuzzy output. It is obvious
that the most ambiguous inputs will produce most ambiguous output in the fuzzy
sense. From this viewpoint we introduce another postulate, which will be helpful to
study the properties of a fuzzy flip-flop. This is the fifth postulate, and it is

e. FR(0.5, 0.5, Q) = 0.5 The above postulates are for a reset type fuzzy flip-
flop. It is of reset type as we have for all state Q, F (0, 1, Q) = 0.
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Figure 1. Reset type flip-flop

3.2.2. Set type fuzzy J-K flip-flop. The equivalent Boolean expression of 3.1 is

(3.5) F = (J + Q)(K + Q)

These two equations are different in fuzzy logic. The fuzzy version of 3.5 with
min and max compositions will be as follows:

(3.6) FS = min(max(J,Q),max(1−K, 1−Q))
584



Himadrishekhar Gupta et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 4, 579–606

It can be expressed in a more general form as

(3.7) FS = (JT ′Q)T ((1−K)T ′(1−Q))

We can frame postulates for a ‘set’ type flip-flop from 3.6:
Postulates of the set type fuzzy J-K flip-flop :
a. F (S)(0, 0, Q) = min(max(0, Q),max(1− 0, 1−Q)

= min(Q, 1)
= Q

b. F (S)(0, 1, Q) = min(max(0, Q),max(1− 1, 1−Q))
= max(min(0, 1−Q),min(0, Q))
= min(Q, 1−Q)

c. F (S)(1, 0, Q) = min(max(1, Q),max(1− 0, 1−Q))
= min(1, 1)
= 1

d. F (S)(1, 1, Q) = min(max(1, Q),max(0, 1−Q))
= min(1, 1−Q)
= 1−Q

e. F (S)(0.5, 0.5, Q) = 0.5
It is called ‘set’ type because here F (S)(1, 0, Q) = 1.
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Figure 2. Set type flip-flop

3.2.3. Combined fuzzy J-K flip-flop. A combination of set and reset type flip-flops
gives us a new fuzzy flip-flop. This combined fuzzy flip-flop is defined as in the
following:

Definition 3.2. The combined flip-flop F (C) is defined as

(3.8) F (C)(J,K,Q) = J KQ+JK min(Q, 1−Q)+JK(1−Q)+JK max(Q, 1−Q)

In fuzzy logic, the combined J-K flip-flop can be wrtitten, using max and min to
interpret disjunction and conjunction operations respectively and with usual ‘1−′
for an interpretation of complement operation, as
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F (C)(J,K, Q) = max(min(1− J, 1−K, Q), min(1− J,K, min(Q, 1−Q)),
min(J,K, 1−Q), min(J, 1−K, max(Q, 1−Q)).

In a more general form, the same can be understood as

F (C)(J,K, Q) = ((1− J)T (1−K)TQ))T ′((1− J)TKT

(QT (1−Q)))T ′(JTKT (1−Q)T ′(JT (1−K)T (QT ′(1−Q)))

Postulates of the combined fuzzy J-K flip-flop:
a. F (C)(0, 0, Q) = Q
b. F (C)(0, 1, Q) = min(Q, 1−Q)
c. F (C)(1, 0, Q) = max(Q, 1−Q)
d. F (C)(1, 1, Q) = 1−Q
e. F (C)(0.5, 0.5, Q) = 0.5
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Figure 3. Combined type flip-flop

In case of a crisp flip-flop, a D-type flip-flop is represented by F (D, 1 − D, Q),
where F = 0 if D = 0 and F = 1 if D = 1. But for a fuzzy flip-flop, it’s behaviour
is different as it is evident from the following observations.

Observation 3.3. F (R)(D, 1−D, Q) and F (S)(D, 1−D, Q) do not always represent
the property of a D-flip-flop.

Proof. We have, from definition
F (R)(D, 1−D, Q) = max(min(D, 1−Q),min(1− (1−D), Q))

= max(min(D, 1−Q),min(D, Q))
Now, for D = 1 we have,
F (R)(1, 0, Q) = max(min(1, 1−Q),min(1, Q))

= max(1−Q, Q)
and for D = 0 we have,
F (R)(0, 1, Q) = max(min(0, 1−Q),min(0, Q))

= max(0, 0)
= 0.
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Figure 4. Comparison of Set and Reset type flip-flop

Also, F (S)(D, 1−D, Q) = min(max(D, Q), max(D, 1−Q))
which for D = 1 we have,
F (S)(1, 0, Q) = min(max(1, Q),max(1, 1−Q))

= min(1, 1)
= 1

and the same for D = 0 we have,
F (S)(0, 1, Q) = min(max(0, Q),max(0, 1−Q))

= min(Q, 1−Q)
Thus, it does not represent the property of a D flip-flop for the boundary values

of the inputs in the interval [0,1]. Let us now study it for the fuzzy values of the
inputs. Let D = p where p ∈ (0, 1)
Then F (R)(p, 1− p, Q) = max(min(p, 1−Q),min(p, Q))
Now, for F (R)(p, 1− p,Q) = p ,

(a)
min(p, 1−Q) = p;
⇒ 1−Q ≥ p
⇒ Q ≤ 1− p

and
(b) min(p,Q) = p

⇒ Q ≥ p
Therefore Q ∈ (p, 1− p)
Thus for being F (R) to be a D-type flip-flop in the fuzzy sense, Q should lie in the
interval (p, 1− p) that is, Q ∈ (p, 1− p) .
It is also to be noted that, FR(D, 1 − D, Q) = Q, if 0.5 ≤ Q ≤ D ≤ 1 , and
FR(D, 1−D,Q) = D otherwise.

F (S)(p, 1− p,Q) = min(max(p, Q),max(p, 1−Q))
For F (S)(p, 1− p,Q) = p,
(a) max(p,Q) = p
⇒ Q ≤ p
and
(b) max(p, 1−Q) = p
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⇒ p ≥ 1−Q
⇒ Q ≥ 1− p
Therefore, Q ∈ (1− p, p)
Thus for being F (S) to be a D-type flip-flop in the fuzzy sense, Q should lie in the
interval (1− p, p) that is, Q ∈ (1− p, p). ¤

Observation 3.4. F (R)(T, T, Q) and F (S)(T, T, Q) represent the property of a T
flip-flop.

Proof. F (R)(T, T, Q) = max(min(T, 1−Q),min(1− T, Q))
For T = 1,
F (R)(1, 1, Q) = max(min(1, 1−Q), min(0, Q))

= max(1−Q, 0)
= 1−Q

For T=0,
F (R)(0, 0, Q) = max(min(0, 1−Q), min(1, Q))

= max(0, Q)
= Q

Also,
F (S)(T, T, Q) = min(max(T,Q),max(1− T, 1−Q)
For T=1,
F (S)(1, 1, Q) = min(max(1, Q),max(0, 1−Q)

= min(1, 1−Q)
= 1−Q

For T=0,
F (S)(0, 0, Q) = min(max(0, Q),max(1, 1−Q)

= min(Q, 1)
= Q

Thus, it extends the idea of a T flip-flop for the discrete values of the inputs.
For the fuzzy value T = q where q ∈ (0, 1), we have, F (R)(q, q, Q) = max(min(q, 1−
q), min(1− q,Q))
F (R) toggles if F (R)(q, q,Q) = 1−Q.
that is if

(3.9) max(min(q, 1−Q),min(1− q, Q)) = 1−Q

3.9 is satisfied if min(q, 1−Q) = 1−Q and min(1− q,Q) = Q.
Now, min(q, 1−Q) implies that,

(3.10) Q ≥ 1− q

and, min(1− q,Q) = Q implies that

(3.11) Q ≤ 1− q

Combining 3.10 and 3.11 we have,
Q = 1− q.
Also max(1−Q,Q) = 1−Q ⇒ 1−Q ≥ Q
or Q ≤ 0.5 , that is q ≥ 0.5.
Thus F (R) toggles when q ≥ 0.5.
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Similarly, it can be shown that F (R) = Q if q ≤ 0.5
Again, F (S)(J,K, Q) = min(max(J,Q),max(1−K, 1−Q)
F (S) toggles if F (S)(q, q, Q) = 1−Q
that is if,

(3.12) min(max(q, Q),max(1− q, 1−Q)) = 1−Q

3.12 is satisfied if max(q,Q) = Q and max(1− q, 1−Q) = 1−Q.
Now, max(q, Q) = Q implies that,

(3.13) Q ≥ q

and, max(1− q, 1−Q) = 1−Q implies that

(3.14) Q ≤ q

Combining 3.13 and 3.14 we have, Q = q
Also min(Q, 1−Q) = 1−Q ⇒ 1−Q ≤ Q
that is Q ≥ 0.5
that is q ≥ 0.5
Therefore, F (S) toggles when q ≥ 0.5 . Similarly, it can be shown that F (S) retains
it’s state when q ≤ 0.5. ¤

4. Analytical approach to the fuzzy flip-flop

Let G(R)(J) = F (J,K,Q) and G(S)(J) = F (J,K, Q) where K, Q remains con-
stants with respect to J and let H(R)(K) = F (J,K, Q) and H(S)(K) = F (J,K, Q)
where J,Q are constants with respect to K .

Proposition 4.1. If J1 > J2 then G(R)(J1) > G(R)(J2) and G(S)(J1) > G(S)(J2)
if Q and K are constants with respect to J and Q ∈ (0, 1).

Proof. Since J1 > J2,
therefore ,max(min(J1, 1 − Q),min(1 − K,Q)) > max(min(J2, 1 − Q),min(1 −
K, Q)), 1−Q being greater than 0
That is G(R)(J1) > G(R)(J2)
Proof is similar for G(S)

¤

Proposition 4.2. If K1 > K2 then H(R)(K1) < H(R)(K2), and H(S)(K1) <
H(S)(K2) if Q and J are constants with respect to K and Q ∈ (0, 1).

Both the functions G(R) and G(S) will be referred together as G and H(R)(K) ,
H(S)(K) will be referred together as H .
Since max and min are continuous functions, G(J) and H(K) are continuous
functions. Therefore the sequence {G(Ji)} is monotone increasing and bounded
above and {H(Ki)} is monotone decreasing and bounded below. So, we have the
following properties,
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Proposition 4.3. Since {G(Ji)} is monotone increasing and bounded above, it
converges to it’s exact upper bound.

Proposition 4.4. Since {G(Ki)} is monotone decreasing and bounded below, it
converges to it’s exact lower bound.

Proposition 4.5. The upper bound of G(R)(J) is max(1 − Q, min(1 − K,Q)),
where J,K, Q ∈ [0, 1].

Proof . G(R)(J) = max(min(J, 1−Q), min(1−K,Q)), Q,K are constants w.r.t
J .
Therefore,
G(R)

max(J) = max(min(1, 1−Q),min(1−K,Q)
= max(1−Q,min(1−K,Q))

Proposition 4.6. The upper bound of G(S)(J) is Q, where J,K, Q ∈ [0, 1].

Proposition 4.7. The upper bound of H(R)(K) is max(min(J, 1 − Q), Q), where
J,K, Q ∈ [0, 1].

Proof. H(R)(K) = max(min(J, 1−Q), min(1−K,Q))

Therefore,
H(R)

max(K) = max(min(J, 1−Q),min(1, Q))
= max(min(J, 1−Q), Q)

¤

Proposition 4.8. The lower bound of H(S)(K) is max(J,Q), where J,K,Q ∈ [0, 1].

Theorem 4.9. LimJ→a G(J) = l, where a, l ∈ (0, 1)

Proof. Two variables J1 and J2 are chosen in such a way , such that,| G(J1) −
G(J2) |< ε, where ε is a pre-assigned positive number. Then there corresponds a
δ(> 0) such that
0 <| J1 − a |< δ and 0 <| J2 − a |< δ.
Therefore, by Cauchy’s general principle of convergence, LimG→a G(J) = l. ¤

4.1. Comparative behaviour of F (R),F (S) and F (C). Here we shall study the
comparative behaviour of F (R),F (S) and F (C) with different fuzzy values of the
states.
Case I : Let Q = 0.5 .
Then,

F (R)(J = 0,K = 1, Q = 0.5) = max(min(0, 1− 0.5), min(0, 0.5)) = 0
F (R)(J = 1,K = 0, Q = 0.5) = max(min(1, 1− 0.5), min(0, 0.5)) = 0.5
F (R)(J = 0,K = 0, Q = 0.5) = max(min(0, 1− 0.5), min(1, 0.5)) = 0.5
F (R)(J = 1,K = 1, Q = 0.5) = max(min(1, 1− 0.5), min(0, 0.5)) = 0.5
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So, 0.0 ≤ F (R) ≤ 0.5
F (S)(J = 0, K = 1, Q = 0.5) = min(max(0, 0.5),max(1− 1, 1− 0.5)) = 0.5
F (S)(J = 1, K = 0, Q = 0.5) = min(max(1, 0.5),max(1− 0, 1− 0.5)) = 1.0
F (S)(J = 0, K = 0, Q = 0.5) = min(max(0, 0.5),max(1− 0, 1− 0.5)) = 0.5
F (S)(J = 1, K = 1, Q = 0.5) = min(max(1, 0.5),max(1− 1, 1− 0.5)) = 0.5

So, 0.5 ≤ F (S) ≤ 1.0
Also,

F (C)(J = 0,K = 1, Q = 0.5) = 0.5
F (C)(J = 1,K = 0, Q = 0.5) = 0.5
F (C)(J = 0,K = 0, Q = 0.5) = 0.5
F (C)(J = 1,K = 1, Q = 0.5) = 0.5

So, F (C) = 0.5
Therefore we have the following inequalities,

0.0 ≤ F (R) ≤ 0.5 = F (C) ≤ F (S) ≤ 1.0
Case II : Let Q ≤ 0.5
Then,

F (R)(J = 0,K = 1, Q) = max(min(0, 1−Q), min(1− 1, Q)) = 0
F (R)(J = 1,K = 0, Q) = max(min(1, 1−Q), min(1− 0, Q)) = 1−Q
F (R)(J = 0,K = 0, Q) = max(min(0, 1−Q), min(1− 0, Q)) = Q
F (R)(J = 1,K = 1, Q) = max(min(1, 1−Q), min(1− 1, Q)) = 1−Q

So, 0.0 ≤ F (R) ≤ 1−Q
F (S)(J = 0,K = 1, Q) = min(max(0, Q),max(1− 1, 1−Q)) = Q
F (S)(J = 1,K = 0, Q) = min(max(1, Q),max(1− 0, 1−Q)) = 1
F (S)(J = 0,K = 0, Q) = min(max(0, Q),max(1− 0, 1−Q)) = Q
F (S)(J = 1,K = 1, Q) = min(max(1, Q),max(1− 1, 1−Q)) = 1−Q

So, Q ≤ F (S) ≤ 1.0
Also,

F (C)(J = 0,K = 1, Q) = Q
F (C)(J = 1,K = 0, Q) = 1−Q
F (C)(J = 0,K = 0, Q) = Q
F (C)(J = 1,K = 1, Q) = 1−Q

So we have the following inequalities,
0.0 ≤ F (R) ≤ Q ≤ F (C) ≤ 1−Q ≤ F (S) ≤ 1.0

Case III : Let Q ≥ 0.5
Proceeding as Case II we can have the following inequalities,

0.0 ≤ F (R) ≤ 1−Q ≤ F (C) ≤ Q ≤ F (S) ≤ 1.0
Let J and K be fixed in [0,1] . Then F (R) , F (S) and F (C) are functions of Q only,
and let them be denoted by, F

(R)
1 , F

(S)
1 and F

(C)
1 respectively. We immediately

have then the following theorem,

Theorem 4.10. In a certain neighbourhood of Q , if LimQ→qF
(R)
1 = l =

LimQ→qF
(S)
1 then LimQ→qF

(C)
1 exists and is equal to l.
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4.2. Limiting behaviour of fuzzy J-K flip-flop: In this section, we study the
limiting behaviour of the inputs and the states of the fuzzy J-K flip-flops in both
max-min compositional form and in algebraic sum and product form. We shall
compare their properties of their limiting values also. We have,

F (R)(J,K, Q) = max(min(J, 1−Q),min(1−K, Q))
F (S)(J,K,Q) = min(max(J,Q),max(1−K, 1−Q))

Case I: Let us consider the complementary inputs of the Fuzzy J-K flip-flop.
Let J = X, K = X
Then,

F (R)(X, X,Q) = max(min(1−X, 1−Q),min(1−X,Q))
F (S)(X, X, Q) = min(max(1−X,Q),max(1−X, 1−Q))

Let us consider a sequence of inputs and states,{X1, X2, ...} and {Q1, Q2, ...}. Then,
F (R)(Xi, Xi, Qi) = max(min(1−Xi, 1−Qi), min(1−Xi, Qi))
F (S)(Xi, Xi, Qi) = min(max(1−Xi, Qi),max(1−Xi, 1−Qi))

(a) Let Xi → 0, Qi → 0
Let Xi = ε, Qi = δ, where ε, δ > 0
Then,
F (R) = max(min(1− ε, 1− δ),min(1− ε, δ)) = 1− ε
That is, F (R) → 1
F (S) = min(max(1− ε, δ),max(1− ε, 1− δ)) = 1− εor 1− δ according as ε ≥ δ or
ε ≤ δ
That is F (S) → 1

(b) Let Xi → 0, Qi → 1
Let Xi = ε, Qi = 1− δ, where ε, δ > 0
Then,
F (R) = max(min(1− ε, δ),min(1− ε, 1− δ)) = 1− ε or 1− δ according as ε ≥ δ or
ε ≤ δ
That is, F (R) → 1
F (S) = min(max(1− ε, 1− δ),max(1− ε, δ)) = 1− ε or 1− δ according as ε ≥ δ or
ε ≤ δ
That is, F (S) → 1

(c) Let Xi → 1, Qi → 0
Let Xi = 1− ε, Qi = δ, where ε, δ > 0
Then,
F (R) = max(min(1− ε, δ),min(ε, δ)) = ε
That is, F (R) → 0
F (S) = min(max(ε, δ),max(ε, 1− δ)) = ε or δ according as ε ≥ δ or ε ≤ δ
That is, F (S) → 0

(d) Let Xi → 1, Qi → 1
Let Xi = 1− ε, Qi = 1− δ, where ε, δ > 0
Then,
F (R) = max(min(ε, δ),min(ε, 1− δ)) = ε or δ according as ε ≤ δ or ε ≥ δ
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That is, F (R) → 0
F (S) = min(max(ε, 1− δ),max(ε, δ)) = ε or δ according as ε ≥ δ or ε ≤ δ
That is F (S) → 0
Case II: Let the inputs of the flip-flop be equal.
Let J = X, K = X. Then

F (R)(X,X, Q) = max(min(X, 1−Q),min(1−X, Q))
F (S)(X, X,Q) = min(max(X, Q),max(1−X, 1−Q))

Let us consider a sequence of inputs and states {X1, X2, ...Xn, ...} and
{Q1, Q2, ...Qn, ...}. Then,
F (R)(Xi, Xi, Qi) = max(min(Xi, 1−Qi),min(1−Xi, Qi))
F (S)(Xi, Xi, Qi) = min(max(Xi, Qi), max(1−Xi, 1−Qi))
(a) Let Xi → 0, Qi → 0
Let Xi = ε, Qi = δ, where ε, δ > 0
Then,
F (R) = max(min(ε, 1− δ),min(1− ε, δ)) = ε or δ according as ε ≥ δ or ε ≤ δ
That is, F (R) → 0
F (S) = min(max(ε, δ),max(1− ε, 1− δ)) = ε or δ according as ε ≤ δ or ε ≥ δ
That is, F (S) → 0
(b) Let Xi → 0, Qi → 1
Let Xi = ε, Qi = 1− δ, where ε, δ > 0
Then,
F (R) = max(min(ε, δ),min(1− ε, 1− δ)) = 1− ε or 1− δ according as ε ≤ δ or ε ≥ δ
That is, F (R) → 1
F (S) = min(max(ε, 1− δ),max(1− ε, δ)) = 1− ε or 1− δ according as ε ≥ δ or ε ≤ δ
That is, F (S) → 1
(c) Let Xi → 1, Qi → 0
Let Xi = ε, Qi = δ, where ε, δ > 0
Then,
F (R) = max(min(1− ε, 1− δ),min(ε, δ)) = 1− ε or 1− δ according as ε ≤ δ or ε ≥ δ
That is, F (R) → 1
F (S) = min(max(1− ε, δ),max(ε, 1− δ)) = 1− ε or 1− δ according as ε ≥ δ or ε ≤ δ
That is, F (S) → 1

(d) Let Xi → 1, Qi → 1
Let Xi = 1− ε, Qi = 1− δ, where ε, δ > 0
Then,
F (R) = max(min(1− ε, δ),min(ε, 1− δ)) = ε or δ according as ε ≥ δ or ε ≤ δ
That is, F (R) → 0
F (S) = min(max(1− ε, 1− δ),max(ε, δ)) = ε or δ according as ε ≤ δ or ε ≥ δ
That is F (S) → 0.

So far, we have studied the limiting behaviour of Fuzzy J-K flip-flop in max-
min form and it is seen that the limiting behaviours match with their functional
behaviour. Let us now study the limiting behaviour using algebraic sum and product
form.
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Figure 5. A flip-flop with complementary inputs

Case I: Let J = X and K = X.
Then F (R)(X, X, Q) = max(min(X, 1−Q),min(X, Q))
This equation can be written using algebraic sum and product form as
F (R)(X,X, Q) = (1−X)(1−Q) + (1−X)Q−Q(1−Q)(1−X)2

(4.1) ⇒ F (R)(X,X, Q) = (1−X){1−Q(1−Q)(1−X)}
When X = 1 then F (R) = 0 and when X = 0 then F (R) = 1−Q(1−Q) [Boundary
values of the input]
Also, F (S)(X, X, Q) = min(max(X, Q),max(X, Q))
When X = 1 then F (S) = Q(1 − Q) and when X = 0 then F (S) = 1 [Boundary
values of the input]
Using algebraic sum and product form this equation can also be written as

(4.2) F (S)(X, X, Q) = (1−X) + QX2(1−Q)

F (R) and F (R) are both continuous functions defined over the interval [0,1].
Let us consider a sequence of inputs and states , {X1, X2, X3, ...} and {Q1, Q2, Q3, ...}
From 4.1 we obtain,
F (R)(Xi, Xi, Qi) = (1−Xi){1−Qi(1−Qi)(1−Xi)}
Here, if Xi → 0 ,and Qi → 0 (or Qi → 1), then F (R)(Xi, Qi) → 1.(1−0)(1−0)) = 1
If Xi → 1, and Qi → 0 (or Qi → 1) then F (R)(Xi, Qi) → 0(1− 0(1− 0)) = 0

Likewise from 4.2 we have,
F (S)(Xi, Xi, Qi) = (1−Xi) + QiXi

2(1−Qi)
If Xi → 0 ,and Qi → 0 (or Qi → 1), then F (S)(Xi, Xi, Qi) → 1 + 0 = 1
If Xi → 1, and Qi → 0 (or Qi → 1) then F (S)(Xi, Xi, Qi) → 0 + 0 = 0

Case II: Let J = X and K = X.
Then,

(4.3) F (R)(X, X, Q) = X(1−Q) + (1−X){Q−XQ(1−Q)}
When X = 1 then F (R) = (1−Q) and when X = 0 then F (R) = Q [Boundary values
of the input]
4.3 gives,
F (R)(Xi, Xi, Qi) = Xi(1−Qi) + (1−Xi){Qi −XiQi(1−Qi)}
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If Xi → 0 and Qi → 0 then F (R) → 0; if Xi → 0 and Qi → 1 then F (R) → 1.
Also, if Xi → 1 and Qi → 0, then F (R) → 1; if Xi → 1 and Qi → 1 then F (R) → 0.
Again we have,

(4.4) F (S)(X,X, Q) = {X(1−Q) + Q}(1−XQ)

When X = 1 then F (S) = 1 − Q, when X = 0 then F (S) = Q [Boundary values of
the input]
4.4 gives,
F (S)(Xi, Xi, Qi) = {Xi(1−Qi) + Qi}(1−XiQi)
If Xi → 0,Qi → 0 then F (S) → 0;If Xi → 0,Qi → 1 then F (S) → 1, If Xi → 1,Qi → 0
then F (S) → 1,If Xi → 1,Qi → 1 then F (S) → 0.

Thus, the J-K flip-flop behaves equally in the limiting values in both the forms
discussed above. We can choose any one of them as long as the outcomes are
concerned.

5. Representing a fuzzy flip-flop with fuzzy rule

In studying the fuzzy flip-flop in a convenient way there are some independent
steps the execution of which will lead to the solution of a fuzzy flip-flop related
problems. A crisp flip-flop is defined by means of a state-table where the crisp
values of the states and inputs are shown. The structure of the table describes the
type of the flip-flop. Since the fuzzy flip-flop is the generalisation of the crisp flip-
flop, for the defuzzification of it gives it’s crisp counterpart, it has been attempted
to develope a generalised rule-base for a particular type of flip-flop. The following
steps are required for developing the rule-base for a fuzzy flip-flop.

(a) Fuzzification: All the states and inputs of a flip-flop may be considered
as having ambiguous characteristics, when their fuzzy versions are studied. Their
domain of definition may be considered as consistent fuzzy sets over the respective
universe of discourse. For the sake of convenience we consider the finite and ordered
domain. The domain considered for fuzzy flip-flop may either be discrete or contin-
uous. For the fuzzification the uniform triangular fuzzy sets are considered for our
purpose.

(b) Knowledge Base:This step relates the factor for solving a particular prob-
lem. It includes many fuzzy conditional statements for describing a particular sit-
uation. A flip-flop has some inputs and states. If the inputs and states are fuzzy
sets over their universe of discourse then from the expert’s knowledge a set of rules
can be constructed. The knowledge base of a fuzzy flip-flop contains the knowledge
related to the nature of a fuzzy flip-flop. The knowledge is represented by a fuzzy
production rule.
Rulei : If the present input is Ai and the present input is Bi and the
present state is Si then the next state is Ti

(c) Inference: This part consists of the conditional fuzzy statements to represent
a particular situation. This step is related to the factors that take place for solving
a problem. The fuzzy inference rules may be obtained either from the experienced
human operator or from the fuzzified data of a flip-flop. For the determination of
proper fuzzy inference rules we need a set of data. The output data is obtained
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by the approximate reasoning methodology with some conditional propositions. We
state the rules as follows:
Rule: If the present input is Ai and the present input is Bi and the present state
is Si then the next state is Si.
Fact: The present input is A and the present input is B and the next state is S.
Conclusion: The next state is T .

(d) Defuzzification: The result obtained from the previous steps is in the form
of fuzzy statement. To find the deterministic value of the linguistic variables, if nec-
essary, the defuzzification is used. There are many useful methods for defuzzification.
We have used the centre of gravity method for our purpose.

5.1. Generating a Rule-Base from the combined fuzzy flip-flop. So far, we
have considered the F (R) and F (S) types of J-K flip-flops. A natural extension is
done for F (C) type flip-flp. From the postulates of combined fuzzy J-K flip-flop we
have,

a. F (C)(0, 0, Q) = Q
b. F (C)(0, 1, Q) = min(Q, 1−Q)
c. F (C)(1, 0, Q) = max(Q, 1−Q)
d. F (C)(1, 1, Q) = 1−Q
e. F (C)(0.5, 0.5, Q) = 0.5

We express the above postulates in terms of the linguistic variable. We use here
the terms Lo(w) and Hi(gh) as inputs in lieu of 0 and 1 respectively. Of course the
intermediate values of the linguistic variables of the states and inputs can also be
used wherever it is necessary.
Let us consider at first Q = Bad. Then,

a. F (C)(Lo,Lo,Bad) = Bad
b. F (C)(Lo,Hi, Bad) = min(Bad, C(Bad))
c. F (C)(Hi, Lo,Bad) = max(Bad, C(Bad))
d. F (C)(Hi, Hi, Bad) = C(Bad)
e. F (C)(0.5, 0.5, Q) = 0.5

Similarly for Q = Good we have,
a. F (C)(Lo,Lo,Good) = Good
b. F (C)(Lo,Hi, Good) = min(Good,C(Good))
c. F (C)(Hi, Lo,Good) = max(Good,C(Good))
d. F (C)(Hi, Hi, Good) = C(Good)
e. F (C)(0.5, 0.5, Q) = 0.5

C is a negation function. We can frame the above postulates in a tabular form
as in the Table 5.1.

¯ J=Lo J=Lo J=Hi J=Hi J=0.5
K=Lo K=Hi K=Lo K=Hi K=0.5

Bad Bad min(Bad,C(Bad)) max(Bad,C(Bad)) C(Bad) 0.5
Good Good min(Good,C(Good)) max(Good,C(Good)) C(Good) 0.5

Table 4. Rule-Base for a fuzzy J-K flip-flop
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Let the input X = Σµ(σi)/σi, i=0,1,...m-1; and the state be Σ µ(si)/si, i=0,1,...n-
1. We define here a composition ¯ between X and Q as,

(X ¯Q)Projection on X = maxj(mini,j(µX(σi), µQ(sj)))

and

(X ¯Q)Projection on Q = maxi(mini,j(µX(σi), µQ(sj)))

5.2. Representation of a fuzzy state in terms of fuzzy memory elements.
It is known that a flip-flop is used as a memory element. A register is a group of
memory elements that work together as a unit. A single fuzzy memory element can
be considered as a single state s. A fuzzy buffer register can be considered to store a
fuzzy set of states Q, each memory element of this state being fuzzy in nature. We
can extend this idea to the collection of all set of states. Here Q = Σµ(s(t))/s(t). If
necessary, we can use a sequence of fuzzy buffer register for a fuzzy system S.

Working Principle: Let A1, A2, ..., An be ‘n’ J-K fuzzy flip-flops and it con-
stitutes a ‘n’ bit fuzzy buffer register. Each flip-flop can store a value between 0
and 1. Let a fuzzy input of the fuzzy system be X. Then the inputs of the J-K
flip-flop become function of X, that is, J = J(X) and K = K(X). Let the flip-flops
A1, A2, ..., An initially store the states s1, s2, ...sn respectively. If the input σ1(∈ X)
is fed to the system then the set of fuzzy states Qi

(t) changes to Qi
(t+δt) according to

the postulates of the combined fuzzy flip-flops F (C). Consequently, when the input
changes to σ2(∈ X) again, the state changes to Qi

(t+2δt) and so on. After the nth

input symbol σn(∈ X) given to the system, the state becomes Qi
(t+nδt) . The fuzzy

set thus changes from Q(t) to Q(t+nδt).
Let one of the final states of the system be QF . If for a pre-assigned posi-

tive threshold value ε, Sim(Q(t+nδt),QF )> ε, then we can say that the fuzzy word
a = Σ(µ(σi))/σi is accepted by the system. If it is not accepted then another input
word a′ is applied and the process continues upto a finite number of steps to achieve
the desired degree of accuracy.

Example 5.1. Let a four bit register be constituted by four fuzzy J-K flip-flops
containing the values 0.1,0.9,0.2, and 0.4 respectively. Let the input of the sys-
tem be X. Let the four couple of inputs of the J-K flip-flops be designed as
J1 = X, K1 = X ; J2 = X, K2 = X ;J3 = X, K3 = X and, J4 = X,
K4 = X. Let the threshold value ε = 0.9. Let QF =(0.1,0.2,0.9,0.3).If X=0.9,
then the values of the four flip-flops become 0.9,0.1,0.2,0.6 respectively, that is the
fuzzy set Q(t + δt) becomes (0.9/s0, 0.1/s1, 0.2/s2, 0.6/s3). Similarly, for X=0.25,
Q(t + 2δt) = (0.9/s0, 0.9/s1, 0.8/s2, 0.6/s3), and for X = 0.8, Q(t + 3δt) =
(0.1/s0, 0.1/s1, 0.8/s2, 0.4/s3). Also, Sim(QF , Q(t + 3δt) = 0.91, which exceeds the
threshold value. So the word (0.9/σ1, 0.25/σ2, 0.8/σ3) is accepted by the machine.

5.3. A sequential circuit with fuzzy inputs and fuzzy states. We now con-
sider a sequential circuit with input X as follows.

Let J = XQ, K = XQ.For our case, let us consider X = Hi, Q = Good.
Then J = Hi¯ C(Good), K = C(Hi)¯Good
Let the states X and Q be as in the following tabular form,
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Figure 6.

X µ(X) X µ(X) X µ(X)
σ0 σ7 σ14 1.0
σ1 σ8 σ15 0.8
σ2 σ9 0.1 σ16 0.75
σ3 σ10 0.3 σ17 0.55
σ4 σ11 0.5 σ18 0.45
σ5 σ12 0.6 σ19 0.28
σ6 σ13 0.8 σ20 0.1

Table 5. Input of the machine

Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q)
s0 s7 s14 s21 0.75
s1 s8 s15 s22 0.65
s2 s9 s16 0.2 s23 0.45
s3 s10 s17 0.4 s24 0.35
s4 s11 s18 0.6 s25 0
s5 s12 s19 0.8
s6 s13 s20 1

Table 6. State of the machine

We need here a single valued output. So we apply here the centre of grav-
ity defuzzification method. After defuzzification we have, defuzzy(J) = 0.72,
defuzzy(K) = 0.41, defuzzy(1−Q) = 0.42, defuzzy(1−K) = 0.72, defuzzy(Q) =
0.81. Now,
F (R)(J,K, Q) = max{min(J, 1−Q),min(1−K, Q)}

= max{min(Lo,Lo),min(Hi, Hi)}
= max(Lo,Hi)
= Hi

Also,
F (S)(J,K,Q) = min{max(J,Q), max(1−K, 1−Q)}

= min{max(Lo,Hi),max(Hi, Lo)}
= min(Hi, Hi)
= Hi
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So, both the set and reset type of fuzzy J-K flip-flop follows the rule base. With
the different combinations of X and Q as Lo and Hi the rule base as obtained from
the combined fuzzy flip-flop can be verified.

5.3.1. Sequential fuzzy flip-flop with cascade connection. When a set of fuzzy flip-
flops work together, they form a fuzzy system. The general structure of the fuzzy
flip-flop is as follows:

Figure 7.

Here, in figure 7, ’n‘ fuzzy flip-flops are working together forming a fuzzy sys-
tem. X and Y are the input and output of the system respectively. Each flip-flop
has two inputs J and K. J=J(Q1, Q2, ..., Qn, X), K=K(Q1, Q2, ..., Qn, X), Y=Y(Q1,
Q2, ..., Qn, X). We are now interested in a sequential system where the output of
each flip-flop is fed as input to the next flip-flop.

A fuzzy automata with output is given by, {S,Σ,M,a,Z,∆} , where S is the set of
states,Σ is the set of input symbols,M is the transition function,a is the initial state,
Z is the output function, ∆ is the set of output symbols. M: S × Σ × S → [0,1], Z:
S×Σ → ∆. Let us consider Ji = J(Qi, σi),Ki = K(Qi, σi), i=1,2,...n.If the output
symbols are used as input symbols to the consecutive flip-flops then ∆ ⊆ Σ, and
consequently Z: S×Σ → Σ is a surjective mapping. Our proposed flip-flop has the
rule bases for the inputs J and K which are built from the expert’s knowledge. From
these rule bases the inputs Ji and Ki of the ith flip-flop is determined.Let the states
and inputs of a J-K flip-flop be ‘Good’, ‘Bad’, and ‘Low’, ‘High’, respectively.The
rule base for the states and inputs may be as follows:

C is a negation function.

Example 5.2. Let the initial state of the system be ‘Bad’ and the input of the
system be ‘Low’,.Then, from the Table 7, J1=J1(Bad, Lo) = Lo and from the Table
5.3.1, K1=K1(Bad, Lo) = Hi. Thus the inputs of the first flip-flop of the system
is determined.The function Z: S×Σ → Σ produces the next input symbol and af-
terwards J2 and K2 are determined and likewise the process goes on upto the last
flip-flop of the system. The working principle of the entire fuzzy system is discussed
in the next section.
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σ Lo Hi C(Lo) C(Hi)
Good Lo Very Hi Hi C(Hi)
Bad Lo C(Very Hi) Lo C(Very Lo)

C(Good) Lo Hi Hi Very Lo
C(Bad) Very Hi C(Very Lo) Lo Hi

Table 7. Rule Base for J

σ Lo Hi C(Lo) C(Hi)
Good C(Very Hi) More or Less Lo Hi Very Hi
Bad Hi Very Lo More or Less Hi Very Lo

C(Good) Lo C(Lo) Very Hi C(Very Hi)
C(Bad) Very Lo C(Very Lo) Hi Lo

Table 8. Rule Base for K

6. Fuzzy flip-flop as fuzzy system

A fuzzy flip-flop may be considered as a part of the fuzzy system. The kernel of the
fuzzy system consists of a knowledge base, a data base and an inference mechanism.
The knowledge base of a fuzzy flip-flop contains the knowledge related to the nature
of a fuzzy flip-flop. The knowledge is represented by a fuzzy production rule.

For the fuzzification, the uniform geometric shapes of the fuzzy sets are consid-
ered. We have used the triangular shaped fuzzy sets for our purpose. The fuzzy
inference rules may be obtained either from the experienced human operators or
from the fuzzified empirical data of a flip-flop. For the determination of proper
fuzzy inference rules, we need a set of data. The output data is obtained by the
approximate reasoning methodology with some conditional fuzzy propositions.

Sometimes, we need defuzzification procedure to convert the modified output
values to a single value. We have used modified centre of gravity method for de-
fuzzification. Let us define a fuzzy flip-flop with rules of the form:
Ri: If the present input-1 is Ai and the present input-2 is Bi and the present state
is Si then the next state is Ti.
The present input-1 is A and the present input-2 is B and the present state is S.
Output: The next state is T .

Let us consider the following rule base for a fuzzy J−K flip-flop as in the following:

∧ J=Low,K=Low J=Low,K=High J=High,K=Low J=High,K=High
Bad Bad Bad Good C(Bad)
Good Good Bad Good C(Good)

Table 9. Rule Base for a fuzzy flip-flop
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6.1. Algorithm for a fuzzy flip-flop. A set of if-then rules are used for the de-
termination of the behaviour of a fuzzy flip-flop. In this section, an algorithm is
developed to perform the said task of obtaining the behaviour of atypical fuzzy
flip-flop.

Step 1. For each rule Ri, similarity value is computed between the input fuzzy
sets as follows:
αi= min { Sim(Ai, A), Sim(Bi, B), Sim(Si, S) }.
Step 2. Translate premise p and compute R(Ai, Bi, Si, Ti) using some translating
rule.
Step 3. Modify R(Ai, Bi, Si, Ti) with αi to obtain modified conditional relation
R(Ai, Bi, Si|A,B, S)
Step 4. Max projection operation is used on R(Ai, Bi, Si|A,B, S) to obtain T as
follows:
µT (z) = max(u,v,w){µR(Ai, Bi, Si, Ti|A,B, S)(u, v, w, z)}
Step 5. If necessary, defuzzify the fuzzy sets as obtained in Step 4 for a single real
value in the output.

Let X1, X2, X3, X4 be four linguistic variables to denote the present input1,
present input2, present state and next state respectively defined over the respec-
tive universe of discourses U1, U1, U2, and U2 . A rule base of the state transitions is
considered as in Table 9. The exact definitions of the fuzzy sets are to be prescribed.
A consequence is derived according to the algorithm of a fuzzy flip-flop.

Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q)
s0 s7 0.84 s14 0.24 s21 s28

s1 0.12 s8 1.0 s15 0.12 s22 s29

s2 0.24 s9 0.84 s16 s23 s30

s3 0.36 s10 0.72 s17 s24

s4 0.48 s11 0.60 s18 s25

s5 0.60 s12 0.48 s19 s26

s6 0.72 s13 0.36 s20 s27

Table 10. Present state of the machine (Bad)

Observation 6.1. The next state computed is ‘Good’. The specificity of this state
is less than the present next state.

7. Conclusion

Developing suitable mathematics for the realisation of intelligent systems becomes
necessary to handle modern computer based technologies managing different kinds
of information and knowledge. This paper discusses one such tool required to help in
the design of basic building blocks of relevant circuits for finding solutions to difficult
problems in the construction of intelligent systems in which, the available informa-
tion is supplied by human experts which, at times are found incomplete, imprecise or
even uncertain in nature and therefore, inherently ambiguous. It requires a logical
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X µ(X) X µ(X) X µ(X)
σ0 σ7 σ14 1.0
σ1 σ8 σ15 0.80
σ2 σ9 0.16 σ16 0.64
σ3 σ10 0.32 σ17 0.48
σ4 σ11 0.48 σ18 0.32
σ5 σ12 0.64 σ19 0.16
σ6 σ13 0.80 σ20

Table 11. Present Input of the machine(High)

X µ(X) X µ(X) X µ(X)
σ0 0.0 σ7 0.80 σ14

σ1 0.16 σ8 0.64 σ15

σ2 0.32 σ9 0.48 σ16

σ3 0.48 σ10 0.32 σ17

σ4 0.64 σ11 0.16 σ18

σ5 0.80 σ12 σ19

σ6 1.0 σ13 σ20

Table 12. Present Input of the machine(Low)

Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q)
s0 s7 s14 s21 0.84 s28 0.24
s1 s8 s15 0.12 s22 1.0 s29 0.12
s2 s9 s16 0.24 s23 0.84 s30

s3 s10 s17 0.36 s24 0.72
s4 s11 s18 0.48 s25 0.60
s5 s12 s19 0.60 s26 0.48
s6 s13 s20 0.72 s27 0.36

Table 13. Next State of the machine(Good)

framework which, will be able to reason and make decisions in an environment of
imprecision, uncertainty, incompleteness of information and partiality of truth.

The concept of a fuzzy flip-flop is defined from widely used two-valued Boolean
flip-flops in a systematic way. Some properties of fuzzy flip-flops are studied from
the view point of a primitive fuzzy system. An imprecise/incomplete description of
the input-output behaviour of a system, as obtained from human experts, containing
vague concepts is represented as fuzzy if-then rules — transforming the system into
a simple fuzzy rule-based one. Approximate reasoning methodology has been used
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Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q)
s0 s7 0.706 s14 0.057 s21 s28

s1 0.014 s8 1.0 s15 0.014 s22 s29

s2 0.057 s9 0.706 s16 s23 s30

s3 0.130 s10 0.518 s17 s24

s4 0.230 s11 0.360 s18 s25

s5 0.360 s12 0.230 s19 s26

s6 0.518 s13 0.130 s20 s27

Table 14. Observed State of the machine (Very Bad)

X µ(X) X µ(X) X µ(X)
σ0 σ7 σ14 1.0
σ1 σ8 σ15 0.640
σ2 σ9 0.0256 σ16 0.410
σ3 σ10 0.102 σ17 0.230
σ4 σ11 0.230 σ18 0.102
σ5 σ12 0.410 σ19 0.0256
σ6 σ13 0.640 σ20

Table 15. Observed Input of the machine(Very High)

X µ(X) X µ(X) X µ(X)
σ0 0.0 σ7 0.80 σ14

σ1 0.16 σ8 0.64 σ15

σ2 0.32 σ9 0.48 σ16

σ3 0.48 σ10 0.32 σ17

σ4 0.64 σ11 0.16 σ18

σ5 0.80 σ12 σ19

σ6 1.0 σ13 σ20

Table 16. Present Input of the machine(Low)

to predict the possible behaviour of the system. The use of fuzzy logic allows us to
use different interpretation of the logical operators for flexibility.

Achievement of human-level machine intelligence will have a profound impact
on modern society. It is hoped that by upgrading existing methodologies through
addition of concepts and techniques drawn from fuzzy set theory open the door to a
substantial enhancement of our ability to model reality. Further research on the use
of similarity and approximate reasoning is necessary for better understanding of the
effect of the same on the cognitive process involved in the modelling and simulation
of fuzzy flip-flop. We have suggested relevant issues involved in the design of fuzzy
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Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q) Q µ(Q)
s0 0.14 s7 0.14 s14 0.14 s21 0.86 s28 0.35
s1 0.14 s8 0.14 s15 0.24 s22 1.0 s29 0.24
s2 0.14 s9 0.14 s16 0.35 s23 0.86 s30 0.14
s3 0.14 s10 0.14 s17 0.45 s24 0.76
s4 0.14 s11 0.140 s18 0.55 s25 0.66
s5 0.14 s12 0.140 s19 0.66 s26 0.55
s6 0.14 s13 0.140 s20 0.76 s27 0.45

Table 17. The next state computed
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Figure 8. Comparison of the inputs applied to the flip-flop
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Figure 9. Comparison of the given next state with the computed
next state

systems — introduced similarity in reasoning, similarity relation in fuzzification and
the concept of specificity measure in defuzzification.
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