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1. Introduction

The ideas of the generalized Hukuhara difference (gH-difference for short) and
generalized Hukuhara differentiability (gH-differentiability for short) come from a
generalization of the Hukuhara difference and Hukuhara differentiable.

The Hukuhara derivative of a fuzzy-number-valued function was first introduced
in [13] and it has its starting point in the Hukuhara derivative of multivalued func-
tions. The approaches based on the Hukuhara derivative have a well-known draw-
back: a differentiable function has increasing length of its support interval [6]. This
shortcoming was overcome by concepts of strongly generalized differentiability and
it’s generalization (weakly generalized Hukuhara differentiability) which are intro-
duced and studied in [1]. In these cases, a differentiable function may have decreasing
length of its support. Recently this line of research has been extended by intro-
ducing gH-derivative and the generalized derivative [2] of a fuzzy-valued function.
The gH-differentiability concept is slightly more general than the notion of strongly
Hukuhara differentiability and equivalent with the concept of weakly generalized
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Hukuhara differentiability [2]. It should be mentioned that gH-differentiability ex-
ists under much less restrictive conditions, however it does not always exist. Indeed,
the gH-derivative is defined for a larger class of fuzzy-number-valued functions than
the other derivatives (except concept of generalized derivative).

The fuzzy Euler-Lagrange conditions for fuzzy constrained and unconstrained
variational problems was first introduced by Farhadinia in [11] based on Buckley
and Feuring’s derivative [3]. Using α-differentiability concept [15], in [10], Fard et
al. has been presented an extended fuzzy Euler-Lagrange condition. In the present
work, following approaches given in [2] and [10], a generalization of the fuzzy Euler-
Lagrange conditions for fuzzy constrained and unconstrained variational problems
is investigated.

The rest of the paper is organized as follows: in Section 2, the basic notations
of fuzzy concepts are briefly presented. In Section 3, the fuzzy Euler-Lagrange
condition for the fuzzy unconstrained variational problems is described. In Section 4,
we establish the modified fuzzy Euler-Lagrange condition for the fuzzy constrained
variational problems, called isoperimetric problems. In Section 5, we show that
this method is applicable to a large class of problems. Finally, Section 6 presents
concluding remarks.

2. Preliminaries

Let us denote by RF the class of fuzzy numbers, i.e., normal, convex, upper semi-
continuous and compactly supported fuzzy subsets of the real numbers. Obviously,
R ⊂ RF . Here R ⊂ RF is understood as R = {χx; x is usual real number}. The
fuzzy zero define as 0̃ = χ0. The α-level set of u ∈ RF , denoted by u[α] where for
0 < α ≤ 1, u[α] = {x ∈ R; u(x) ≥ α} and u[0] = {x ∈ R; u(x) > 0}. Then it is
well known that for any α ∈ [0, 1], u[α] = [ul(α), ur(α)] is a bounded closed inter-
val. For u, v ∈ RF , and λ ∈ R, the sum u + v and the product λ.u are defined by
(u + v)[α] = u[α] + v[α], (λ.u)[α] = λ.u[α], ∀α ∈ [0, 1], where u[α] + v[α] means the
usual addition of two intervals (subsets) of R and λ.u[α] means the usual product
between a scalar and a subset of R.

Proposition 2.1 ([2]). A fuzzy number u is completely determined by any pair
u = (ul, ur) of functions ul, ur : [0, 1] → R, defining the end-points of the α-levels,
satisfying the three conditions:

(i) ul : α → ul(α) ∈ R is a bounded monotonic nondecreasing left-continuous
function ∀α ∈]0, 1] and right-continuous for α = 0;

(ii) ur : α → ur(α) ∈ R is a bounded monotonic nonincreasing left-continuous
function ∀α ∈]0, 1] and right-continuous for α = 0;

(iii) ul(1) ≤ ur(1) for α = 1, which implies ul(α) ≤ ur(α)∀α ∈ [0, 1].

Definition 2.2 ([11]). (Partial ordering) Let u, v ∈ RF . We write u ¹ v, if ul(α) ≤
vl(α) and ur(α) ≤ vr(α) for all α ∈ [0, 1]. Moreover, u ≈ v, if u ¹ v and u º v. In
the other words, u ≈ v, if u[α] = v[α] for all α ∈ [0, 1].

The Hausdorff distance is defined by D : RF × RF → R+ ∪ {0}, D(u, v) =
supα∈[0,1] max{|ul(α) − vl(α)|, |ur(α) − vr(α)|}, where u[α] = [ul(α), ur(α)], v[α] =
[vl(α), vr(α)]. The following properties are well-known:
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D(u + w, v + w) = D(u, v),∀u, v, w ∈ RF ,
D(k.u, k.v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,
D(u + v, w + e) ≤ D(u,w) + D(v, e), ∀u, v, w, e ∈ RF ,
and (RF , D) is a complete metric space [1]. We define ‖.‖F = D(., 0).

Definition 2.3 ([7]). Let f : S ⊆ R → RF be a fuzzy function. We say that f is
continuous at c ∈ S if for every ε1 > 0, there exists a δ = δ(c, ε1) > 0 such that

D(f(x), f(c)) < ε1

for all x ∈ S with ‖x− c‖ < δ.

Definition 2.4 ([17]). The gH-difference of two fuzzy numbers u, v ∈ RF , is the
fuzzy number w, if it exists, such that

(2.1) uªgH v = w ⇐⇒
{

(i)u = v + w,
or (ii)v = u + (−1)w.

If w = u ªgH v exists as a fuzzy number, its level sets [wl(α), wr(α)] are ob-
tained by wl(α) = min{ul(α) − vl(α), ur(α) − vr(α)} and wr(α) = max{ul(α) −
vl(α), ur(α) − vr(α)} for all α ∈ [0, 1]. Based on the gH-difference, Bede et al. [2]
obtained the following definition:

Definition 2.5 ([2, 16]). Let x0 ∈]a, b[ and h be such that x0 + h ∈]a, b[, then the
gH-derivative of a function f :]a, b[→ RF at x0 is defined as

(2.2) f ′gH(x0) = lim
h→0

1
h

[f(x0 + h)ªgH f(x0)].

If f ′gH(x0) ∈ RF satisfying (2.2) exists, we say that f is gH-differentiable at x0.

Definition 2.6. Let f :]a, b[→ RF and x0 ∈]a, b[. We say that f is n-order gH-
differentiable at x0, if there exists an element f (n)(x0) ∈ RF , such that for all h

sufficiently small, ∃f (n−1)
gH (x0 + h)ªgH f

(n−1)
gH (x0) and

f
(n)
gH (x0) = lim

h→0

1
h

[f (n−1)
gH (x0 + h)ªgH f

(n−1)
gH (x0)].

Definition 2.7. Let f be a fuzzy function defined on an open subset X of Rn and
let x0 = (x1

0, · · · , xn
0 ) ∈ X be fixed. We say that f has ith partial gH-derivative

f ′i;gH(x0) at x0 if the fuzzy function g(xi) = f(x1
0, · · · , xi−1

0 , xi
0, x

i+1
0 , · · · , xn

0 ) is gH-
differentiable at xi

0 with gH-derivative f ′i;gH(x0).

Definition 2.8. A fuzzy function f is gH-differentiable at x0 if one of the partial
gH-derivatives f ′1;gH , · · · , f ′n;gH exists at x0 and the remaining n − 1 partial gH-
derivatives exist on some neighborhoods of x0 and are continuous at x0.

Definition 2.9. A fuzzy function f is said to be continuously gH-differentiable at
x0 if all of the partial gH-derivatives f ′i;gH , i = 1, · · · , n, exist on some neighborhoods
of x0 and are continuous at x0.
We say that f is continuously gH-differentiable on X if it is continuously gH-
differentiable at every x0 ∈ X.

The next theorem gives the expression of the gH-derivative in terms of the deriva-
tives of the endpoints of the level sets.
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Theorem 2.10 ([2]). Let f :]a, b[→ RF be such that f(x)[α] = [f l(x, α), fr(x, α)].
Suppose that functions f l(x, α) and fr(x, α) are real-valued functions, differentiabil-
ity w.r.t. x, uniformly w.r.t. α ∈ [0, 1]. Then the function f(x) is gH-differentiable
at a fixed x ∈]a, b[ if and only if one of the following two cases holds:

(a) (f l)′(x, α) is increasing, (fr)′(x, α) is decreasing as functions of α, and (f l)′(x,
1) ≤ (fr)′(x, 1),

or
(b) (f l)′(x, α) is decreasing, (fr)′(x, α) is increasing as functions of α, and (fr)′(x,

1) ≤ (f l)′(x, 1).
Also, ∀α ∈ [0, 1] we have

f ′gH(x)[α] = [min{(f l)′(x, α), (fr)′(x, α)}, max{(f l)′(x, α), (fr)′(x, α)}].

According to Theorem 2.10, for the definition of gH-differentiability when f l(x, α)
and fr(x, α) are both differentiable, we distinguish two cases, corresponding to (i)
and (ii) of (2.1).

Definition 2.11 ([2]). Let f : [a, b] → RF and x0 ∈]a, b[ with f l(x, α) and fr(x, α)
both differentiable at x0.
− f is (i)-gH-differentiable at x0 if

(i)f ′gH(x0)[α] = [(f l)′(x0, α), (fr)′(x0, α)], ∀α ∈ [0, 1],

− f is (ii)-gH-differentiable at x0 if

(ii)f ′gH(x0)[α] = [(fr)′(x0, α), (f l)′(x0, α)], ∀α ∈ [0, 1].

It is possible that f : [a, b] → RF is gH-differentiable at x0 and not (i)-gH-
differentiable nor (ii)-gH-differentiable.

Definition 2.12 ([5]). A switching point x0 ∈]a, b[ is such that gH-differentiability
changes from type (i) to type (ii) or from type (ii) to type (i).

Definition 2.13 ([8]). A mapping f : [a, b] → RF is said to be strongly measurable
if the level set mapping f(x)[α] are measurable for all α ∈ [0, 1]. Here measurable
means Borel measurable.

A fuzzy-valued mapping f : [a, b] → RF is called integrably bounded if there
exists an integrable function h : [a, b] → RF , such that

||f(t)||F ≤ h(t), ∀t ∈ [a, b].

A strongly measurable and integrably bounded fuzzy-valued function is called inte-
grable. If f : [a, b] → RF is integrable such that f(x)[α] = [f l(x, α), fr(x, α)] for all
α ∈ [0, 1], then

∫ b

a
f(x)dx is obtained by integrating the α-level curve, that is,

∫ b

a

f(x)dx[α] =

[∫ b

a

f l(x, α)dx,

∫ b

a

fr(x, α)dx

]
.
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3. Fuzzy variational problem

In this section, we try to obtain the fuzzy Euler-Lagrange conditions in the sense of
gH-differentiability for finding a fuzzy curve x = x(t), which minimizes the following
cost fuzzy function subject to x(t) ≈ x0, x(tf ) ≈ xf :

(FVP) MinimizeJ(x) :=
∫ tf

t0

g(x(t), ẋ(t), t)dt,

where the fuzzy curve x = x(t) is a fuzzy function of t ∈ [t0, tf ] ⊆ R and belongs
to the class of fuzzy functions with continuous first gH-derivatives w.r.t. t ∈ [t0, tf ]
and g assigns a fuzzy number to the fuzzy point (x(t), ẋ(t), t) ∈ RF × RF × R. We
assume that the integrand g has continuous first and second partial gH-derivatives
w.r.t. all of its arguments. The endpoints (or end-conditions) of the fuzzy curve are
characterized by x0 and xf corresponding to the fixed points t0 and tf , respectively.

Definition 3.1 ([11]). (Admissible curve) Fuzzy curve x = x(t) is admissible, if
it satisfies the end-conditions and is also twice continuously gH-differentiable with
respect to t ∈ [0, 1]. The set of all admissible admissible curves is denoted by Xad.

Definition 3.2 ([11]). (Fuzzy weak neighborhood) A fuzzy weak neighborhood Nε(x̂)
of a fuzzy curve x̂ = x̂(t) is the set of all admissible curves xs ∈ Xad satisfying for
all t ∈ [t0, tf ]

D(x(t), x̂(t)) ≤ ε, ∀t ∈ [t0, tf ],(3.1)

D(ẋ(t), ˙̂x(t)) ≤ ε, ∀t ∈ [t0, tf ],(3.2)

where ε > 0 is a small real number.

In the case that the requirement imposed by (3.2) is waived, Nε(x̂) is a fuzzy
strong neighborhood and if x ∈ Nε(x̂), x and x̂ are close together.

The goal of FVP is to find the fuzzy curve xs ∈ Xad in a fuzzy weak neighborhood,
if any exists, such that minimize J . The fuzzy curve x∗ = x∗(t) is a minimizing curve
for FVP if for all admissible fuzzy curves xs ∈ Xad in the fuzzy weak neighborhood
Nε(x∗)

∆J := J(x)ªgH J(x∗) º 0̃,

or equivalently

(3.3) J(x) º J(x∗).

The fuzzy curve x∗ with the mentioned properties, is also called a relative (or local)
minimizer.

Now we may deform the α−cuts of fuzzy curve x∗(t), x∗l(t, α) and x∗r(t, α), by
using α−cuts of an arbitrary twice continuously gH-differentiable fuzzy function η(t)
as follows

(3.4) xl(t, α) := x∗l(t, α) + εηl(t, α),

(3.5) xr(t, α) := x∗r(t, α) + εηr(t, α),

such that x(t)[α] = [xl(t, α), xr(t, α)] is admissible for any real number ε, i.e., x ∈
Xad and further η(t0) ≈ η(tf ) ≈ 0. The class of such deformations is known as fuzzy
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weak variations of the fuzzy curve x∗ because given ε > 0, choosing |ε| sufficiently
small, we are able to make x(t) lie in the fuzzy weak neighborhood Nε(x∗).

Although the necessary and sufficient condition (3.3) for x∗ being the solution of
FVP does not give any hint as to how x∗ might be found, but as will be seen, it leads
to an equation which gives useful information about the treatment of minimizing
curves.

3.1. Fuzzy Euler-Lagrange condition. It follows from Definition 2.2 that the
inequality (3.3) holds if and only if

(3.6) J l(x, α) ≥ J l(x∗, α), and Jr(x, α) ≥ Jr(x∗, α),

for all α ∈ [0, 1] and all admissible x′s ∈ Xad close to x∗.
From (3.6), inequality (3.3) holds if and only if the left-increment and right-

increment are non-negative (in the sense of α-cuts), that is,

(3.7) ∆J l(x∗l(t, α), x∗r(t, α), α) := (∆lJ
l,∆rJ

l) ≥ (0, 0),

(3.8) ∆Jr(x∗l(t, α), x∗r(t, α), α) := (∆lJ
r, ∆rJ

r) ≥ (0, 0),

for all α ∈ [0, 1] and all admissible xs ∈ Xad close to x∗. We see that (3.7) and (3.8)
hold if and only if

(3.9) ∆lJ
l = J l(xl(t, α), x∗r(t, α), α)− J l(x∗l(t, α), x∗r(t, α), α) ≥ 0,

(3.10) ∆rJ
l = J l(x∗l(t, α), xr(t, α), α)− J l(x∗l(t, α), x∗r(t, α), α) ≥ 0,

(3.11) ∆lJ
r = Jr(xl(t, α), x∗r(t, α), α)− Jr(x∗l(t, α), x∗r(t, α), α) ≥ 0,

(3.12) ∆rJ
r = Jr(x∗l(t, α), xr(t, α), α)− Jr(x∗l(t, α), x∗r(t, α), α) ≥ 0.

We consider only equation (3.9). Using (3.4) and (3.9), one can easily verify that

(3.13) ∆lJ
l(x∗l, x∗r, α) =

∫ tf

t0

{gl(x∗l + εηl, ẋ∗l + εη̇l, x∗r, ẋ∗r, t, α)

−gl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)}dt ≥ 0,

where x∗l + εηl (or x∗r + εηr) stands for x∗l(t, α)+ εηl(t, α) (or x∗r(t, α)+ εηr(t, α)).
Corresponding to Definition 2.11 the following two cases just can occur.
Case (i): g is (i)-gH differentiable ((ii)-gH differentiable) w.r.t. x and ẋ.
Expanding the integrant gl(x∗l + εηl, ẋ∗l + εη̇l, x∗r, ẋ∗r, t, α) of (3.13) in a Taylor
series about the point (x∗l, ẋ∗l, x∗r, ẋ∗r) gives

(3.14) ∆lJ
l(x∗l, x∗r, α) = εJ l

1(x
∗l, x∗r, α) + ε2J l

2(x
∗l, x∗r, α) + O(ε3),

where

J l
1(x

l, xr, α) =
∫ tf

t0

(ηl ∂gl

∂xl
+ η̇l ∂gl

∂ẋl
)dt,
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J l
2(x

l, xr, α) =
1
2

∫ tf

t0

(ηl2 ∂2gl

∂xl2
+ 2ηη̇l ∂2gl

∂xl∂ẋl
+ η̇l2 ∂2gl

∂ẋl2
)dt.

The integral J l
1(x

l, xr, α) is called the first variation of J l, since it is expressed in
terms containing the first-order change in J l w.r.t. the deformations x∗l + εηl and
x∗r + εηr. Similarly, the integral J l

2(x
l, xr, α) is called the second variation of J l.

The notation O(ε3) denotes terms in the expansion of order 3 and greater in ε.
By (3.13), the right-hand side of equation (3.14) is non-negative. On the other

hand, ε is a arbitrary and may be positive or negative. Hence, dividing the right-hand
side of (3.14) by ε, the two following inequalities can be taken into consideration:

(3.15) J l
1(x

∗l, x∗r, α) + εJ l
2(x

∗l, x∗r, α) + O(ε2) ≥ 0, if ε > 0,

(3.16) J l
1(x

∗l, x∗r, α) + εJ l
2(x

∗l, x∗r, α) + O(ε2) ≤ 0, if ε < 0.

Now, the two inequalities (3.15) and (3.16) can be reduced to J l
1(x

∗l, x∗r, α) ≥ 0 and
J l

1(x
∗l, x∗r, α) ≤ 0, respectively, as ε approaches zero. This means that

(3.17)

J l
1(x

∗l, x∗r, α) =
∫ tf

t0

(ηl ∂gl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + η̇l ∂gl

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α))dt

= 0,

for all admissible ηl(t, α). Since ηl(t0, α) = ηl(tf , α) = 0, solving integral involves
integration by part, the equation (3.17) becomes

(3.18)
∫ tf

t0

ηl
(∂gl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gl

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

))
dt = 0.

for all admissible ηl(t, α).

Lemma 3.3 ([4]). Assume that h = h(t) is a continuous real-valued function. If it
holds ∫ tf

t0

h(t)g(t)dt = 0,

for every continuous real-valued function g = g(t) in the interval [t0, tf ], then h =
h(t) must be zero everywhere in [t0, tf ].

By applying Lemma 3.3 to (3.18), we have

(3.19)
∂gl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gl

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0.

Following the scheme of obtaining (3.19) and adapting it to the cases (3.10)-(3.12),
one can easily show that

(3.20)
∂gl

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

( ∂gl

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0,

(3.21)
∂gr

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gr

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0,
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(3.22)
∂gr

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gr

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0.

Case (ii): g is (i)-gH differentiable ((ii)-gH differentiable) w.r.t. x and (ii)-gH differ-
entiable ((i)-gH differentiable) w.r.t. ẋ.
Similar the procedure of obtaining the fuzzy Euler-Lagrange conditions for case (i),
one can show that the conditions for this case are

(3.23)
∂gl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gr

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0,

(3.24)
∂gl

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gr

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0,

(3.25)
∂gr

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(∂gr

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0,

(3.26)
∂gr

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

( ∂gl

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0.

4. Fuzzy isoperimetric problem

The problem involving minimization of a fuzzy functional while giving a fuzzy
integral constraints is called the fuzzy isoperimetric problem and it is stated as
follows:

(FIP) Minimize J(x) :=
∫ tf

t0

g(x(t), ẋ(t), t)dt

subject to I(x) :=
∫ tf

t0

h(x(t), ẋ(t), t)dt ≈ c

x(t) ≈ x0, x(tf ) ≈ xf ,

where c ∈ RF is a given fuzzy number.
For FIP, consider the following deformations of the α−cuts of fuzzy curve x∗ by
taking into consideration α−cuts of an arbitrary twice continuously gH-differentiable
fuzzy function δ(t) as

(4.1) xl(t, α) := x∗l(t, α) + εδl(t, α),

(4.2) xr(t, α) := x∗r(t, α) + εδr(t, α),

where ε is a small real number and δ(t) := ση(t)+βζ(t). In the last equation σ, β are
real constants and the arbitrary independent fuzzy functions η(t) and ζ(t) vanish in
the fuzzy sense at the endpoints.

Since I is equal to the fuzzy number c, therefore its increment is identically zero,
particularly, the first variation must be zero. According to Definition 2.11 eight
cases can be occur.
Case (i): g and h are both (i)-gH differentiable ((ii)-gH differentiable) w.r.t. x and
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ẋ.
In this case, for all α ∈ [0, 1], we have

(4.3)
∫ tf

t0

{
δl ∂hl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + δ̇l ∂hl

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

}
dt = 0,

(4.4)
∫ tf

t0

{
δr ∂hl

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + δ̇r ∂hl

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

}
dt = 0,

(4.5)
∫ tf

t0

{
δl ∂hr

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + δ̇l ∂hr

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

}
dt = 0,

(4.6)
∫ tf

t0

{
δr ∂hr

∂xr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + δ̇r ∂hr

∂ẋr
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

}
dt = 0.

We consider only equation (4.3). By integrating by parts the terms involving δ̇l and
letting δl(t, α) := σηl(t, α) + βζl(t, α), we may find that
(4.7)∫ tf

t0

(σηl+βζl)

{
∂hl

∂xl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)− d

dt

(
∂hl

∂ẋl
(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)}
dt = 0.

Let us define the fuzzy operator Ll(∗) as

(4.8) Ll(∗) :=
∂∗
∂xl

− d

dt

( ∂∗
∂ẋl

)
.

Hence, we see that (4.7) can be written as

(4.9)
∫ tf

t0

(σηl + βζl)Ll(hl)dt = 0.

Observe that x∗ is not the minimizer of I therefore, Ll(hl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)) 6=
0. Furthermore, for any ηl, ζl, the constants σ, β are related together by (4.9).
The assumption that x∗ is the minimizer of J grantees the increment of J must
be non-negative in the fuzzy sense with respect to the deformation given in (4.1).
Consequently, the first variation is zero and after integrating by parts, it holds that

(4.10)
∫ tf

t0

(σηl + βζl)Ll(gl)dt = 0,

where σ, β are those satisfy (4.9). Solving by elimination σ and β between (4.9) and
(4.10), for every independent and twice continuously differentiable functions ηl and
ζl, one can show that

(4.11)

∫ tf

t0
ηlLl(gl)dt

∫ tf

t0
ηlLl(hl)dt

=

∫ tf

t0
ζlLl(gl)dt

∫ tf

t0
ζlLl(hl)dt

.

Introducing the constant −λl
1 = −λl

1(α) which is equal to both sides of the equality
in (4.11) gives that

(4.12)
∫ tf

t0

ηlLl
(
gl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + λl

1(α)hl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)
)
dt = 0,
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for any admissible ηl = ηl(t, α).
Applying Lemma 3.3, we derive from (4.12) that

(4.13) Ll
(
gl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α) + λl(α)hl(x∗l, ẋ∗l, x∗r, ẋ∗r, t, α)

)
= 0.

Taking into account the structure of Ll in (4.8), we get from (4.13) that

(4.14)
∂

∂xl

(
gl(z) + λl

1h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

1h
l(z)

))
= 0,

where zl = (x∗l, ẋ∗l, x∗r, ẋ∗r, t, α).
Now following the scheme of obtaining (4.14) and adapting it to the case under

consideration involving (4.4)-(4.6), we may show that

(4.15)
∂

∂xr

(
gl(z) + λr

2h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

2h
l(z)

))
= 0,

(4.16)
∂

∂xl

(
gr(z) + λl

2h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

2h
r(z)

))
= 0,

(4.17)
∂

∂xr

(
gr(z) + λr

1h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

1h
r(z)

))
= 0.

Following the scheme of obtaining the Euler-Lagrange conditions for case (i), one
can show that these conditions for other cases are as follows:
Case (ii): h, g w.r.t. x and g w.r.t. ẋ are both (i)-gH differentiable ((ii)-gH differen-
tiable) and h is (ii)-gH differentiable ((i)-gH differentiable) w.r.t ẋ.

(4.18)
∂

∂xl

(
gl(z) + λl

1h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

1h
r(z)

))
= 0,

(4.19)
∂

∂xr

(
gl(z) + λr

2h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

2h
r(z)

))
= 0,

(4.20)
∂

∂xl

(
gr(z) + λl

2h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

2h
l(z)

))
= 0,

(4.21)
∂

∂xr

(
gr(z) + λr

1h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

1h
l(z)

))
= 0.

Case (iii): h w.r.t. x and ẋ is (ii)-gH differentiable ((i)-gH differentiable) and g is
(i)-gH differentiable ((ii)-gH differentiable) w.r.t x and ẋ.

(4.22)
∂

∂xl

(
gl(z) + λl

1h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

1h
r(z)

))
= 0,
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(4.23)
∂

∂xr

(
gl(z) + λr

2h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

2h
r(z)

))
= 0,

(4.24)
∂

∂xl

(
gr(z) + λl

2h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

2h
l(z)

))
= 0,

(4.25)
∂

∂xr

(
gr(z) + λr

1h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

1h
l(z)

))
= 0.

Case (iv): h, g w.r.t. ẋ and g w.r.t. x are both (i)-gH differentiable ((ii)-gH differ-
entiable) and h is (ii)-gH differentiable ((i)-gH differentiable) w.r.t x.

(4.26)
∂

∂xl

(
gl(z) + λl

1h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

1h
l(z)

))
= 0,

(4.27)
∂

∂xr

(
gl(z) + λr

2h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

2h
l(z)

))
= 0,

(4.28)
∂

∂xl

(
gr(z) + λl

2h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

2h
r(z)

))
= 0,

(4.29)
∂

∂xr

(
gr(z) + λr

1h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

1h
r(z)

))
= 0.

Case (v): h, g w.r.t. x and h w.r.t. ẋ are both (i)-gH differentiable ((ii)-gH differen-
tiable) and g is (ii)-gH differentiable ((i)-gH differentiable) w.r.t ẋ.

(4.30)
∂

∂xl

(
gl(z) + λl

1h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

1h
l(z)

))
= 0,

(4.31)
∂

∂xr

(
gl(z) + λr

2h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

2h
l(z)

))
= 0,

(4.32)
∂

∂xl

(
gr(z) + λl

2h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

2h
r(z)

))
= 0,

(4.33)
∂

∂xr

(
gr(z) + λr

1h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

1h
r(z)

))
= 0.

Case (vi): h, g w.r.t. x are both (i)-gH differentiable ((ii)-gH differentiable) and h, g
are both (ii)-gH differentiable ((i)-gH differentiable) w.r.t ẋ.

(4.34)
∂

∂xl

(
gl(z) + λl

1h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

1h
r(z)

))
= 0,
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(4.35)
∂

∂xr

(
gl(z) + λr

2h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

2h
r(z)

))
= 0,

(4.36)
∂

∂xl

(
gr(z) + λl

2h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

2h
l(z)

))
= 0,

(4.37)
∂

∂xr

(
gr(z) + λr

1h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

1h
l(z)

))
= 0.

Case (vii): h w.r.t. ẋ and g w.r.t. x are both (i)-gH differentiable ((ii)-gH dif-
ferentiable) and h w.r.t. x and g w.r.t. ẋ are both (ii)-gH differentiable ((i)-gH
differentiable).

(4.38)
∂

∂xl

(
gl(z) + λl

1h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

1h
l(z)

))
= 0,

(4.39)
∂

∂xr

(
gl(z) + λr

2h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

2h
l(z)

))
= 0,

(4.40)
∂

∂xl

(
gr(z) + λl

2h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

2h
r(z)

))
= 0,

(4.41)
∂

∂xr

(
gr(z) + λr

1h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

1h
r(z)

))
= 0.

Case (viii): g w.r.t. x is (i)-gH differentiable ((ii)-gH differentiable) and h, g w.r.t.
ẋ and h w.r.t. x are both (ii)-gH differentiable ((i)-gH differentiable).

(4.42)
∂

∂xl

(
gl(z) + λl

1h
r(z)

)
− d

dt

(
∂

∂ẋl

(
gr(z) + λl

1h
r(z)

))
= 0,

(4.43)
∂

∂xr

(
gl(z) + λr

2h
r(z)

)
− d

dt

(
∂

∂ẋr

(
gr(z) + λr

2h
r(z)

))
= 0,

(4.44)
∂

∂xl

(
gr(z) + λl

2h
l(z)

)
− d

dt

(
∂

∂ẋl

(
gl(z) + λl

2h
l(z)

))
= 0,

(4.45)
∂

∂xr

(
gr(z) + λr

1h
l(z)

)
− d

dt

(
∂

∂ẋr

(
gl(z) + λr

1h
l(z)

))
= 0.
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5. Numerical example

In this section, we give an example which illustrates the applicability of results of
the paper. Note that there is no solution for this example using the results obtained
by Farhadinia [11].

Example 5.1. Find the minimum of

J(x) :=
∫ 1

0

−ẋ2(t)dt,

subject to

I(x) :=
∫ 1

0

x(t)dt ≈ c =< 0, 1, 3 >,

x(0) ≈ 2 =< 0, 2, 4 >, x(1) ≈ 4 =< 2, 4, 6 > .

Solution. In order to find the optimal solution of the above problem, it suffices to
find the optimal solution of

J (x) :=
∫ 1

0

(−ẋ2(t) + λx(t))dt,

given that
x(0) ≈ 2 =< 0, 2, 4 >, x(1) ≈ 4 =< 2, 4, 6 > .

We first derive α-level set of J as follows:

(5.1) J (x)[α] =
∫ 1

0

[
− ẋr2

(t, α) + λl(α)xl(t, α),−ẋl2(t, α) + λr(t)xr(t, α)
]
dt.

We have g := −ẋ2(t) and h := x(t). Suppose that case (i) is fulfilled in this FIP, i.e.
g and h are (i)-gH differentiable ((ii)-gH differentiable) w.r.t. x and ẋ. Using (4.16)
for equation (5.1), we have ẍl(t, α) = 0. Hence, by virtue of the classical differential
equation theory, we may solve it analytically for fixed α ∈ [0, 1] to get

xl(t, α) = k1t + k2.

Here, the constants of integration i.e. k1, k2, might be given by the endpoint condi-
tions, so,

xl(t, α) = 2t + 2α.

On the other hand, in view of < 0, 1, 3 > [α] = [α, 3 − 2α], the above left-hand
endpoint of the α-level set of extremal must satisfy the fuzzy constraint I(x). That
is ∫ 1

0

(2t + 2α)dt = α,

which is contradiction with α ∈ [0, 1]. Then this problem has no solution with Euler-
Lagrange conditions obtained in [11].
In case (ii), by using (4.20), we have ẍl(t, α) = 0. Similar previous case, we cannot
find the solution of problem.
Now, suppose that h w.r.t. x and ẋ be (ii)-gH differentiable ((i)-gH differentiable)
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and g be (i)-gH differentiable ((ii)-gH differentiable) w.r.t x and ẋ (according to case
(iii)). In this case, the fuzzy Euler-Lagrange conditions (4.22)-(4.25) say

λr
2(α)− d

dt
(−2ẋr(t, α)) = 0,

λl
2(α)− d

dt
(−2ẋl(t, α)) = 0.

From the classical differential equation theory and the endpoint conditions, we have

(5.2) xr(t, α) = −λr
2(α)
4

t2 + (2 +
λr

2(α)
4

)t + 4− 2α,

(5.3) xl(t, α) = −λl
2(α)
4

t2 + (2 +
λl

2(α)
4

)t + 2α.

Now by virtue of < 0, 1, 3 > [α] = [α, 3− 2α] and the fact that the above left-hand
and right-hand endpoints of α-level set of extremal must satisfy the fuzzy constraint
I(x), λl

2(α), λr
2(α) are determined by considering

3− 2α =
∫ 1

0

(
− λr

2(α)
4

t2 + (2 +
λr

2(α)
4

)t + 4− 2α
)
dt,

α =
∫ 1

0

(
− λl

2(α)
4

t2 + (2 +
λl

2(α)
4

)t + 2α
)
dt,

which result in λr
2(α) = −48 and λl

2(α) = −24(α + 1). According to this results
(5.2)-(5.3) turn to

xr(t, α) = 12t2 − 10t + 4− 2α,

xl(t, α) = 6(α + 1)t2 − (4 + 6α)t + 2α.

One can easily show that

∂xr(t, α)
∂α

= −2 ≤ 0, ∀t ∈ [0, 1],

∂xl(t, α)
∂α

= 6t2 − 6t + 2 ≥ 0, ∀t ∈ [0, 1],

that is, xr(t, α) and xl(t, α) are continuous nonincreasing and nondecreasing func-
tions of α respectively (conditions (ii) and (i) of Proposition 2.1).
Moreover, for all 0 ≤ t ≤ 1, xl(t, 1) = 12t2 − 10t + 2, and xr(t, 1) = 12t2 − 10t + 2.
Hence, it holds xl(t, 1) ≤ xr(t, 1) (condition (iii) of Proposition 2.1).

Consequently, x∗ ∈ Xad parameterized by

x∗(t)[α] = [x∗l(t, α), x∗r(t, α)] = [6(α + 1)t2 − (4 + 6α)t + 2α, 12t2 − 10t + 4− 2α],

that defines α-level set of a fuzzy number which minimizes J in the fuzzy sense.
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Concluding remarks

In this paper, we presented the fuzzy Euler-Lagrange condition for the fuzzy un-
constrained and constraint variational problems using the concept of gH-differentiabi-
lity. As it is shown in the paper, Case (i) of fuzzy variational and isoperimetric
problems is coincident with the fuzzy Euler-Lagrange conditions in [11]. Thus, the
results (3.19)-(3.26) and (4.14)-(4.45) are the generalization and extension of the
results in [11] and they are also more applicable to a large class of problems.
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