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Abstract. The purpose of the present work is to introduce the concepts
of L-fuzzy subsystems and strong L-fuzzy subsystems of fuzzy automata
having the membership values in lattice-ordered monoid. Unlike to the
usual fuzzy automata, we show that such concepts for fuzzy automata
having the membership values in lattice-ordered monoid depend on the
fact that whether associated monoid is with or without zero divisors.
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1. Introduction

The study of fuzzy automata was initiated by Santos [26] and Wee [32] in 1960’s
after the introduction of fuzzy set theory by Zadeh [35]. Much later, a considerably
simpler notion of a fuzzy finite state machine (which is almost identical to a fuzzy
automaton) was introduced and studied by Malik, Mordeson and Sen [17] (cf. [19],
for more details). Somewhat different notions were introduced subsequently in [5,
6, 7, 8, 9, 22]. In these studies, the membership values in the closed interval [0, 1]
were considered. During the recent years, the researchers began to work on fuzzy
automata with membership values in complete residuated lattice, lattice-ordered
monoid and some other kind of lattices (cf., [4, 10, 11, 12, 13, 14, 15, 20, 21, 24, 27,
33, 34]). In application point of view, fuzzy automata have been shown to be useful in
numerous engineering applications such as pattern recognition, clinical monitoring,
and also used to model fuzzy discrete event systems (cf., [16, 19, 23, 25]).

In view of the fact that the algebraic properties play a key role in the develop-
ment of fundamentals of computer science (cf. [3]), the concepts of separatedness,
connectedness and retrievability of a fuzzy automaton were introduced and studied
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by Mordeson and Malik [17]. In [1, 28, 29], it is shown that certain topological and
fuzzy topological concepts can be used in fuzzy automata theory to throw light on the
structure of such fuzzy automata, particularly, to obtain certain results pertaining
to their connectivity and separation properties. Similar studies for fuzzy automata
with membership values in complete residuated lattice were proposed in [20]. But,
interestingly, for fuzzy automata with membership values in lattice-ordered monoid,
it is shown that the results discussed in [17, 28] depend on the associated monoid
structure (cf. [30]).

Chiefly inspired from [30], in this paper, we study the concepts of L-fuzzy sub-
system and strong L-fuzzy subsystem of fuzzy automata with membership values
in lattice-ordered monoid and thereafter introduce the L-fuzzy topological concepts.
We show that the results for L-fuzzy subsystem and strong L-fuzzy subsystem in-
troduced in [1] and [18] may not hold well in the case of fuzzy automata with
membership values in lattice-ordered monoid.

2. Preliminaries

In this section, we recall some basic concepts related to lattice-ordered monoid,
fuzzy automaton and fuzzy point, which we shall need in the subsequent section.

We begin with the following from [2].

Definition 2.1. An algebra L = (L,≤,∧,∨, •, 0, 1) is called a lattice-ordered monoid
if

(1) L = (L,≤,∧,∨, •, 0, 1) is a lattice with the least element 0 and the greatest
element 1,

(2) (L, •, e) is a monoid with identity e ∈ L such that for all a, b, c ∈ L
(i) a • 0 = 0 • a = 0,
(ii) a ≤ b ⇒ ∀x ∈ L, a • x ≤ b • x and x • a ≤ x • b,
(iii) a • (b ∨ c) = (a • b) ∨ (a • c) and (b ∨ c) • a = (b • a) ∨ (c • a).

Definition 2.2. A monoid (L, •, e) is called monoid without zero divisors if for all
a, b ∈ L, a 6= 0, b 6= 0 ⇒ a • b 6= 0.

Definition 2.3. A monoid (L, •, e) is called monoid with zero divisors if there exist
a, b ∈ L, a 6= 0, b 6= 0 such that a • b = 0.

The concepts of L-fuzzy sets, L-fuzzy topologies and L-fuzzy automata, we study
in this paper, have the membership values in lattice-ordered monoid. For example,
an L-fuzzy subset of a nonempty set X is a function from X to L. Throughout, LX

denotes the family of all L-fuzzy subsets of X and α denotes the α-valued constant
L-fuzzy subset of X. For an L-fuzzy subset A of X and t ∈ L, the level set of A is
At = {x ∈ X : A(x) ≥ t}.

Now, we recall the following concepts related to a fuzzy automaton based on lattice-
ordered monoid.

Definition 2.4 ([30]). An L-fuzzy automaton is a triple M = (Q,X, δ), where Q is
a nonempty set (of states of M), X is a monoid (the input monoid of M), whose
identity shall be denoted as eX , and δ : Q × X × Q → L is a map, such that
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∀q, p ∈ Q, ∀x, y ∈ X,

δ(q, eX , p) =
{

e if q = p
0 if q 6= p

and δ(q, xy, p) = ∨{δ(q, x, r) • δ(r, y, p) : r ∈ Q}.
Definition 2.5 ([30]). Let (Q,X, δ) be an L-fuzzy automaton and A ⊆ Q. The
source and the successor of A are respectively the sets

σQ(A) = {q ∈ Q : δ(q, x, p) > 0, for some (x, p) ∈ X ×A}, and
sQ(A) = {p ∈ Q : δ(q, x, p) > 0, for some (x, q) ∈ X ×A}.

We shall frequently write σQ(A) and sQ(A) as just σ(A) and s(A), and σ({q})
and s({q}) as just σ(q) and s(q).

Remark 2.6 ([30]). Let (Q,X, δ) be an L-fuzzy automaton and p, q, r ∈ Q. Then
p ∈ σ(q), q ∈ σ(r) does not imply p ∈ σ(r) in general.

Proposition 2.7 ([30]). Let (L, •, e) be a monoid without zero divisors and (Q,X, δ)
be an L-fuzzy automaton. Then for all p, q, r ∈ Q, p ∈ σ(q), q ∈ σ(r) ⇒ p ∈ σ(r).

We close this section by recalling the following from [31].

Definition 2.8. Let X be a nonempty set. An L-fuzzy point xt is an L-fuzzy set
defined by

xt(y) =
{

t if x = y
0 if x 6= y,

y ∈ X, t ∈ L.

3. L-fuzzy subsystems of L-fuzzy automata

In this section, we introduce the concepts of L-fuzzy subsystems and strong L-
fuzzy subsystems of an L-fuzzy automaton as a generalization of similar concepts
for fuzzy automata introduced in [1] and [18]. We show that several results for such
concepts introduced in [1] and [18] may not hold in this generalized setup.

We begin with the following.

Definition 3.1. A ∈ LQ is called an L-fuzzy subsystem of an L-fuzzy automaton
(Q,X, δ) if

A(p) ≥ (A(q) • δ(q, x, p)), ∀p, q ∈ Q, x ∈ X.

Proposition 3.2. Let (Q, X, δ) be an L-fuzzy automaton and A ∈ LQ. Define an
L-fuzzy subset c(A) of Q as:

c(A)(p) = ∨{A(q) • δ(q, x, p) : (x, q) ∈ X ×A}.
Also, let A,Ai(i ∈ J) ∈ LQ. Then

(i) c(α) = α,∀α ∈ L,
(ii) A ≤ c(A),
(iii) c(∨{Ai : i ∈ J}) = ∨{c(Ai) : i ∈ J}.

Proof. The proofs are straightforward. ¤
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Remark 3.3. From the above proposition, it is obvious that c(A) ≤ c(c(A)), but
in general c(A) 6= c(c(A)) as the following counter-example shows.

Counter-example 3.4. For the lattice-ordered monoid L, consider the monoid
(L, •, e), where L = [0, 1], a • b = max(0, a+ b− 1), ∀a, b ∈ L and e = 1. Consider an
L-fuzzy automaton (Q, X, δ), where Q = X = {0, 1, 2, .....} and δ : Q×X ×Q → L
is given by

δ(q, 0, p) =
{

1 if q = p
0 if q 6= p

∀p, q ∈ Q, and δ(q, x0, p) = 0.6, δ(q, x0, r) = 0.4, δ(r, x0, p) = 0.35, δ(p, x0, q) =
1, δ(r, x0, q) = 0.3, δ(p, x0, r) = 0.4, δ(p, x0, p) = 0.6, δ(q, x0, q) = 0.5, δ(r, x0, r) =
0.7 for fixed p, q, r ∈ Q and for fixed x0 ∈ X(x0 6= 0). For other p, q ∈ Q and x ∈ X,
let δ(p, x, q) = 0. Also, let A ∈ LQ such that A(p) = 0.8, A(q) = 0.5, A(r) = 0.4
for fixed p, q, r ∈ Q and for other p ∈ Q,A(p) = 0. Then c(A)(q) = 0.8, while
c(c(A))(q) = 0.5, showing that c(c(A)) 6= c(A).

Proposition 3.5. Let (L, •, e) be a monoid without zero divisors and (Q,X, δ) be
an L-fuzzy automaton. Then for all A ∈ LQ, c(c(A)) = c(A).

Proof. Let A ∈ LQ. Then c(c(A))(q) = ∨{c(A)(p) • δ(p, x, q) : (x, p) ∈ X × A} =
∨{∨{A(r)•δ(r, y, p) : (y, r) ∈ X×A}•δ(p, x, q) : (x, p) ∈ X×A} = ∨{A(r)•δ(r, y, p)•
δ(p, x, q) : x, y ∈ X, p, r ∈ A}. As (L, •, e) being a monoid without zero divisors,
δ(r, y, p) > 0 and δ(p, x, q) > 0 implying that δ(r, y, p) • δ(p, x, q) = δ(r, yx, q) > 0.
Thus c(c(A))(q) = ∨{δ(r, z, q) • A(r) : (z, r) ∈ X × A} = c(A)(q). Hence c(c(A)) =
c(A). ¤
Remark 3.6. Let (Q,X, δ) be an L-fuzzy automaton, where the monoid (L, •, e)
is without zero divisors. Then from Propositions 3.2 and 3.5, it is clear that c is
a Kuratowski saturated L-fuzzy closure operator on Q. Thus c induces an L-fuzzy
topology on Q, say, τc. (A Kuratowski L-fuzzy closure operator c on X is being
called here saturated if the(usual) requirement c(A ∨ B) = c(A) ∨ c(B) is replaced
by c(∨{Ai : i ∈ J}) = ∨{c(Ai) : i ∈ J},∀A,B, Ai ∈ LX , i ∈ J).

Proposition 3.7. Let M = (Q, X, δ) be an L-fuzzy automaton, where the monoid
(L, •, e) is without zero divisors. Then A ∈ LQ is an L-fuzzy subsystem of M if and
only if A is τc-closed.

Proof. Let A be an L-fuzzy subsystem of an L-fuzzy automaton M . Then A(p) ≥
A(q) • δ(q, x, p), ∀p, q ∈ Q,∀x ∈ X, whereby A(p) ≥ ∨{A(q) • δ(q, x, p) : (x, q) ∈
X × A}, or that A(p) ≥ c(A)(p). Also, A(p) ≤ c(A)(p),∀p ∈ Q. Thus c(A) = A.
Hence A is an L-fuzzy subsystem of M . Converse follows similarly. ¤
Proposition 3.8. Let (Q, X, δ) be an L-fuzzy automaton. Then for all A ∈ LQ and
∀α ∈ L, c(α •A) = α • c(A).

Proof. Let A ∈ LQ and α ∈ L. Then c(α •A)(q) = ∨{(α •A)(p) • δ(p, x, q) : (x, p) ∈
X × A} = ∨{α(p) • A(p) • δ(p, x, q) : (x, p) ∈ X × A} = α • ∨{A(p) • δ(p, x, q) :
(x, p) ∈ X ×A} = α • c(A)(q). Thus c(α •A) = α • c(A). ¤

Before stating the next, recall the following concept of an L-fuzzy subautomaton
from [31].
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Definition 3.9. Let M = (Q,X, δ) be an L-fuzzy automaton. R ⊆ Q is called an
L-fuzzy subautomaton of M if s(R) ⊆ R and λ = δ|R×X×R.

Remark 3.10. Let A be an L-fuzzy subsystem of an L-fuzzy automaton M =
(Q,X, δ). Then N = (Supp(A), X, λ) may not be an L-fuzzy subautomaton of M
as the following counter-example shows, where λ = δ|Supp(A)×X×Supp(A).

Counter-example 3.11. For the lattice-ordered monoid L, consider the monoid
(L, •, e), where L = [0, 1], a • b = max(0, a+ b− 1), ∀a, b ∈ L and e = 1. Consider an
L-fuzzy automaton (Q,X, δ), where Q = X = {0, 1, 2, ....} and δ : Q ×X × Q → L
is given by

δ(q, 0, p) =
{

1 if q = p
0 if q 6= p,

∀p, q ∈ Q, and δ(q, x0, p) = 1/2, δ(p, x0, q) = 1/2 for fixed x0 ∈ X(x0 6= 0) and for
fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X, δ(p, x, q) = 0. Also, let A ∈ LQ

such that A(q) = 1/2 and A(p) = 0. Then A(q) • δ(q, x0, p) = 0 = A(p) and
A(p) • δ(p, x0, q) = 0 < 1/2 = A(q). Thus A is an L-fuzzy subsystem of M . Also,
Supp(A) = {p}. But s(Supp(A)) = {p, q}. Thus s(Supp(A)) 6= Supp(A). Hence
N = (Supp(A), X, λ) is not an L-fuzzy subautomaton of M .

Proposition 3.12. Let A be an L-fuzzy subsystem of an L-fuzzy automaton M =
(Q,X, δ) and (L, •, e) be a monoid without zero divisors. Then N = (Supp(A), X, λ)
is an L-fuzzy subautomaton of M , where λ = δ|Supp(A)×X×Supp(A).

Proof. Let A be an L-fuzzy subsystem of M = (Q,X, δ) and p ∈ s(Supp(A)). Then
p ∈ s(q) for some q ∈ Supp(A). Now, q ∈ Supp(A) implying that A(q) > 0. Also,
as p ∈ s(q),∃x ∈ X such that δ(q, x, p) > 0. Thus 0 < A(q) • δ(q, x, p) as (L, •, e)
is a monoid without zero divisors, whereby 0 < A(p), or that p ∈ Supp(A). Hence
s(Supp(A)) ⊆ Supp(A) and therefore N is an L-fuzzy subautomaton of M . ¤

Proposition 3.13. Let A be an L-fuzzy subsystem of an L-fuzzy automaton M =
(Q,X, δ) and Nt = (At, X, λt), where λt = δ|At×X×At , t ∈ [0, 1]. If ∀t ∈ [0, 1], Nt

is an L-fuzzy subautomaton of M , then A is an L-fuzzy subsystem of M .

Proof. Let A be an L-fuzzy subsystem of M . Also, let p, q ∈ Q and x ∈ X. If
A(p) = 0 or δ(p, x, q) = 0, then nothing is to prove. So, let A(p) > 0 and δ(p, x, q) >
0. Then A(p) • δ(p, x, q) > 0. Now, let A(p) • δ(p, x, q) = t. Then p ∈ At. Also,
as Nt is an L-fuzzy subautomaton of M, s(At) = At. Thus q ∈ s(p) ⊆ s(At) = At,
or that A(q) ≥ t, i.e., A(q) ≥ A(p) • δ(p, x, q). Hence A is an L-fuzzy subsystem of
M . ¤

Now, we introduce the following concept, which resembles the concept of singly
generated fuzzy subsystem introduced in [1].

Definition 3.14. Let (Q,X, δ) be an L-fuzzy automaton, t ∈ (0, 1] and q ∈ Q. An
L-fuzzy subset qtX of Q is given by

(qtX)(p) = ∨{t • δ(q, y, p) : y ∈ X}, ∀p ∈ Q.

Proposition 3.15. Let (Q,X, δ) be an L-fuzzy automaton, t ∈ (0, 1] and q ∈ Q.
Then qtX is an L-fuzzy subsystem of M .
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Proof. Follows from the fact that ∀p ∈ Q, (qtX)(p) = ∨{t•δ(q, y, p) : y ∈ X} = c(qt)
and c(qt) being τc-closed. ¤

Proposition 3.16. Let (Q,X, δ) be an L-fuzzy automaton and the monoid (L, •, e)
be without zero divisors. Then Supp(qtX) = s(q), ∀t ∈ (0, 1] and ∀q ∈ Q.

Proof. Let p ∈ s(q). Then δ(q, x, p) > 0, for some x ∈ X. Thus for t ∈ (0, 1],∨{t •
δ(q, x, p) : x ∈ X} > 0 (as the monoid (L, •, e) is without zero divisors), whereby
(qtX)(p) > 0, or that p ∈ Supp(qtX). Hence s(q) ⊆ Supp(qtX).
Conversely, let p ∈ Supp(qtX). Then ∨{t • δ(q, x, p) : x ∈ X} > 0, or that there
exists x ∈ X such that δ(q, x, p) > 0. Thus p ∈ s(q), whereby Supp(qtX) ⊆ s(q). ¤

Remark 3.17. For an L-fuzzy automaton (Q,X, δ), t ∈ (0, 1] and q ∈ Q, Supp(qtX)
6= s(q), as the following counter-example shows.

Counter-example 3.18. For the lattice-ordered monoid L, consider the monoid
(L, •, e), where L = [0, 1], a • b = max(0, a+ b− 1), ∀a, b ∈ L and e = 1. Consider an
L-fuzzy automaton (Q, X, δ), where Q = X = {0, 1, 2, .....} and δ : Q×X ×Q → L
is given by

δ(q, 0, p) =
{

1 if q = p
0 if q 6= p

∀q, p ∈ Q, and δ(q, x0, p) = 1/2, for fixed p, q ∈ Q and for fixed x0 ∈ X(x0 6= 0).
For other p, q ∈ Q and x ∈ X, δ(q, x, p) = 0. Here p ∈ s(q). Now, let t = 1/2. Then
Supp(qtX) = φ as (qtX)(p) = ∨{t • δ(q, x0, p) : x0 ∈ X} = 0. Thus Supp(qtX) 6=
s(q).

Inspired from [19], we now introduce the concept of a strong L-fuzzy subsystem
of an L-fuzzy automaton.

Definition 3.19. A ∈ LQ is called a strong L-fuzzy subsystem of an L-fuzzy au-
tomaton (Q,X, δ) if δ(q, x, p) > 0, for some x ∈ X, then A(p) ≥ A(q), ∀p, q ∈ Q.

Proposition 3.20. Let (Q, X, δ) be an L-fuzzy automaton and A ∈ LQ. Define an
L-fuzzy subset c(A) of Q as:

c(A)(q) = ∨{A(p) : p ∈ σ(q)}, ∀A ∈ LQ, ∀q ∈ Q.
Also, let A,Ai(i ∈ J) ∈ LQ. Then

(i) c(α) = α,∀α ∈ L,
(ii) A ≤ c(A),
(iii) c(∨{Ai : i ∈ J}) = ∨{c(Ai) : i ∈ J}.

Proof. The proofs are straightforward. ¤

Remark 3.21. From above definition, it is obvious that c(A) ≤ c(c(A)), but in
general c(A) 6= c(c(A)). As, for q ∈ Q, c(A)(q) = ∨{A(p) : p ∈ σ(q)}. But
c(c(A))(q) = ∨{{A(r) : r ∈ σ(p)} : p ∈ σ(q)} 6= ∨{A(r) : r ∈ σ(q)} = c(A)(q)
(follows from Remark 2.6, p ∈ σ(q), r ∈ σ(p) 6⇒ r ∈ σ(q)). Thus c(c(A)) 6= c(A).

Proposition 3.22. Let (L, •, e) be a monoid without zero divisors and (Q,X, δ) be
an L-fuzzy automaton. Then for all A ∈ LQ, c(c(A)) = c(A).
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Proof. Let A ∈ LQ and q ∈ Q. Then c(c(A))(q) = ∨{c(A)(p) : p ∈ σ(q)} =
∨{∨{A(r) : r ∈ σ(p)} : p ∈ σ(q)}. Now, the monoid (L, •, e) being without zero
divisors, p ∈ σ(q), r ∈ σ(p) ⇒ r ∈ σ(q) (cf., Proposition 2.7). Thus c(c(A))(q) =
∨{A(r) : r ∈ σ(q)} = c(A)(q). Hence c(c(A)) = c(A). ¤

Remark 3.23. Let (Q,X, δ) be an L-fuzzy automaton, where the monoid (L, •, e)
is without zero divisors. Then from Propositions 3.20 and 3.22, it is clear that c is
a Kuratowski saturated L-fuzzy closure operator on Q. Thus c induces an L-fuzzy
topology on Q, say, τc(Q) or τc.

Proposition 3.24. Let M = (Q,X, δ) be an L-fuzzy automaton, where the monoid
(L, •, e) is without zero divisors. Then A ∈ LQ is a strong L-fuzzy subsystem of M
if and only if A is τc-closed.

Proof. Let A be a strong L-fuzzy subsystem of an L-fuzzy automaton M and
δ(p, x, q) > 0 for some x ∈ X. Then A(p) ≤ A(q), ∀p, q ∈ Q, whereby A(q) ≥
∨{A(p) : p ∈ σ(q)},∀A ∈ LQ, ∀p ∈ Q, or that A(q) ≥ c(A)(q). Also, A(q) ≤
c(A)(q), ∀q ∈ Q. Thus c(A) = A. Hence A is a strong L-fuzzy subsystem of M .
Converse follows similarly. ¤

Unlike to the case of L-fuzzy subsystems of an L-fuzzy automaton, the following
does not depend on the monoid structure in case of strong L-fuzzy subsystems.

Proposition 3.25. Let A be a strong L-fuzzy subsystem of an L-fuzzy automaton
M = (Q,X, δ). Then N = (Supp(A), X, λ) is an L-fuzzy subautomaton of M , where
λ = δ|Supp(A)×X×Supp(A)

Proof. Let p ∈ s(Supp(A)). Then p ∈ s(q) for some q ∈ Supp(A), or that δ(q, x, p) >
0 for some x ∈ X such that A(q) > 0. As, A is a strong L-fuzzy subsystem,
A(p) ≥ A(q), whereby A(p) > 0, i.e., p ∈ Supp(A). Thus s(Supp(A)) ⊆ Supp(A).
Hence N is an L-fuzzy subautomaton of M . ¤

Proposition 3.26. Let A be a strong L-fuzzy subsystem of an L-fuzzy automaton
(Q,X, δ) and Nt = (At, X, λt), where λt = δ|At×X×At , t ∈ [0, 1]. If ∀t ∈ [0, 1], Nt is
an L-fuzzy subautomaton of M , then A is a strong L-fuzzy subsystem of M .

Proof. Let p, q ∈ Q and x ∈ X such that δ(p, x, q) > 0. Suppose A(p) > 0 such that
A(p) = t. Then p ∈ At. Also, as Nt is an L-fuzzy subautomaton of M, s(At) = At.
Thus q ∈ s(p) ⊆ s(At) = At, or that A(q) ≥ t, i.e., A(q) ≥ A(p). Hence A is a
strong L-fuzzy subsystem of M . ¤

Finally, we introduce the following concept of homomorphism between fuzzy au-
tomata based on lattice-ordered monoid.

Definition 3.27. Let M = (Q,X, δ) and N = (R, X, λ) be L-fuzzy automata. Then
f : Q → R is called a homomorphism from M to N if

δ(q, x, p) ≤ λ(f(q), x, f(p)), ∀p, q ∈ Q, x ∈ X.

The following is an L-fuzzy topological characterization of homomorphism be-
tween two fuzzy automata based on lattice-ordered monoid.
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Proposition 3.28. If f : (Q,X, δ) → (R,X, λ) is a homomorphism between L-
fuzzy automata (Q,X, δ) and (R, X, λ), then f : (Q, τc(Q)) → (R, τc(R)) is L-fuzzy
continuous.

Proof. Similar to the proof given in [29]. ¤

4. Conclusions

In this paper, we have tried to studied the concepts of L-fuzzy subsystems and
strong L-fuzzy subsystems of fuzzy automata based on lattice ordered monoid. Inter-
estingly, we found that the such concepts for fuzzy automata based on lattice-ordered
monoid depend on the associated monoid structure. The obtained results generalize
the observations made in [1] and [17].

Acknowledgements. The authors are grateful to the reviewer(s) for their sug-
gestions for improvement of the paper, and the Council of Scientific and Industrial
Research, New Delhi, for provided research grant under which this work has been
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