Annals of Fuzzy Mathematics and Informatics Volume 7, No. 3, (March 2014), pp. 421–436 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Interval-valued fuzzy quasi-ideals and bi-ideals of semirings

SUKHENDU KAR, SUDIPTA PURKAIT, K. P. SHUM

Received 1 July 2013; Revised 17 July 2013; Accepted 26 July 2013

ABSTRACT. The interval-valued prime fuzzy ideals (in brevity, the iv. prime fuzzy ideals) of a semigroup have been recently studied by Kar, Sarkar and Shum [18]. As a continued study of i-v fuzzy ideals, we are going to investigate the properties of i-v fuzzy quasi-ideal and i-v fuzzy bi-ideal of a semiring and then we characterize the regularity and intra-regularity of a semiring in terms of the above i-v fuzzy ideals.

2010 AMS Classification: 08A72

Keywords: Semirings, Interval Numbers, i-v Fuzzy Quasi-ideals, i-v Fuzzy Biideals, Regular Semirings, Intra-regular Semirings.

Corresponding Author: Sukhendu Kar (karsukhendu@yahoo.co.in)

1. INTRODUCTION

Quasi-ideals of rings and semigroups were introduced and investigated by O. Steinfeld ([24], [25], [26]). In 1975, R. A. Good and D. R. Hughes [11] also considered the bi-ideals in semirings. The quasi-ideals are generalization of left ideals and right ideals whereas the bi-ideals are the generalization of quasi-ideals. The properties of fuzzy subquasi semigroup of a quasigroup were investigated by W. A. Dudek in [7]. S. Kar and P. Sarkar considered the fuzzy quasi-ideals and fuzzy bi-ideals of a ternary semigroup in [16].

The notion of i-v fuzzy set was introduced by L. A. Zadeh in 1975 [29]. Later on, I. Grattan-Guiness [12], K. U. Jahn [14] and R. Sambuc [23] studied the i-v fuzzy sets and they regarded this kind of fuzzy sets as a generalization of the ordinary fuzzy set. In fact, i-v fuzzy sets (in short, IVFS) are defined in terms of i-v membership functions.

After the i-v fuzzy sets have been introduced (see [3], [4], [5], [6], [13], [15], [17], [20], [21], [27]), some theories related with i-v fuzzy sets have been developed. There are natural ways to fuzzify various algebraic structures and the approaches

have already been extensively studied in the literature. In particular, A. Rosenfeld [22] studied the fuzzy subgroups in 1971. Also, N. Kuroki in 1979 [19] further mentioned the fuzzy semigroups. In 1993, J. Ahsan, K. Saifullah and M. Farid Khan [1] introduced the fuzzy semirings. Recently, many interesting results of semirings have been obtained and given by using the context of fuzzy sets.

In this paper, we first introduce i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of a semiring. Then, we proceed to characterize the regular and intra-regular semirings by using the i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of the semirings. Our study of i-v fuzzy quasi-ideals in this paper is a continued study of our recent work on i-v fuzzy ideals of a semigroup [18].

2. Preliminaries

Definition 2.1 ([10]). A non-empty set S together with two binary operations '+' and '.' is said to be a semiring if (i) (S, +) is an abelian semigroup; (ii) (S, \cdot) is a semigroup and (iii) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in S$.

Let $(S, +, \cdot)$ be a semiring. If there exists an element ${}^{0}O_{S} \in S$ such that $a + 0_{S} = a = 0_{S} + a$ and $a \cdot 0_{S} = 0_{S} = 0_{S} \cdot a$ for all $a \in S$; then ${}^{0}O_{S}$ is called the zero element of S.

Throughout this paper, we consider a semiring $(S, +, \cdot)$ with a zero element '0_S'. Unless otherwise stated, a semiring $(S, +, \cdot)$ will be simply denoted by S and the multiplication ' \cdot ' will be denoted by juxtaposition. In this paper, by the product AB of two subsets A and B of a semiring S, we mean the finite sum $\sum_{i=1}^{n} a_i b_i$, for

some $a_i \in A$, $b_i \in B$ and $n \in \mathbb{Z}^+$.

Definition 2.2 ([15]). An interval number on [0, 1], denoted by \tilde{a} , is defined as the closed subinterval of [0, 1], where $\tilde{a} = [a^-, a^+]$ satisfying $0 \le a^- \le a^+ \le 1$.

For any two interval numbers $\tilde{a} = [a^-, a^+]$ and $\tilde{b} = [b^-, b^+]$, we define the followings:

(i) $\widetilde{a} \leq \widetilde{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$.

(ii) $\tilde{a} = \tilde{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$.

(iii) $\tilde{a} < \tilde{b}$ if and only if $\tilde{a} \neq \tilde{b}$ and $\tilde{a} \leq \tilde{b}$.

Note 2.3. We write $\tilde{a} \geq \tilde{b}$ whenever $\tilde{b} \leq \tilde{a}$ and $\tilde{a} > \tilde{b}$ whenever $\tilde{b} < \tilde{a}$. We denote the interval number [0,0] by $\tilde{0}$ and [1,1] by $\tilde{1}$.

Definition 2.4 ([6]). Let $\{\widetilde{a_i} : i \in \Lambda\}$ be a family of interval numbers, where $\widetilde{a_i} = [a_i^-, a_i^+]$. Then we define $\sup_{i \in \Lambda} \{\widetilde{a_i}\} = [\sup_{i \in \Lambda} a_i^-, \sup_{i \in \Lambda} a_i^+]$ and $\inf_{i \in \Lambda} \{\widetilde{a_i}\} = [\inf_{i \in \Lambda} a_i^-, \inf_{i \in \Lambda} a_i^+]$.

We denote the set of all interval numbers on [0, 1] by D[0, 1]. Let us recall the following known definitions.

Definition 2.5 ([28]). Let S be a non-empty set. Then a mapping $\mu : S \longrightarrow [0,1]$ is called a fuzzy subset of S.

Definition 2.6 ([29]). Let S be a non-empty set. Then, a mapping $\tilde{\mu} :\longrightarrow D[0,1]$ is called an i-v fuzzy subset of S.

Note 2.7 ([8]). We can write $\tilde{\mu}(x) = [\mu^-(x), \mu^+(x)]$ for all $x \in S$, for any *i*-v fuzzy subset $\tilde{\mu}$ of a non-empty set S, where μ^- and μ^+ are some fuzzy subsets of S.

We state below several definitions which will be useful in further study of this paper.

Definition 2.8 ([8]). Let $\widetilde{\mu_1}$ and $\widetilde{\mu_2}$ be two i-v fuzzy subsets of a set $X \neq \emptyset$. Then $\widetilde{\mu_1}$ is said to be subset of $\widetilde{\mu_2}$, denoted by $\widetilde{\mu_1} \subseteq \widetilde{\mu_2}$ if $\widetilde{\mu_1}(x) \leq \widetilde{\mu_2}(x)$ i.e. $\mu_1^-(x) \leq \mu_2^-(x)$ and $\mu_1^+(x) \leq \mu_2^+(x)$, for all $x \in X$ where $\widetilde{\mu_1}(x) = [\mu_1^-(x), \mu_1^+(x)]$ and $\widetilde{\mu_2}(x) = [\mu_2^-(x), \mu_2^+(x)]$.

Definition 2.9 ([15]). The interval Min-norm is a function $Min^i : D[0,1] \times D[0,1] \longrightarrow D[0,1]$, defined by :

 $Min^i(\tilde{a}, \tilde{b}) = [min(a^-, b^-), min(a^+, b^+)]$ for all $\tilde{a}, \tilde{b} \in D[0, 1]$, where $\tilde{a} = [a^-, a^+]$ and $\tilde{b} = [b^-, b^+]$.

Definition 2.10 ([8]). The interval Max-norm is a function $Max^i : D[0,1] \times D[0,1] \longrightarrow D[0,1]$, defined by : $Max^i(\tilde{a},\tilde{b}) = [max(a^-,b^-),max(a^+,b^+)]$ for all $\tilde{a}, \tilde{b} \in D[0,1]$, where $\tilde{a} = [a^-,a^+]$ and $\tilde{b} = [b^-,b^+]$.

Definition 2.11 ([8]). Let $X \neq \emptyset$ be a set and $A \subseteq X$. Then the i-v characteristic function $\tilde{\chi}_A$ of A is an i-v fuzzy subset of X which is defined as follows :

$$\widetilde{\chi}_A(x) = \begin{cases} \widetilde{1} & \text{when} \quad x \in A. \\ \widetilde{0} & \text{when} \quad x \notin A. \end{cases}$$

Definition 2.12. Let $\widetilde{\mu_1}$ and $\widetilde{\mu_2}$ be two i-v fuzzy subsets of a non-empty set X. Then we define their intersection and union by $(\widetilde{\mu_1} \cap \widetilde{\mu_2})(x) = Min^i(\widetilde{\mu_1}(x), \widetilde{\mu_2}(x))$ and $(\widetilde{\mu_1} \cup \widetilde{\mu_2})(x) = Max^i(\widetilde{\mu_1}(x), \widetilde{\mu_2}(x))$ for all $x \in X$.

The following results can be easily observed.

Lemma 2.13. Let S be a non-empty set and A, B be two subsets of S. Then $\widetilde{\chi}_A \cup \widetilde{\chi}_B = \widetilde{\chi}_{A \cup B}$ and $\widetilde{\chi}_A \cap \widetilde{\chi}_B = \widetilde{\chi}_{A \cap B}$.

Lemma 2.14 ([9]). Let A and B be two non-empty subsets of a semiring S. Then $\tilde{\chi}_A \tilde{\chi}_B = \tilde{\chi}_{AB}$.

We first state the definition of a fuzzy point in a semiring S.

Definition 2.15 ([8]). Let S be a semiring and $x \in S$. Let $\tilde{a} \in D[0,1] \setminus \{0\}$. Then an i-v fuzzy subset $x_{\tilde{a}}$ of S is called an i-v fuzzy point of S if

$$x_{\widetilde{a}}(y) = \begin{cases} \widetilde{a} & if \ x = y, \\ \widetilde{0} & otherwise. \end{cases}$$

We now state the definitions of i-v fuzzy left(right) ideals of a semiring.

Definition 2.16 ([9]). Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S (i.e. $\tilde{\mu}(x) \neq \tilde{0}$ for some $x \in S$). Then $\tilde{\mu}$ is called an i-v fuzzy left (resp. i-v fuzzy right) ideal of S if the following conditions hold.

(i) $\widetilde{\mu}(x+y) \ge Min^i(\widetilde{\mu}(x), \ \widetilde{\mu}(y))$

(ii) $\widetilde{\mu}(xy) \ge \widetilde{\mu}(y)$ [resp. $\widetilde{\mu}(xy) \ge \widetilde{\mu}(x)$], for all $x, y \in S$.

An i-v fuzzy ideal of a semiring S is a non-empty i-v fuzzy subset of S which is an i-v fuzzy left ideal as well as an i-v fuzzy right ideal of S.

Definition 2.17 ([9]). Let $\widetilde{\mu_1}$ and $\widetilde{\mu_2}$ be two i-v fuzzy subsets of a semiring S. Then their product, denoted by $\widetilde{\mu_1 \mu_2}$, is defined by :

$$(\widetilde{\mu_{1}}\widetilde{\mu_{2}})(x) = \begin{cases} \sup\left\{ \inf_{1 \le i \le n} \left\{ Min^{i} \left(\widetilde{\mu_{1}}(u_{i}), \ \widetilde{\mu_{2}}(v_{i}) \right) \right\} : x = \sum_{i=1}^{n} u_{i}v_{i}; \\ u_{i}, v_{i} \in S, n \in \mathbb{Z}^{+} \right\}; \\ \widetilde{0} \qquad \text{if } x \text{ can not be expressed as} \quad x = \sum_{i=1}^{n} u_{i}v_{i}; \text{ for any } u_{i}, v_{i} \in S \end{cases}$$

Throughout this paper, we assume that any two interval numbers in D[0, 1] are comparable, i.e. for any two interval numbers \tilde{a} and \tilde{b} in D[0, 1], we have either $\tilde{a} \leq \tilde{b}$ or $\tilde{a} > \tilde{b}$.

3. I-V FUZZY QUASI-IDEALS OF A SEMIRING

We begin with the following definition of i-v fuzzy quasi-ideal of a semiring. Some properties of the quasi subsemigroups of a quasigroup have already been studied in [7].

Definition 3.1. A non-empty i-v fuzzy subset $\tilde{\mu}$ of a semiring S is said to be an i-v fuzzy quasi-ideal of S if for any $x, y \in S$, $\tilde{\mu}(x + y) \geq Min^{i}(\tilde{\mu}(x), \tilde{\mu}(y))$ and $\tilde{\mu}\tilde{\chi}_{S} \cap \tilde{\chi}_{S}\tilde{\mu} \subseteq \tilde{\mu}$.

Lemma 3.2. For any three *i*-v fuzzy subsets $\widetilde{\mu_1}, \widetilde{\mu_2}, \widetilde{\mu_3}$ of a semiring S, we have the following properties :

(i) $\widetilde{\mu_1}(\widetilde{\mu_2} \cup \widetilde{\mu_3}) = (\widetilde{\mu_1}\widetilde{\mu_2}) \cup (\widetilde{\mu_1}\widetilde{\mu_3}); (\widetilde{\mu_2} \cup \widetilde{\mu_3})\widetilde{\mu_1} = (\widetilde{\mu_2}\widetilde{\mu_1}) \cup (\widetilde{\mu_3}\widetilde{\mu_1})$ (ii) $\widetilde{\mu_1}(\widetilde{\mu_2} \cap \widetilde{\mu_3}) \subseteq (\widetilde{\mu_1}\widetilde{\mu_2}) \cap (\widetilde{\mu_1}\widetilde{\mu_3}); (\widetilde{\mu_2} \cap \widetilde{\mu_3})\widetilde{\mu_1} \subseteq (\widetilde{\mu_2}\widetilde{\mu_1}) \cap (\widetilde{\mu_3}\widetilde{\mu_1}).$

For i-v fuzzy quasi-ideals of a semiring S, we have the following lemmas.

Lemma 3.3. A non-empty subset A of a semiring S is a quasi-ideal of S if and only if $\tilde{\chi}_A$ is an *i*-v fuzzy quasi-ideal of S.

Lemma 3.4. Let S be a semiring. Then the following statements hold.

(i) Every i-v fuzzy left (or right) ideal of S is an i-v fuzzy quasi-ideal of S.

(ii) The intersection of an i-v fuzzy left ideal and an i-v fuzzy right ideal of S is an i-v fuzzy quasi-ideal of S.

(iii) If $\tilde{\mu}$ be a non-empty *i*-v fuzzy subset of S, then $\tilde{\chi}_S \tilde{\mu}$ is an *i*-v fuzzy left ideal, $\tilde{\mu} \tilde{\chi}_S$ is an *i*-v fuzzy right ideal, $\tilde{\chi}_S \tilde{\mu} \tilde{\chi}_S$ is an *i*-v fuzzy ideal and $\tilde{\chi}_S \tilde{\mu} \cap \tilde{\mu} \tilde{\chi}_S$ is an *i*-v fuzzy quasi-ideal of S.

Note 3.5. It can be easily seen that each *i*-v fuzzy left ideal or an *i*-v fuzzy right ideal of a semiring S is an *i*-v fuzzy quasi-ideal of S. But the converse is in general not true. We have the following example.

Example 3.6. We consider the semiring $S = M_2(\mathbb{N}_0)$ with respect to the usual addition and multiplication of matrices. Suppose that P is the set

$$P = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{N}_0) \right\}.$$
 Now we define an i-v fuzzy subset
$$\widetilde{\mu} : M_2(\mathbb{N}_0) \longrightarrow D[0, 1] \text{ by}$$
$$\widetilde{\mu}(A) = \begin{cases} [0.8, 0.9] & \text{when } A \in P; \\ [0.3, 0.4] & \text{otherwise.} \end{cases}$$

We can easily check that $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S but is not an i-v fuzzy left ideal and an i-v fuzzy right ideal of S either.

We state the following proposition concerning the i-v fuzzy quasi-ideals of a semiring.

Proposition 3.7. Let $x_{\tilde{a}}$ and $y_{\tilde{b}}$ be two idempotent *i*-v fuzzy points of a semiring S. Also let $\tilde{\mu}$ and $\tilde{\theta}$ be an *i*-v fuzzy left ideal and *i*-v fuzzy right ideal of S, respectively. Then, we deduce the following equalities:

 $x_{\tilde{a}}\tilde{\mu} = x_{\tilde{a}}\tilde{\chi}_{S} \cap \tilde{\mu}, \ \tilde{\theta}y_{\tilde{b}} = \tilde{\chi}_{S}y_{\tilde{b}} \cap \tilde{\theta}, \ x_{\tilde{a}}\tilde{\chi}_{S}y_{\tilde{b}} = x_{\tilde{a}}\tilde{\chi}_{S} \cap \tilde{\chi}_{S}y_{\tilde{b}} \ and \ so \ each \ of \ these \ i-v \ fuzzy \ subsets \ is \ an \ i-v \ fuzzy \ quasi-ideal \ of \ S.$

Proof. We first prove that $x_{\tilde{a}}\tilde{\mu} = x_{\tilde{a}}\tilde{\chi}_S \cap \tilde{\mu}$. Clearly, $x_{\tilde{a}}\tilde{\mu} \subseteq x_{\tilde{a}}\tilde{\chi}_S$. Also since $\tilde{\mu}$ is an i-v fuzzy left ideal of S, we have $x_{\tilde{a}}\tilde{\mu} \subseteq \tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\mu}$. It hence follows that $x_{\tilde{a}}\tilde{\mu} \subseteq x_{\tilde{a}}\tilde{\chi}_S \cap \tilde{\mu}$. For the reverse inclusion, we let $u \in S$. Then, we have

$$(x_{\tilde{a}}x_{\tilde{a}})(y) = \sup_{\substack{m \\ y=\sum_{i=1}^{m} p_{i}q_{i}}} \left\{ \inf_{1 \le i \le m} \{ Min^{i}(x_{\tilde{a}}(p_{i}), x_{\tilde{a}}(q_{i})) \} \right\}.$$
 If $(x_{\tilde{a}}x_{\tilde{a}})(y) = \tilde{a}$, then

there exists at least one expression $y = \sum_{i=1}^{m} p_i q_i$, for which $\inf_{1 \le i \le m} \{ Min^i(x_{\widetilde{a}}(p_i), x_{\widetilde{a}}(q_i)) \} = \widetilde{a}.$ $\implies Min^i(x_{\widetilde{a}}(p_i), x_{\widetilde{a}}(q_i)) = \widetilde{a} \text{ for each } 1 \le i \le m, \text{ where } y = \sum_{i=1}^{m} p_i q_i.$ $\implies p_i = x = q_i \text{ for each } 1 \le i \le m, \text{ where } y = \sum_{i=1}^{m} p_i q_i.$

Now $x_{\tilde{a}}(y) = (x_{\tilde{a}}x_{\tilde{a}})(y)$ implies that y = x. Hence, we have $x = \sum_{i=1}^{m} p_i q_i$. Thus we get $x = \sum_{i=1}^{m} x^2$. Let $z \in S$. Then $(x_{\tilde{a}}\tilde{\chi}_S \cap \tilde{\mu})(z) = Min^i ((x_{\tilde{a}}\tilde{\chi}_S)(z), \tilde{\mu}(z))$. Let T be the set

$$T = \left\{ \sum_{i=1}^{n} a_i b_i : a_i, b_i \in S; n \in \mathbb{N} \right\}$$

<u>CaseI</u>: If $z \notin T$, then $(x_{\tilde{a}} \tilde{\chi}_S)(z) = \tilde{0}$. Therefore, $(x_{\tilde{a}} \tilde{\chi}_S \cap \tilde{\mu})(z) = \tilde{0}$ and also $(x_{\tilde{a}} \tilde{\mu})(z) = \tilde{0}$.

<u>*CaseII*</u> : Let $z \in T$. Then, we have

$$\begin{aligned} (x_{\widetilde{a}}\widetilde{\chi}_{S}\cap\widetilde{\mu})(z) &= Min^{i} \Big(\sup_{\substack{n \\ z = \sum_{i=1}^{n} a_{i}b_{i}} \left\{ \inf_{1 \leq i \leq n} Min^{i}(x_{\widetilde{a}}(a_{i}),\widetilde{\chi}_{S}(b_{i})) \right\}, \widetilde{\mu}(z) \Big) \\ &= Min^{i} \Big(\sup_{\substack{n \\ z = \sum_{i=1}^{n} a_{i}b_{i}} \left\{ \inf_{1 \leq i \leq n} \{x_{\widetilde{a}}(a_{i})\} \right\}, \widetilde{\mu}(z) \Big). \end{aligned}$$

Now, we let T_1 be the set $T_1 = \left\{ \sum_{i=1}^n a_i b_i \in T : a_i = x \text{ for all } 1 \le i \le n \right\}$. If $z \in T_1$, then, $(x_{\widetilde{a}} \widetilde{\chi}_S \cap \widetilde{\mu})(z) = Min^i(\widetilde{a}, \widetilde{\mu}(z))$. Again, $z \in T_1 \Longrightarrow z = \sum_{i=1}^n xb_i = x \sum_{i=1}^n b_i = (\sum_{i=1}^m x^2) \sum_{i=1}^n b_i = \sum_{i=1}^m x(x \sum_{i=1}^n b_i)$. Therefore, $(x_{\widetilde{a}} \widetilde{\mu})(z) \ge \inf_{1 \le i \le m} \left\{ Min^i \left(x_{\widetilde{a}}(x), \widetilde{\mu}(\sum_{i=1}^n xb_i) \right) \right\}$ $= \inf_{1 \le i \le m} \left\{ Min^i \left(\widetilde{a}, \widetilde{\mu}(z) \right) \right\} = Min^i(\widetilde{a}, \widetilde{\mu}(z)) = (x_{\widetilde{a}} \widetilde{\chi}_S \cap \widetilde{\mu})(z).$

If $z \in T \setminus T_1$, then $(x_{\widetilde{a}} \widetilde{\chi}_S \cap \widetilde{\mu})(z) = \widetilde{0} = (x_{\widetilde{a}} \widetilde{\mu})(z)$. Thus we get $x_{\widetilde{a}} \widetilde{\chi}_S \cap \widetilde{\mu} \subseteq x_{\widetilde{a}} \widetilde{\mu}$. Consequently, $x_{\widetilde{a}} \widetilde{\mu} = x_{\widetilde{a}} \widetilde{\chi}_S \cap \widetilde{\mu}$.

Again, we see that $x_{\tilde{a}}\tilde{\mu}$ is an intersection of an i-v fuzzy left ideal and an i-v fuzzy right ideal of S. Hence $x_{\tilde{a}}\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S, by Lemma 3.4 (ii).

Similarly, we can prove that $\tilde{\theta}y_{\tilde{b}} = \tilde{\chi}_S y_{\tilde{b}} \cap \tilde{\theta}$ and $\tilde{\theta}y_{\tilde{b}}$ is an i-v fuzzy quasi-ideal of S, where $\tilde{\theta}$ is an i-v fuzzy right ideal of S and $y_{\tilde{b}}$ is an idempotent i-v fuzzy point of S.

Now, $x_{\tilde{a}}\tilde{\chi}_{S}y_{\tilde{b}} \subseteq x_{\tilde{a}}\tilde{\chi}_{S}\tilde{\chi}_{S} \subseteq x_{\tilde{a}}\tilde{\chi}_{S}$. Also, $x_{\tilde{a}}\tilde{\chi}_{S}y_{\tilde{b}} \subseteq \tilde{\chi}_{S}\tilde{\chi}_{S}y_{\tilde{b}} \subseteq \tilde{\chi}_{S}y_{\tilde{b}}$. This implies that $x_{\tilde{a}}\tilde{\chi}_{S}y_{\tilde{b}} \subseteq x_{\tilde{a}}\tilde{\chi}_{S} \cap \tilde{\chi}_{S}y_{\tilde{b}}$. To prove the reverse inclusion, let $t \in S$. Since, $x_{\tilde{a}}$ and $y_{\tilde{b}}$ are both idempotent, we have $x = \sum_{i=1}^{m_{1}} x^{2}$ and $y = \sum_{j=1}^{m_{2}} y^{2}$ for some $m_{1}, m_{2} \in \mathbb{N}$. If t can not be expressed as $t = \sum_{i=1}^{n_{1}} a_{i}b_{i}$, for any $a_{i}, b_{i} \in S$, then $(x_{\tilde{a}}\tilde{\chi}_{S} \cap \tilde{\chi}_{S}y_{\tilde{b}})(t) = \tilde{0} = (x_{\tilde{a}}\tilde{\chi}_{S}y_{\tilde{b}})(t)$. Now, Suppose that $t = \sum_{i=1}^{n_{1}} a_{i}b_{i}$, for some $a_{i}, b_{i} \in S$. Then

$$\begin{aligned} & (x_{\widetilde{a}}\widetilde{\chi}_{S}\cap\widetilde{\chi}_{S}y_{\widetilde{b}})(t) \\ &= Min^{i}\Big((x_{\widetilde{a}}\widetilde{\chi}_{S})(t),(\widetilde{\chi}_{S}y_{\widetilde{b}})(t)\Big) \\ &= Min^{i}\Big(\sup_{i=1}^{n_{1}} \Big\{\inf_{1\leq i\leq n_{1}}\{Min^{i}(x_{\widetilde{a}}(a_{i}),\widetilde{\chi}_{S}(b_{i}))\}\Big\}, \\ & t = \sum_{i=1}^{n_{1}} a_{i}b_{i} \\ &= Min^{i}\Big(\sup_{t=1}^{n_{1}} \Big\{\inf_{1\leq i\leq n_{1}}\{x_{\widetilde{a}}(a_{i})\}\Big\}, \sup_{t=1}^{n_{1}} \Big\{\inf_{1\leq i\leq n_{1}}\{y_{\widetilde{b}}(b_{i})\}\Big\}\Big) \\ & t = \sum_{i=1}^{n_{1}} a_{i}b_{i} \\ & t = \sum_{i=1}^{n_{1}} a_{i}b_{i} \\ & t = \sum_{i=1}^{n_{1}} a_{i}b_{i} \\ & \text{Now if } a_{i} = x \text{ and } b_{i} = y \text{ for each } 1 \leq i \leq n_{1}, \text{ then} \end{aligned}$$

Now if $a_i = x$ and $b_i = y$ for each $1 \le i \le n_1$, then $(x_{\widetilde{a}}\widetilde{\chi}_S \cap \widetilde{\chi}_S y_{\widetilde{b}})(t) = Min^i \left(\inf_{1\le i\le n_1} \{x_{\widetilde{a}}(x)\}, \inf_{1\le i\le n_1} \{y_{\widetilde{b}}(y)\}\right) = Min^i(\widetilde{a}, \widetilde{b}).$ Again, $a_i = x$ and $b_i = y$ for each $1\le i\le n_1$ implies that $t = \sum_{i=1}^{n_1} xy = \sum_{i=1}^{n_1} (\sum_{i=1}^{m_1} x^2)(\sum_{j=1}^{m_2} y^2).$ Then,

we deduce that

$$\begin{split} (x_{\widetilde{a}}\widetilde{\chi}_{S}y_{\widetilde{b}})(t) &= \sup_{\substack{k \\ i \leq i \leq k}} \left\{ \min^{i}(x_{\widetilde{a}}\widetilde{\chi}_{S})(a_{i}), y_{\widetilde{b}}(b_{i})) \right\} \right\} \\ &= \sum_{i=1}^{k} a_{i}b_{i} \\ &\geq \inf_{1 \leq i \leq n_{1}} \left\{ Min^{i}((x_{\widetilde{a}}\widetilde{\chi}_{S})(\sum_{i=1}^{m_{1}}x^{2}), y_{\widetilde{b}}(\sum_{j=1}^{m_{2}}y^{2})) \right\} \\ &\geq \inf_{1 \leq i \leq n_{1}} \left\{ Min^{i}\Big(\inf_{1 \leq i \leq m_{1}} Min^{i}(x_{\widetilde{a}}(x), \widetilde{\chi}_{S}(x)), y_{\widetilde{b}}(y) \Big) \right\} \\ &= Min^{i}(\widetilde{a}, \widetilde{b}) = (x_{\widetilde{a}}\widetilde{\chi}_{S} \cap \widetilde{\chi}_{S}y_{\widetilde{b}})(t). \end{split}$$

Now let us consider the case where $a_i \neq x$ or, $b_i \neq y$ for some $1 \leq i \leq n_1$. Then $(x_{\widetilde{a}}\widetilde{\chi}_S \cap \widetilde{\chi}_S y_{\widetilde{b}})(t)$

$$= Min^{i} \left(\sup_{\substack{n_{1} \\ i \leq i \leq n_{1}}} \left\{ \inf_{\substack{1 \leq i \leq n_{1}}} \{ x_{\widetilde{a}}(a_{i}) \} \right\}, \sup_{\substack{n_{1} \\ i \leq i \leq n_{1}}} \left\{ \inf_{\substack{1 \leq i \leq n_{1}}} \{ y_{\widetilde{b}}(b_{i}) \} \right\} \right)$$
$$= \widetilde{0} \leq (x_{\widetilde{a}} \widetilde{\chi}_{S} y_{\widetilde{b}})(t).$$

This implies that $(x_{\tilde{a}}\tilde{\chi}_S \cap \tilde{\chi}_S y_{\tilde{b}}) \subseteq (x_{\tilde{a}}\tilde{\chi}_S y_{\tilde{b}})$. Consequently, we get that $(x_{\tilde{a}}\tilde{\chi}_S \cap \tilde{\chi}_S y_{\tilde{b}}) = x_{\tilde{a}}\tilde{\chi}_S y_{\tilde{b}}$. Being an intersection of i-v fuzzy left ideal and i-v fuzzy right ideal, $x_{\tilde{a}} \tilde{\chi}_S y_{\tilde{b}}$ is an i-v fuzzy quasi-ideal of S.

Definition 3.8. Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S. The intersection of all i-v fuzzy left ideals of S containing $\tilde{\mu}$ is said to be the i-v fuzzy

left ideal of S generated by $\tilde{\mu}$ and it is denoted by $(\tilde{\mu})_l$. The i-v fuzzy right ideal $(\tilde{\mu})_r$ and i-v fuzzy quasi-ideal $(\tilde{\mu})_q$ of S, generated by $\tilde{\mu}$ can be defined similarly. **Definition 3.9.** Let $\tilde{\mu}$ be an i-v fuzzy subset of a semiring S. We define an i-v fuzzy subset $< \tilde{\mu} >$ of S by $< \tilde{\mu} > (x) = \sup \left\{ \inf_{1 \leq i \leq n} \{ \tilde{\mu}(a_i) \} : x = \sum_{i=1}^n a_i, a_i \in S; n \in \mathbb{N} \right\}$, for all $x \in S$. **Lemma 3.10.** Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S. Then (i) $(\tilde{\mu})_l = < \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} >$, (ii) $(\tilde{\mu})_r = < \tilde{\mu} \cup \tilde{\mu} \tilde{\chi}_S >$ and (iii) $(\tilde{\mu})_q = < \tilde{\mu} \cup (\tilde{\mu} \tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) >$. *Proof.* (i) We first prove that $< \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} >$ is an i-v fuzzy left ideal of S containing $\tilde{\mu}$.

Let $x = \sum_{i=1}^{m} a_i$ and $y = \sum_{j=1}^{n} b_j$ for some $a_i, b_j \in S$, where $1 \le i \le m$ and $1 \le j \le n$. Then

$$\begin{split} &< \widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu} > (x+y) \\ &= \sup \Big\{ \inf_{1 \leq i \leq m_{1}} \{ (\widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu})(c_{i}) \} : x+y = \sum_{i=1}^{m_{1}} c_{i} \Big\} \\ &\geq \sup \Big\{ Min^{i} \Big(\inf_{1 \leq i \leq m} (\widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu})(a_{i}), \inf_{1 \leq j \leq n} (\widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu})(b_{j}) \Big) : x = \sum_{i=1}^{m} a_{i}, y = \sum_{j=1}^{n} b_{j} \Big) \Big\} \\ &\geq Min^{i} \Big(< \widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu} > (x), < \widetilde{\mu} \cup \widetilde{\chi}_{S} \widetilde{\mu} > (y) \Big). \end{split}$$

Now $\widetilde{\chi}_{S}(\widetilde{\mu}\cup\widetilde{\chi}_{S}\widetilde{\mu}) = \widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\mu}\subseteq\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\chi}_{S}\widetilde{\mu}=\widetilde{\chi}_{S}\widetilde{\mu}\subseteq\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}$. This implies that $<\widetilde{\chi}_{S}(\widetilde{\mu}\cup\widetilde{\chi}_{S}\widetilde{\mu})>\subseteq<\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}>$. Therefore, $<\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}>$ is an i.v. fuzzy left ideal of S and clearly, it contains $\widetilde{\mu}$. Let $z\in S$ and IFL(S) be the set of all i-v fuzzy left ideals of S. Then $(\widetilde{\mu})_{l}(z) = \begin{pmatrix} \cap & \widetilde{\theta} \\ \widetilde{\mu}\subseteq\widetilde{\theta}\in IFL(S) \end{pmatrix}(z) = \inf_{\widetilde{\mu}\subseteq\widetilde{\theta}\in IFL(S)} \widetilde{\theta}(z) \le<\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}>(z),$ since $<\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}>$ is an i-v fuzzy left ideal of S containing $\widetilde{\mu}$. Thus we obtain that $(\widetilde{\mu})_{l}\subseteq<\widetilde{\chi}_{S}\widetilde{\mu}\cup\widetilde{\mu}>$. Again $(\widetilde{\mu})_{l}(z) = \begin{pmatrix} \cap & \widetilde{\theta} \\ \widetilde{\mu}\subseteq\widetilde{\theta}\in IFL(S) \end{pmatrix}(z) = \inf_{\widetilde{\mu}\subseteq\widetilde{\theta}\in IFL(S)} \widetilde{\theta}(z) \ge \lim_{\widetilde{\mu}\subseteq\widetilde{\theta}\in IFL(S)} \widetilde{\theta}(z) \ge \lim_{\widetilde{\mu}\widetilde{\theta}\in\widetilde{\theta}\in IFL(S)} \widetilde{\theta}(z) \ge \lim_{\widetilde{\mu}\widetilde{\theta}\in\widetilde{\theta}\in\widetilde{\theta}(z) \le \widetilde{\theta}(z) \ge \widetilde{\theta}(z$

(ii) Proof of this part is similar to (i).

(iii) We first prove $\langle \widetilde{\mu} \cup (\widetilde{\mu}\widetilde{\chi}_S \cap \widetilde{\chi}_S \widetilde{\mu}) \rangle$ is an i-v fuzzy quasi-ideal of S containing $\widetilde{\mu}$. We have $\langle \widetilde{\mu} \cup (\widetilde{\mu}\widetilde{\chi}_S \cap \widetilde{\chi}_S \widetilde{\mu}) \rangle = \langle (\widetilde{\mu} \cup \widetilde{\mu}\widetilde{\chi}_S) \cap (\widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu}) \rangle = \langle \widetilde{\mu} \cup \widetilde{\mu}\widetilde{\chi}_S \rangle$ $\cap \langle \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \rangle$. Now, $\langle \widetilde{\mu} \cup \widetilde{\mu}\widetilde{\chi}_S \rangle$ and $\langle \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \rangle$ are i-v fuzzy left ideal and i-v fuzzy right ideal of S containing $\widetilde{\mu}$ respectively. Therefore, $\langle \widetilde{\mu} \cup (\widetilde{\mu}\widetilde{\chi}_S \cap \widetilde{\chi}_S \widetilde{\mu}) \rangle$ is an intersection of i-v fuzzy left ideal and an i-v fuzzy right ideal of S respectively 428 and clearly, it contains $\tilde{\mu}$. Thus, $\langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle$ is an i-v fuzzy quasi-ideal of S containing $\tilde{\mu}$. Suppose that IFQ(S) denotes the set of all i-v fuzzy quasi-ideals of S. Let $x \in S$. Then $(\tilde{\mu})_q(x) = (\bigcap_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} \tilde{\theta})(x) = \inf_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} \tilde{\theta}(x) \leq \langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle \langle x \rangle$, since $\langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle$ is an i-v fuzzy quasi-ideal of S containing $\tilde{\mu}$. This implies that $(\tilde{\mu})_q \subseteq \langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle$. Again, $(\tilde{\mu})_q(x) = (\bigcap_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} \tilde{\theta})(x) = \inf_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} \tilde{\theta}(x) = \inf_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} (\tilde{\mu} \cup (\tilde{\theta}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu})) \rangle \langle x \rangle \geq \inf_{\tilde{\mu} \subseteq \tilde{\theta} \in IFQ(S)} (\tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}))(x) = (\tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}))(x)$. So, $\tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \subseteq \tilde{\mu}_S \tilde{\mu} \subseteq \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle \langle x \rangle = (\tilde{\mu})_q$. Thus we obtain that $(\tilde{\mu})_q = \langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle$.

Definition 3.11 ([10]). An element 'a' of a semiring S is said to be regular if there exists an element $x \in S$ such that a = axa. A semiring S is said to be regular if its every element is regular.

The following theorem is known in regular semirings.

Theorem 3.12 ([9]). A semiring S is regular if and only if $\tilde{\mu}\tilde{\theta} = \tilde{\mu} \cap \tilde{\theta}$ for any *i*-v fuzzy right ideal $\tilde{\mu}$ and *i*-v fuzzy left ideal $\tilde{\theta}$ of S.

Theorem 3.13. The following statements are equivalent in a semiring S.

(i) S is regular.

(ii) For each *i*-v fuzzy right ideal $\widetilde{\mu}$ and *i*-v fuzzy left ideal $\widetilde{\theta}$ of S, $\widetilde{\mu}\widetilde{\theta} = \widetilde{\mu} \cap \widetilde{\theta}$.

(iii) For each *i*-v fuzzy right ideal $\tilde{\mu}$ and each *i*-v fuzzy left ideal $\tilde{\theta}$ of S, a) $\tilde{\mu}^2 = \tilde{\mu}$, b) $\tilde{\theta}^2 = \tilde{\theta}$, c) $\tilde{\mu}\tilde{\theta}$ is an *i*-v fuzzy quasi-ideal of S.

(iv) The set IFQ(S) of all *i*-v fuzzy quasi-ideals of S forms a regular semigroup with respect to the usual product of *i*-v fuzzy subsets of S.

(v) Each *i*-v fuzzy quasi-ideal $\tilde{\eta}$ of S satisfies $\tilde{\eta} = \tilde{\eta} \tilde{\chi}_S \tilde{\eta}$.

The statements (iii)(a) and (iii)(b) imply that each i-v fuzzy quasi-ideal $\tilde{\eta}$ of S can be written as the intersection of an i-v fuzzy left ideal and an i-v fuzzy right ideal of S, since it satisfies $\tilde{\eta} = \tilde{\chi}_S \tilde{\eta} \cap \tilde{\eta} \tilde{\chi}_S$.

The proof of this theorem is straightforward. We hence omit the proof.

In the following theorem, we study the type of i-v fuzzy quasi-ideals in a regular semiring S.

Theorem 3.14. The following statements are equivalent in a semiring S.

(i) µθ = µ∩θ ⊆ θµ for any i-v fuzzy right ideal µ and i-v fuzzy left ideal θ of S.
(ii) IFQ(S) forms an idempotent semigroup with respect the usual product of i-v fuzzy subsets of S.

(iii) $\tilde{\eta} = \tilde{\eta}^2$ for any *i*-v fuzzy quasi-ideal $\tilde{\eta}$ of S.

Proof. (i) \implies (ii) : Suppose that (i) hold. Then it follows from Theorem 3.13 that IFQ(S) forms a regular semigroup with respect to the usual product of the i-v fuzzy subsets of S. It remains to prove that IFQ(S) is idempotent. Let $\tilde{\eta} \in IFQ(S)$.

Then, by Theorem 3.13, we get that $\tilde{\eta} = \tilde{\eta} \tilde{\chi}_S \tilde{\eta}$. Thus, we obtain that :

- $$\begin{split} \widetilde{\eta} &= \widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\eta} \\ &= (\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\eta})\widetilde{\chi}_{S}(\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\eta}) \\ &= \widetilde{\eta}\widetilde{\chi}_{S}(\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta})\widetilde{\chi}_{S}\widetilde{\eta} \quad (\text{since, by Theorem 3.13, } \widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta} \subseteq \widetilde{\chi}_{S}\widetilde{\eta} = \widetilde{\chi}_{S}\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\eta} \subseteq \widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta}) \\ &= \widetilde{\eta}\widetilde{\chi}_{S}(\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta})\widetilde{\chi}_{S}\widetilde{\eta} \quad (\text{since, by Theorem 3.13, } \widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta} \subseteq \widetilde{\chi}_{S}\widetilde{\eta} = \widetilde{\chi}_{S}\widetilde{\eta}\widetilde{\chi}_{S}\widetilde{\eta} \subseteq \widetilde{\chi}_{S}\widetilde{\chi}_{S}\widetilde{\eta}) \end{split}$$
 - $\subseteq \widetilde{\eta}\widetilde{\chi}_{S}(\widetilde{\chi}_{S}\widetilde{\eta}\widetilde{\eta}\widetilde{\chi}_{S})\widetilde{\chi}_{S}\widetilde{\eta} \quad (\text{by our assumption})$
 - $= (\widetilde{\eta}\widetilde{\chi}_S\widetilde{\chi}_S\widetilde{\eta})(\widetilde{\eta}\widetilde{\chi}_S\widetilde{\chi}_S\widetilde{\eta})$
 - $= (\widetilde{\eta}\widetilde{\chi}_S\widetilde{\eta})(\widetilde{\eta}\widetilde{\chi}_S\widetilde{\eta}) = \widetilde{\eta}^2.$

This shows that $\tilde{\eta} \subseteq \tilde{\eta}^2$. Now $\tilde{\eta}^2 \subseteq \tilde{\chi}_S \tilde{\eta}$ and as well as $\tilde{\eta}^2 \subseteq \tilde{\eta} \tilde{\chi}_S$ imply that $\tilde{\eta}^2 \subseteq \tilde{\chi}_S \tilde{\eta} \cap \tilde{\eta} \tilde{\chi}_S \subseteq \tilde{\eta}$, since $\tilde{\eta}$ is an i-v fuzzy quasi-ideal of S. Hence $\tilde{\eta} = \tilde{\eta}^2$. Thus IFQ(S) forms an idempotent semigroup with respect to the usual product of i-v fuzzy subsets of S.

 $(ii) \Longrightarrow (iii)$: This is just a restriction.

 $\underbrace{(\mathrm{iii}) \Longrightarrow (\mathrm{i})}_{\text{fuzzy right ideal and an i-v fuzzy left ideal of } S \text{ respectively. Then } \widetilde{\mu}\widetilde{\theta} \subseteq \widetilde{\mu}\widetilde{\chi}_S \subseteq \widetilde{\mu} \text{ as well as, } \widetilde{\mu}\widetilde{\theta} \subseteq \widetilde{\chi}_S \widetilde{\theta} \subseteq \widetilde{\theta}.$ This implies that $\widetilde{\mu}\widetilde{\theta} \subseteq \widetilde{\mu} \cap \widetilde{\theta}.$ Now being an intersection of an i-v fuzzy right ideal and an i-v fuzzy left ideal of S, $\widetilde{\mu} \cap \widetilde{\theta}$ is an i-v fuzzy quasi-ideal of S. Hence, we have $\widetilde{\mu} \cap \widetilde{\theta} = (\widetilde{\mu} \cap \widetilde{\theta})^2 = (\widetilde{\mu} \cap \widetilde{\theta})(\widetilde{\mu} \cap \widetilde{\theta}) \subseteq \widetilde{\mu}\widetilde{\theta}.$ Similarly, $(\widetilde{\mu} \cap \widetilde{\theta}) \subseteq \widetilde{\theta}\widetilde{\mu}.$ Thus we have proved that $\widetilde{\mu}\widetilde{\theta} = \widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\theta}\widetilde{\mu}.$

4. INTERVAL-VALUED FUZZY BI-IDEALS OF A SEMIRING :

Definition 4.1. A non-empty i-v fuzzy subset $\tilde{\mu}$ of a semiring S is said to be an i-v fuzzy bi-ideal of S if for any $x, y, z \in S, \tilde{\mu}(x+y) \geq Min^{i}(\tilde{\mu}(x), \tilde{\mu}(y)), \tilde{\mu} \circ \tilde{\mu} \subseteq \tilde{\mu}$ and $\tilde{\mu}(xyz) \geq Min^{i}(\tilde{\mu}(x), \tilde{\mu}(z)).$

We characterize the i-v fuzzy bi-ideals of a semiring in the following lemma.

Lemma 4.2. A non-empty *i*-v fuzzy subset $\tilde{\mu}$ of a semiring S is an *i*-v fuzzy bi-ideal of S if and only if $\tilde{\mu}(x+y) \geq Min^{i}(\tilde{\mu}(x), \tilde{\mu}(y))$ for any $x, y \in S$ and $\tilde{\mu}\tilde{\chi}_{S}\tilde{\mu} \subseteq \tilde{\mu}$.

In the following proposition, we state the relation between i-v fuzzy quasi-ideal and i-v fuzzy bi-ideal of a semiring.

Proposition 4.3. Every *i*-v fuzzy quasi-ideal of a semiring S is also an *i*-v fuzzy bi-ideal of S.

Proof. Let $\tilde{\mu}$ be an i-v fuzzy quasi-ideal of a semiring S. Then $\tilde{\mu}(x+y) \geq Min^i(\tilde{\mu}(x), \tilde{\mu}(y))$, for any $x, y \in S$. Now $\tilde{\mu}\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\mu}\tilde{\chi}_S\tilde{\chi}_S \subseteq \tilde{\mu}\tilde{\chi}_S$. Also, $\tilde{\mu}\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\chi}_S\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\chi}_S\tilde{\mu}$. Hence, we get $\tilde{\mu}\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\chi}_S\tilde{\mu} \cap \tilde{\mu}\tilde{\chi}_S$. Since, $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S, it follows that $\tilde{\mu}\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\chi}_S\tilde{\mu} \cap \tilde{\mu}\tilde{\chi}_S \subseteq \tilde{\mu}$. Consequently, $\tilde{\mu}$ is an i-v fuzzy bi-ideal of S.

We note that the converse of the above Proposition does not hold in general.

Definition 4.4. Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring *S*. Then the i-v fuzzy bi-ideal of *S* generated by $\tilde{\mu}$ is denoted by $(\tilde{\mu})_b$ and is defined as the intersection of all i-v fuzzy bi-ideals of *S* containing $\tilde{\mu}$. **Lemma 4.5.** Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S. Then, we have the following equality. $(\tilde{\mu})_b = \langle \tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{\chi}_S \tilde{\mu} \rangle.$

Proof. We first prove that $\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$ is an *i.v.* fuzzy bi-ideal of *S*, containing $\widetilde{\mu}$. Similar to the proof given in Lemma 3.10 (*i*), we can show that $\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$ $(x + y) \geq Min^i \Big(\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle (x), \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle (y) \Big)$, for any $x, y \in S$. Now, we easily deduce that

$$\begin{split} &(\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \widetilde{\chi}_S (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \\ &= (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) (\widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu}^2 \cup \widetilde{\chi}_S \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \\ &\subseteq (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) (\widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\chi}_S \widetilde{\chi}_S \widetilde{\mu}) \\ &\subseteq (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) (\widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu}) \\ &= (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) (\widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \\ &\subseteq \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\mu}^2 \widetilde{\chi}_S \widetilde{\mu} \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \widetilde{\mu}). \end{split}$$

Therefore, $\langle (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \widetilde{\chi}_S (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \rangle \subseteq \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$. This shows that $\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle \rangle \widetilde{\chi}_S \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle \subseteq \langle (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \widetilde{\chi}_S (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \rangle$ $\subseteq \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$. Consequently, $\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$ is an i-v fuzzy bi-ideal of S and clearly, it contains $\widetilde{\mu}$. Suppose that IFB(S) denote the set of all i-v fuzzy bi-ideals of S. Let $x \in S$. Then, we have $(\widetilde{\mu})_b(x) = \begin{pmatrix} \cap & \widetilde{\theta} \\ \widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S) \end{pmatrix} (x) =$ $\inf_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} \widetilde{\theta}(x) \leq \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle \langle x)$, since $\langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$ is an i-v fuzzy bi-ideal of S, containing $\widetilde{\mu}$. Thus, $(\widetilde{\mu})_b \subseteq \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle$. Again, we have $(\widetilde{\mu})_b(x) = \begin{pmatrix} \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\lambda} \otimes \widetilde{\mu} \rangle \langle \widetilde{\mu} \rangle \langle$

$$\begin{split} &\mu \subseteq \theta \in IFB(S) \\ &\text{fuzzy bi-ideal of } S, \text{ containing } \widetilde{\mu}. \text{ Thus, } (\widetilde{\mu})_b \subseteq \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle \rangle. \text{ Again, we} \\ &\text{have } (\widetilde{\mu})_b(x) = \left(\bigcap_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} \widetilde{\theta} \right)(x) = \inf_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} \widetilde{\theta}(x) = \inf_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\theta})(x) \\ &\text{(since, } \widetilde{\mu} \subseteq \widetilde{\theta}, \text{ and } \widetilde{\theta} \text{ is an } i.v \text{ fuzzy bi-ideal of } S, \text{ it follows that } \widetilde{\mu}^2 = \widetilde{\mu} \widetilde{\mu} \subseteq \widetilde{\theta} \in \widetilde{\theta} \subseteq \widetilde{\theta} \\ &\geq \inf_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\theta} \widetilde{\chi}_S \widetilde{\theta})(x) \geq \inf_{\widetilde{\mu} \subseteq \widetilde{\theta} \in IFB(S)} (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu})(x) = (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu})(x). \\ &\text{Thus, we obtain that } (\widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu}) \subseteq (\widetilde{\mu})_b. \text{ This implies that } \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle \leq \\ &\subseteq \langle (\widetilde{\mu})_b \rangle = (\widetilde{\mu})_b. \text{ Hence, } \langle \widetilde{\mu} \cup \widetilde{\mu}^2 \cup \widetilde{\mu} \widetilde{\chi}_S \widetilde{\mu} \rangle = (\widetilde{\mu})_b. \end{split}$$

For i-v fuzzy bi-ideals of a semiring, we have the following Proposition.

Proposition 4.6. The product of an *i*-v fuzzy bi-ideal and an *i*-v fuzzy sub-semiring of a semiring S is still an *i*-v fuzzy bi-ideal of S.

The following corollaries are easy consequence of the above Proposition.

Corollary 4.7. The product of two *i*-v fuzzy bi-ideals of a semiring is again an *i*-v fuzzy bi-ideal of S.

Corollary 4.8. The product of two i-v fuzzy quasi-ideals of a semiring is an i-v fuzzy bi-ideal of S.

In the following theorem, we state some properties of i-v fuzzy quasi-ideals of a regular semiring.

Theorem 4.9. Let S be a regular semiring. The following properties of an i-v fuzzy quasi-ideal of S hold.

(i) Each *i*-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu} = \tilde{\theta} \cap \tilde{\eta} = \tilde{\theta} \tilde{\eta}$, where $\tilde{\theta} = (\tilde{\mu})_r$ and $\tilde{\eta} = (\tilde{\mu})_l$.

(ii) Each *i*-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu}^2 = \tilde{\mu}^3$.

(iii) Each i-v fuzzy bi-ideal of S is an i-v fuzzy quasi-ideal of S.

(iv) Each *i*-v fuzzy bi-ideal of a two-sided ideal T of S is an *i*-v fuzzy quasi-ideal of S.

Proof. (i) In a regular semiring S, each i-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu} = \tilde{\chi}_S \tilde{\mu} \cap \tilde{\mu} \tilde{\chi}_S$, by Theorem 3.13. Hence, it suffices to prove that $(\tilde{\mu})_l = \tilde{\chi}_S \tilde{\mu}$ and $(\tilde{\mu})_r = \tilde{\mu} \tilde{\chi}_S$. Now, we deduce the followings:

$$\begin{split} \widetilde{\chi}_{S}\widetilde{\mu} &\subseteq <\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} > \\ &= <\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} > <\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} > \quad \text{(since, in a regular semiring } S, \\ &\qquad \widetilde{\mu_{1}}^{2} = \widetilde{\mu_{1}}, \text{ where, } \widetilde{\mu_{1}} \text{ is an i-v fuzzy left ideal of } S, \text{ by Theorem } 3.13) \\ &\subseteq <\widetilde{\mu}^{2} \cup \widetilde{\mu}\widetilde{\chi}_{S}\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu}\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu}\widetilde{\chi}_{S}\widetilde{\mu} > \\ &\subseteq <\widetilde{\chi}_{S}\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} \cup \widetilde{\chi}_{S}\widetilde{\mu} > \text{(since, by Theorem } 3.14, \ \widetilde{\mu} = \widetilde{\mu}^{2}) \\ &= <\widetilde{\chi}_{S}\widetilde{\mu} > = \widetilde{\chi}_{S}\widetilde{\mu}. \end{split}$$

Thus, we obtain $\widetilde{\chi}_S \widetilde{\mu} \subseteq \langle \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \rangle \subseteq \widetilde{\chi}_S \widetilde{\mu}$. So, $\widetilde{\chi}_S \widetilde{\mu} = \langle \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \rangle = (\widetilde{\mu})_l$. Similarly, we can get that $\widetilde{\mu} \widetilde{\chi}_S = (\widetilde{\mu})_r$. Therefore, $\widetilde{\mu} = \widetilde{\chi}_S \widetilde{\mu} \cap \widetilde{\mu} \widetilde{\chi}_S = \langle \widetilde{\mu} \cup \widetilde{\chi}_S \widetilde{\mu} \rangle$ $\cap \langle \widetilde{\mu} \cup \widetilde{\mu} \widetilde{\chi}_S \rangle = (\widetilde{\mu})_l \cap (\widetilde{\mu})_r = (\widetilde{\mu})_r (\widetilde{\mu})_l$, by Theorem 3.12.

(ii) Let $\tilde{\mu}$ be an i-v fuzzy quasi-ideal of S. Then by Theorem 3.14, it follows that $\tilde{\mu}^2$ is a i-v fuzzy quasi-ideal of S, since S is regular. Then by Theorem 3.13, we have $\tilde{\mu}^2 = \tilde{\mu}^2 \tilde{\chi}_S \tilde{\mu}^2 = \tilde{\mu} (\tilde{\mu} \tilde{\chi}_S \tilde{\mu}) \tilde{\mu} = \tilde{\mu} \tilde{\mu} \tilde{\mu} \tilde{\mu} = \tilde{\mu}^3$.

(iii) Let $\tilde{\mu}$ be an i-v fuzzy bi-ideal of S. Then $\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S\tilde{\mu} = \tilde{\mu}\tilde{\chi}_S\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\mu}\tilde{\chi}_S\tilde{\mu} \subseteq \tilde{\mu}$ (since $\tilde{\mu}$ is an i-v fuzzy bi-ideal of S). Thus $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S.

(iv) Suppose that $\widetilde{\mu_1}$ be an i-v fuzzy bi-ideal of a two sided ideal T of S. Let $t \in T \subseteq S$. Since S is regular, there exist $u \in S$ such that t = tut. This implies that t = t(utu)t. Since T is a two-sided ideal of S, $utu \in T$ and hence T is also regular. Now,

 $\widetilde{\mu_1}\widetilde{\chi}_S \cap \widetilde{\chi}_S \widetilde{\mu_1}$

 $= (\widetilde{\mu_1}\widetilde{\chi}_T\widetilde{\mu_1})\widetilde{\chi}_S \cap \widetilde{\chi}_S(\widetilde{\mu_1}\widetilde{\chi}_T\widetilde{\mu_1})$

(follows from the regularity of T and Theorem 3.13)

- $= (\widetilde{\mu_1}\widetilde{\chi}_T)(\widetilde{\mu_1}\widetilde{\chi}_S) \cap (\widetilde{\chi}_S\widetilde{\mu_1})(\widetilde{\chi}_T\widetilde{\mu_1})$
- $\subseteq (\widetilde{\mu_1}\widetilde{\chi}_S)(\widetilde{\chi}_T\widetilde{\chi}_S) \cap (\widetilde{\chi}_S\widetilde{\chi}_T)(\widetilde{\chi}_S\widetilde{\mu_1})$
- $=\widetilde{\mu_1}(\widetilde{\chi}_S\widetilde{\chi}_T\widetilde{\chi}_S)\cap(\widetilde{\chi}_S\widetilde{\chi}_T\widetilde{\chi}_S)\widetilde{\mu_1}$
- $\subseteq \widetilde{\mu_1} \widetilde{\chi}_T \cap \widetilde{\chi}_T \widetilde{\mu_1} \quad \text{(since, } T \text{ is a two sided ideal of } S \text{ implies that } \widetilde{\chi}_T$ is an i-v fuzzy two sided ideal of S)

 $\subseteq \widetilde{\mu_1}$ (since, T is regular, $\widetilde{\mu_1}$ is also an i-v fuzzy quasi-ideal of T).

Consequently, $\widetilde{\mu_1}$ is an i-v fuzzy quasi-ideal of S.

Definition 4.10 ([2]). An element 'x' of a semiring S is said to be intra-regular if there exist $a_i, b_i \in S$ such that $x = \sum_{i=1}^{m} a_i x^2 b_i$. A semiring S is said to be intra-regular if its every element is intra-regular.

In the following theorem, we characterize the intra-regular semirings.

Theorem 4.11 ([2]). A semiring S is intra-regular if and only if $L \cap R \subseteq LR$, for any left ideal L and right ideal R of S.

Theorem 4.12. A semiring S is intra-regular if and only if $\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu}\tilde{\theta}$, for any i-v fuzzy left ideal $\tilde{\mu}$ and i-v fuzzy right ideal $\tilde{\theta}$ of S.

Proof. Let S be an intra-regular semiring. Let $\tilde{\mu}$ and $\tilde{\theta}$ be an *i.v.* fuzzy left ideal and an i-v fuzzy right ideal of S respectively. Suppose that $x \in S$. Since, S is intra-regular, there exist $a_i, b_i \in S$ such that $x = \sum_{i=1}^n a_i x^2 b_i$. So, $x = \sum_{i=1}^n (a_i x)(x b_i)$. Then, we deduce that

Then, we deduce that

$$\begin{aligned} (\widetilde{\mu}\widetilde{\theta})(x) &= \sup\left\{\inf_{1 \le i \le k} Min^{i}(\widetilde{\mu}(p_{i}),\widetilde{\theta}(q_{i})) : x = \sum_{i=1}^{n} p_{i}q_{i}; \ p_{i}, q_{i} \in S\right\} \\ &\geq \inf_{1 \le i \le n} \{Min^{i}(\widetilde{\mu}(a_{i}x),\widetilde{\theta}(xb_{i}))\} \\ &\geq \inf_{1 \le i \le n} \{Min^{i}(\widetilde{\mu}(x),\widetilde{\theta}(x))\} \end{aligned}$$

(since, $\tilde{\mu}$ is an i-v fuzzy left ideal and $\tilde{\theta}$ is an i-v fuzzy right ideal of S) = $Min^{i}(\tilde{\mu}(x), \tilde{\theta}(x))$ = $(\tilde{\mu} \cap \tilde{\theta})(x)$.

Thus, we obtain $\widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\mu}\widetilde{\theta}$.

Conversely, suppose that $\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu}\tilde{\theta}$, for any i-v fuzzy left ideal $\tilde{\mu}$ and i-v fuzzy right ideal $\tilde{\theta}$ of S. Let L and R be a left ideal and a right ideal of S respectively. Then, by our assumption, we have $\tilde{\chi}_L \cap \tilde{\chi}_R \subseteq \tilde{\chi}_L \tilde{\chi}_R$. This implies that $\tilde{\chi}_{L \cap R} \subseteq \tilde{\chi}_{LR}$, by Lemma 2.13 and Lemma 2.14. Thus, we have shown that $L \cap R \subseteq LR$. Hence, S is an intra-regular semiring, by Theorem 4.11.

Now we state the main theorem. This theorem is a characterization theorem of a regular and intra-regular semiring S in terms of their i-v fuzzy quasi-ideal and i-v fuzzy bi-ideal of S.

Theorem 4.13. Let S be a semiring. Then the following statements are equivalent.

- (i) S is regular and intra-regular.
- (ii) Every i-v fuzzy quasi-ideal of S is idempotent.
- (iii) Every i-v fuzzy bi-ideal of S is idempotent.
- (iv) $\widetilde{\mu} \cap \theta \subseteq \widetilde{\mu} \widetilde{\theta}$ for all *i*-v fuzzy quasi-ideals $\widetilde{\mu}$ and θ of S.
- (v) $\widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\mu} \widetilde{\theta}$ for every *i*-v fuzzy quasi-ideal $\widetilde{\mu}$ and *i*-v fuzzy bi-ideal $\widetilde{\theta}$ of S.

(vi) $\widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\mu} \widetilde{\theta}$ for every *i*-v fuzzy bi-ideal $\widetilde{\mu}$ and *i*-v fuzzy quasi-ideal $\widetilde{\theta}$ of S. (vii) $\widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\mu} \widetilde{\theta}$ for all *i*-v fuzzy bi-ideals $\widetilde{\mu}$ and $\widetilde{\theta}$ of S.

Proof. (i) \Longrightarrow (vii) : Let (i) hold and $x \in S$. Since S is regular, there exists $a \in S$ such that x = xax. So we can write x = xaxax(1). Again since S is intra-regular, there exist $a_i, b_i \in S$ such that $x = \sum_{i=1}^m a_i x^2 b_i$, where $m \in \mathbb{N}$. Then from (1), we have $x = xa(\sum_{i=1}^m a_i x^2 b_i)ax = \sum_{i=1}^m (xaa_i x)(xb_i ax)$. Now let $\tilde{\mu}$ and $\tilde{\theta}$ be

two i-v fuzzy bi-ideals of S. Then, the following conditions hold :

$$= Min^{i}(\widetilde{\mu}(x), \theta(x))$$
$$= (\widetilde{\mu} \cap \widetilde{\theta})(x).$$

Consequently, $\widetilde{\mu} \cap \widetilde{\theta} \subseteq \widetilde{\mu}\widetilde{\theta}$.

(vii) \implies (vi) : This implication is clear since each i-v fuzzy quasi-ideal of S is also an i-v fuzzy bi-ideal of S.

(vi) \Longrightarrow (v) : Suppose that (vi) holds. Let $\tilde{\mu}$ be an i-v fuzzy quasi-ideal and $\tilde{\theta}$ be an i-v fuzzy bi-ideal of S. Then $\tilde{\mu}$ is also an i-v fuzzy bi-ideal of S. Now, by our assumption, we have $\tilde{\mu} \cap (\tilde{\theta})_q \subseteq \tilde{\mu}(\tilde{\theta})_q = \tilde{\mu} < \tilde{\theta} \cup (\tilde{\theta} \tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\theta}) > \dots \dots (2)$. As $\tilde{\theta} \tilde{\chi}_S$ is an i-v fuzzy right ideal of S, it is an i-v fuzzy quasi-ideal as well as an i-v fuzzy bi-ideal of S. Again $\tilde{\chi}_S \tilde{\theta}$ is an i-v fuzzy left ideal and hence an i-v fuzzy quasi-ideal of S. Thus, by our assumption, we conclude that $\tilde{\theta} \tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\theta} \subseteq \tilde{\theta} \tilde{\chi}_S \tilde{\chi}_S \tilde{\theta} \subseteq \tilde{\theta} \tilde{\chi}_S \tilde{\theta} \subseteq \tilde{\theta}$, since $\tilde{\theta}$ is an i-v fuzzy bi-ideal of S. Then by (2), we have $\tilde{\mu} \cap (\tilde{\theta})_q \subseteq \tilde{\mu} < \tilde{\theta} \cup \tilde{\theta} > \subseteq$ $< \tilde{\mu} \tilde{\theta} > = \tilde{\mu} \tilde{\theta}$. Thus, $\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \cap (\tilde{\theta})_q \subseteq \tilde{\mu} \tilde{\theta}$.

(v) \implies (iv) : It is clear since each i-v fuzzy quasi-ideal of S is also an i-v fuzzy bi-ideal of S.

(iv) \Longrightarrow (iii) : Suppose that (iv) holds. Let $\tilde{\mu}$ be an i-v fuzzy bi-ideal of S. Now, by our assumption, we have $\tilde{\mu} \subseteq (\tilde{\mu})_q = (\tilde{\mu})_q \cap \tilde{\mu}_q \subseteq (\tilde{\mu})_q (\tilde{\mu})_q = \langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle \langle \tilde{\mu} \cup (\tilde{\mu}\tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) \rangle \rangle$. (3).

Finally, by our assumption, we have $\tilde{\mu}\chi_S \cap \chi_S \tilde{\mu} \subseteq \tilde{\mu}\chi_S \chi_S \tilde{\mu} \subseteq \tilde{\mu}\chi_S \tilde{\mu} \subseteq \tilde{\mu}$ since $\tilde{\mu}$ is an i-v fuzzy bi-ideal of S. Hence, from (3), it follows that $\tilde{\mu} \subseteq \langle \tilde{\mu} \rangle \langle \tilde{\mu} \rangle \subseteq \langle \tilde{\mu}^2 \rangle = \tilde{\mu}^2$. Again, since $\tilde{\mu}$ is an i-v quasi-ideal of S, it follows that $\tilde{\mu}^2 \subseteq \tilde{\mu}$. Consequently, we have $\tilde{\mu} = \tilde{\mu}^2$.

(iii) \implies (ii) : This part is clear since each i-v fuzzy quasi-ideal of S is also an i-v fuzzy bi-ideal of S.

(ii) \implies (i) : This implication follows from Theorem in 3.14, Theorem 3.12 and Theorem 4.12.

5. Conclusions

We have characterized regular and intra-regular semiring in terms of i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of a semiring. So this paper helps us to realize that we can study different properties of semirings and even some other algebraic structures from the view of i-v fuzzy set theory. For example, as a continuation of this paper we shall study the k-regularity and k-intra-regularity of a semiring in terms of i-v fuzzy k-quasi ideal and i-v fuzzy k-bi-ideal of semirings.

Acknowledgements. The second author is grateful to CSIR-India for providing financial assistance. We are very much thankful to referees for their valuable comments which help a lot to enrich this paper.

References

- J. Ahsan, K. Saifullah and F. Khan, Fuzzy semirings, Fuzzy Sets and Systems 60 (3) (1993) 309–320.
- [2] J. Ahsan, J. N. Mordeson and M. Shabir, Fuzzy semirings with applications to automata theory, Springer publication (2012).
- [3] M. Akram, K. H. Dar and K. P. Shum, Interval-valued (α, β)-fuzzy K -algebras, Applied Soft computing 11(1) (2011) 1213–1222.
- [4] M. Akram, K. H. Dar, B. L. Meng and K. P. Shum, Interval-valued intuitionistic fuzzy ideals of K -algebras, WSEAS Trans. Math. 7(9) (2008) 559–565.
- [5] M. Akram and K. P. Shum, Interval-valued bifuzzy k-ideals of semirings, J. Fuzzy Math. 18(3) (2010) 757–774.
- B. Davvaz, Fuzzy ideals of near rings with interval-valued membership functions, J. Sci. Islam. Repub. Iran. 12(2) (2001) 171–175.
- [7] W. A. Dudek, Fuzzy subquasigroups, Quasigroups Related Systems 5 (1998) 81-98.
- [8] T. K. Dutta, S. Kar and S. Purkait, On interval-valued fuzzy prime ideals of a semiring, European Journal of Mathematical Sciences 1(1) (2012) 1–16.
- [9] T. K. Dutta, S. Kar and S. Purkait, Interval-valued Fuzzy k-ideals and k-regularity of Semirings, Fuzzy Inf. Eng. 5(2) (2013) 235–251.
- [10] J. S. Golan, Semirings and their applications, Kluwer Academic Publishers 1971.
- [11] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624–625.
- [12] I. Grattan-Guiness, Fuzzy membership mapped onto interval and many-valued quantities, Z. Math. Logik Grundlagen Math. 22(2) (1976) 149–160.
- [13] H. Hedayati, Generalized fuzzy k-ideals of semirings with interval-valued membership functions, Bull. Malays. Math. Sci. Soc. 32(3) (2009) 409–424.
- [14] K. U. Jahn, Interval-wertige Mengen, Math. Nachr. 68 (1975) 115–132.
- [15] Y. Jun and K. Kim, Interval-valued fuzzy R-subgroups of near-rings, Indian J. Pure Appl. Math. 33(1) (2002) 71–80.
- [16] S. Kar and P. Sarkar, Fuzzy quasi-ideals and fuzzy bi-ideals of ternary semigroups, Ann. Fuzzy Math. Inform. 4(2) (2012) 407–423.
- [17] S. Kar and P. Sarkar, Interval-valued fuzzy completely regular subsemigroups of semigroups, Ann. Fuzzy Math. Inform. 5(3) (2013) 583–595.
- [18] S. Kar, K. P. Shum and P. Sarkar, Interval-valued prime fuzzy ideals of semigroups, Lobachevskii J. Math. 34(1) (2013) 11–19.
- [19] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli. 28(1) (1979) 17–21.
- [20] D. Lee and C. Park, Interval-valued ($\epsilon, \epsilon \lor q$)-fuzzy ideal in rings, Int. Math. Forum. 4 (2009) 623–630.

- [21] A. Mukherjee and A. Saha, Interval-valued intutionistic fuzzy soft rough sets, Ann. Fuzzy Math. Inform. 5(3) (2013) 533–547.
- [22] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–519.
- [23] R. Sambuc, Fonctions \u03c6-floues, Application l\u03c8aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis Univ. Marseille, France 1975.
- [24] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen. 4 (1956) 262–275.
- [25] O. Steinfeld, Über die Quasiideale von Ringen, Acta Sci. Math. (Szeged). 17 (1956) 170–180.
 [26] O. Steinfeld, Über die Quasiideale von Haibgruppen mit eigentlichem Suschkewitsch-Kern,
- Acta Sci. Math. (Szeged). 18 (1957) 235–242.
- [27] G. Sun, G. and Y. Yin, Interval-valued fuzzy h-ideals of hemirings, Int. Math. Forum 5 (2010) 545–556.
- [28] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
- [29] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199–249.

 $\underline{\text{SUKHENDU KAR}}$ (karsukhendu@yahoo.co.in)

Department of Mathematics, Jadavpur University, Kolkata-700032, India

<u>SUDIPTA PURKAIT</u> (sanuiitg@gmail.com)

Department of Mathematics, Jadavpur University, Kolkata-700032, India

K. P. SHUM (kpshum@ynu.edu.cn)

Institute of Mathematics, Yunnan University, Kunming, 650091, People Republic of China