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Abstract. In this paper the concepts of soft fuzzy quasi uniform space
and soft fuzzy quasi uniform topological space are introduced. Somewhat
pairwise soft fuzzy quasi uniform C-continuous function, somewhat pair-
wise soft fuzzy quasi uniform almost C-open function, pairwise soft fuzzy
quasi uniform D∗-space, pairwise soft fuzzy quasi uniform DC-space are
introduced. In this connection, several properties are discussed. Interrela-
tions among the continuity are established with counter examples.
Moreover, constructing the continuous function by several methods is used
in Analysis. Among which some generalize to arbitrary topological space
and a few others do not. In particular, for any continuous function, ex-
panding the domain in general topology as well as fuzzy topology is invalid
whereas it is true in this paper due to the nature of the peculiar set, ”C-
open set”, which was introduced by E.Hatir, T. Noiri and S. Yuksel.
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1. Introduction

Zheadeh [12] introduced the fundamental concepts of fuzzy sets in his classi-
cal paper. Fuzzy sets have applications in many fields such as information [8] and
control [9]. In mathematics, topology provided the most natural framework for the
concepts of fuzzy sets to flourish. Chang [2] introduced and developed the concept of
fuzzy topological spaces. The notion of C-set in general topology was introduced by
E.Hatir, T.Noiri and S.Yuksel [4]. E.Roja, M.K.Uma, G.Balasubramanian [10] in-
troduced the concept of fuzzy C-set. Bruce Hutton [5] introduced the new structure,
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called fuzzy quasi uniformity. The concept of soft fuzzy topological space is intro-
duced by Yogalakshmi.T., Roja.E., Uma.M.K. [11]. The idea of somewhat continuity
was introduced and studied by Karl.R.Gentry, Hughes.B.Hoyle [3] in classical sense.
In 1989, Kandil [6] introduced the concept of fuzzy bitopological spaces. Azad. K.K.
[1] introduced and discussed about the fuzzy almost continuous function.

In this paper, soft fuzzy quasi uniform space and the soft fuzzy quasi uniform
topology τU , generated by the uniformity is introduced. Somewhat pairwise soft
fuzzy quasi uniform C-continuous function, somewhat pairwise soft fuzzy quasi uni-
form almost C-open function, pairwise soft fuzzy quasi uniform D∗-space, pairwise
soft fuzzy quasi uniform DC-space are introduced. Several characterization are dis-
cussed. Interrelations among the continuity are studied with counter examples.

2. Preliminaries

Definition 2.1 ([11]). Let X be a set, µ be a fuzzy subset of X and M ⊆ X. Then,
the pair (µ,M) is called a soft fuzzy set of X. The set of all soft fuzzy subsets of
X is denoted by SF(X).

Definition 2.2 ([11]). The relation v on SF (X) is given by (µ,M) v (λ,N) ⇔
µ(x) ≤ λ(x),∀x ∈ X and M ⊆ N .

Definition 2.3 ([11]). For (µ,M) ∈ SF (X), the soft fuzzy set (µ, M)
′

= (1 −
µ,X|M) is called the complement of (µ,M).

Definition 2.4 ([11]). A subset τ ⊆ SF (X) is called a soft fuzzy topology on X
if

(1) (0, φ) and (1, X) ∈ τ.
(2) (µj ,Mj) ∈ τ , j=1,2,3,...n ⇒ un

j=1(µj ,Mj) ∈ τ.
(3) (µj ,Mj) ∈ τ, j ∈ J ⇒ tj∈J(µj ,Mj) ∈ τ.

Then, the elements of τ are called soft fuzzy open sets, and those of τ
′
= {(µ,M) :

(µ,M)
′ ∈ τ} are the soft fuzzy closed sets.

If τ is a SF -topology on X, then, the ordered pair (X, τ) is called as a soft fuzzy
topological space(in short, SFTS).

Definition 2.5 ([11]). Let ψ : X → Y be a function. If (λ,N) is a soft fuzzy set in
Y , then its pre-image under ψ , denoted ψ↼(λ,N) is defined as,

ψ↼(λ,N) = (λ ◦ ψ, ψ↼(N))
where, ψ↼(N) = {x ∈ X : ψ(x) = y, for y ∈ N}.
Definition 2.6 ([11]). Let ψ : X → Y be a function. If (µ,M) is a soft fuzzy set in
X, then its image under ψ , denoted ψ⇀(µ, M) is defined as,

ψ⇀(µ,M) = (γ, K)
where, γ(y) = ψ⇀(µ)(y) = sup{µ(x) : x ∈ ψ↼(y)}

K = {ψ⇀(x) : x ∈ M}.
Definition 2.7 ([11]). Let (X, τ) be a SFTS. A soft fuzzy set (λ, N) is said to be
soft fuzzy α∗-open , if int(λ,N) = int(cl(int(λ,N))).

Definition 2.8 ([11]). Let (X, τ) be a SFTS. A soft fuzzy set (λ, N) is said to be
soft fuzzy C-open , if
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(λ,N)=(µ, M) u (γ, K)
where,(µ,M) is a soft fuzzy open set and (γ, K) is a soft fuzzy α∗-open set.

The complement of soft fuzzy C-open set ( in short. SFcOS) is called as a soft
fuzzy C-closed set. ( in short.SFcCS )

Definition 2.9 ([1]). Let (X, τ) and (Y, σ) be any two fuzzy topological spaces. A
function f : X → Y is a fuzzy almost continuous function if the inverse image
of each fuzzy regular open set in Y is a fuzzy open set in X.

3. Soft fuzzy quasi uniform topological space

Let D denote the family of all functions f : SF (X) → SF (X) with the following
properties

(1) f(0, φ) = (0, φ).
(2) (µ,M) v f(µ,M), for every (µ, M) ∈ SF (X).

Definition 3.1. A soft fuzzy quasi uniformity on X is a subcollection U ⊂ D
satisfying the following axioms

(i) If f ∈ U , f v g and g ∈ D, then g ∈ U .
(ii) If f1, f2 ∈ U , then there exists g ∈ U such that g v f1 u f2.
(iii) For every f ∈ U , there exists g ∈ U such that g ◦ g v f .
Then, the pair (X,U) is called soft fuzzy quasi uniform space.

Definition 3.2. Let (X,U) be a soft fuzzy quasi uniform space. The operator
Int : SF (X) → SF (X) defined by

Int(µ,M) = t{(λ, N) ∈ SF (X) : f(λ,N) v (µ,M)for somef ∈ U}.
Definition 3.3. Let (X,U) be a soft fuzzy quasi uniform space. Then,

τU = {(µ, M) ∈ SF (X) : Int(µ, M) = (µ,M)}
is said to be the soft fuzzy quasi uniform topology, which is generated by U . The
ordered pair (X, τU ) is called as a soft fuzzy quasi uniform topological space.
The members of τU are called soft fuzzy quasi U-open set. The complement of
a soft fuzzy quasi U -open set is soft fuzzy quasi U-closed.

Definition 3.4. Let (X, τU ) be a soft fuzzy quasi uniform topological space. Then,
the soft fuzzy quasi U-interior of a soft fuzzy set (λ,N) in (X, τU ) is defined as
follows

intU (λ, N) = t{(µ,M) : (µ,M) v (λ,N) and (µ,M) is soft fuzzy quasi U-open
set }
The soft fuzzy quasi U-closure of a soft fuzzy set (λ,N) in (X, τU ) is defined as
follows

clU (λ,N) = u{(µ,M) : (µ,M) w (λ,N) and (µ,M) is soft fuzzy quasi U-closed
set }.
Definition 3.5. A soft fuzzy set (λ, N) in (X, τU ) is said to be a soft fuzzy quasi
regular U-open set, if intU (clU (λ,N)) = (λ,N).

The complement of soft fuzzy quasi regular U-open set is soft fuzzy quasi reg-
ular U-closed set.
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Definition 3.6. A soft fuzzy set (λ,N) in (X, τU ) is called a soft fuzzy quasi
uniform dense set if there exists no soft fuzzy quasi U-closed set, (µ,M) such that
(λ,N) v (µ,M) v (1, X).

Definition 3.7. Let (X, τU ) be a soft fuzzy quasi uniform topological space. A soft
fuzzy set (λ,N) is said to be soft fuzzy quasi α∗ U-open set , if intU (λ,N) =
intU (clU (intU (λ,N))).

Definition 3.8. Let (X, τU ) be a soft fuzzy quasi uniform topological space. A soft
fuzzy set (λ,N) is said to be soft fuzzy C-quasi U-open set , if

(λ,N)=(µ, M) u (γ, K)

where, (µ,M) is a soft fuzzy quasi U-open set and (γ, K) is a soft fuzzy quasi α∗

U-open set.
The complement of soft fuzzy C-quasi U-open set is called as a soft fuzzy C-

quasi U-closed set.

Definition 3.9. Let (X, τU ) be a soft fuzzy quasi uniform topological space. Let
(λ,N) be a soft fuzzy set in (X, τU ). Then, the soft fuzzy C-quasi U-interior
and soft fuzzy C-quasi U-closure of (λ, N) are defined respectively as

C-intU (λ, N) = t{(µ,M) : (µ,M) is soft fuzzy C-quasi U -open set and
(µ,M) v (λ,N)}

C-clU (λ, N) = u{(γ,K) : (γ, K) is soft fuzzy C-quasi U-closed set and
(γ,K) w (λ,N)}

Definition 3.10. A soft fuzzy set (λ,N) in (X, τU1 , τU2) is said to be a soft fuzzy
C-quasi regular U-open set, if C-intU (C-clU (λ,N)) = (λ,N).

The complement of soft fuzzy C-quasi regular U -open set is soft fuzzy C-quasi
regular U-closed set.

4. Somewhat pairwise soft fuzzy quasi uniform C-continuous function

Definition 4.1. A soft fuzzy quasi uniform bitopological space is a 3-tuple
(X, τU1 , τU2), where X is a set , τU1 , τU2 are any two soft fuzzy quasi uniform topolo-
gies on X.

Definition 4.2. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. A function ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) is pairwise
soft fuzzy quasi uniform continuous (almost continuous) function, if for
each soft fuzzy quasi V1-open (regular V1-open) set or soft fuzzy quasi V2-open (reg-
ular V2-open) set (λ, N) in (Y, τV1 , τV2), the inverse image ψ↼(λ,N) is a soft fuzzy
quasi U1-open set or soft fuzzy quasi U2-open set in (X, τU1 , τU2).

Definition 4.3. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. Then, ψ : X → Y is said to be a pairwise soft fuzzy
quasi uniform almost open function, if (λ,N) is soft fuzzy quasi regular U1-
open set or soft fuzzy quasi regular U2-open set in (X, τU1 , τU2), ψ⇀(λ,N) is a soft
fuzzy quasi V1-open set or soft fuzzy quasi V2-open set.
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Remark 4.4. If a function ψ : X → Y is both pairwise soft fuzzy quasi uniform
almost open function and pairwise soft fuzzy quasi uniform almost continuous func-
tion, then the inverse image ψ↼(λ,N) of each soft fuzzy quasi regular V1/V2-open
set (λ,N) of Y is a soft fuzzy quasi regular U1/U2-open set in X.

Proof. Proof is analogous to Theorem. 3.5 in [7]. ¤

Proposition 4.5. Let (X, τU1 , τU2) be any soft fuzzy quasi uniform bitopological
space. For each soft fuzzy set (λ, N),

(1) C-intU1/U2((1, X)− (λ, N)) = (1, X)− C-clU1/U2(λ,N)
(2) C-clU1/U2((1, X)− (λ,N)) = (1, X)− C-intU1/U2(λ,N)

Proof. Proof is obvious. ¤

Definition 4.6. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. A function ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) is pairwise
soft fuzzy quasi uniform C-continuous function, if for each soft fuzzy quasi
V1-open set or soft fuzzy quasi V2-open set (λ,N) in (Y, τV1 , τV2), the inverse image
ψ↼(λ, N) is a soft fuzzy C-quasi U1-open set or soft fuzzy C-quasi U2-open set in
(X, τU1 , τU2).

Definition 4.7. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. A function ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) is somewhat
pairwise soft fuzzy quasi uniform C-continuous function, if (λ,N) is soft
fuzzy quasi V1-open set or soft fuzzy quasi V2-open set and ψ↼(λ,N) 6= (0, φ), then
there exists a soft fuzzy C-quasi U1-open set or soft fuzzy C-quasi U2-open set, (µ,M)
such that (µ,M) 6= (0, φ) and (µ,M) v ψ↼(λ,N).

It is clear from the definition, that every pairwise soft fuzzy quasi uniform C-
continuous function is somewhat pairwise soft fuzzy quasi uniform C-continuous,
but the converse need not be true as shown in the following example.

Example 4.8. Let X = {a, b, c} and Y = {p, q, r}. Let N,M1,M2 be the subsets
of X. Let D1 denote the family of functions f1, f2, f3 : SF (X) → SF (X) be defined
as follows

f1(λ,N) =
{

(0, φ), if (λ, N) = (0, φ)
(1, X), otherwise

f2(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ1,M1), if(0, φ) 6= (λ,N) v (µ1,M1)
(1, X), otherwise

f3(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ2,M2), if(0, φ) 6= (λ,N) v (µ2,M2)
(1, X), otherwise

where (µ1,M1) and (µ2,M2) are defined as follows

µ1(a) = 0 µ1(b) = 0 µ1(c) = 1 M1 = {a, b}
µ2(a) = 0 µ2(b) = 0 µ2(c) = 1 M2 = {b}
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Let U1, U2 be the subcollection of D1. Now, (X,U1) and (X,U2) form the soft fuzzy
quasi uniform space. Then,

τU1 = {(0, φ), (1, X), (µ1,M1)}
τU2 = {(0, φ), (1, X), (µ2,M2)}

are the soft fuzzy quasi uniform topologies, which are generated by U1 and U2. Thus,
(X, τU1 , τU2) is a soft fuzzy quasi uniform bitopological space.
Let M,K be the subset of Y . Let D2 denote the family of functions g1, g2 : SF (Y ) →
SF (Y ) be defined as follows

g1(µ,M) =
{

(0, φ), if (µ,M) = (0, φ)
(1, X), otherwise

g2(µ, M) =





(0, φ), if (µ, M) = (0, φ)
(γ, K), if(0, φ) 6= (µ,M) v (γ, K)
(1, X), otherwise

where (γ, K) is defined as follows

γ(a) = 0 γ(b) = 1 γ(c) = 1 K = {p}
Let V1, V2 be the subcollection of D2. Now, (X,V1) and (X,V2) form the soft fuzzy
quasi uniform space. Then,

τV1 = {(0, φ), (1, X)}
τV2 = {(0, φ), (1, X), (γ, K)}

are the soft fuzzy quasi uniform topologies, which are generated by V1 and V2. Thus,
(Y, τV1 , τV2) is a soft fuzzy quasi uniform bitopological space.
Let ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) be defined as

ψ(a) = p ψ(b) = p ψ(c) = r

Let L ⊆ X and δ : X → [0, 1] be defined as

δ(a) = 0 δ(b) = 0 δ(c) = 0.5 L = {a}
Now, (δ, L) is a soft fuzzy C-quasi U1/U2-open set, which is coarser than ψ↼(γ, K).
Thus, ψ is somewhat pairwise soft fuzzy quasi uniform C-continuous func-
tion but not pairwise soft fuzzy quasi uniform C-continuous function.

Definition 4.9. A soft fuzzy set (λ,N) in (X, τU1 , τU2) is called a pairwise soft
fuzzy quasi uniform C-dense set if there exists no soft fuzzy C-quasi U1-closed
set and soft fuzzy C-quasi U2-closed set, (µ,M) such that (λ,N) v (µ,M) v (1, X).

Proposition 4.10. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be a surjective function. Then, the
following are equivalent:
(i) ψ is somewhat pairwise soft fuzzy quasi uniform C-continuous function.
(ii) If (λ,N) is soft fuzzy quasi V1-closed set or soft fuzzy quasi V2-closed set such
that ψ↼(λ, N) 6= (1, X), then there exists a proper soft fuzzy C-quasi U1-closed set
or a soft fuzzy C-quasi U2-closed set (µ,M) such that (µ,M) = ψ↼(λ, N).
(iii) If (λ, N) is a pairwise soft fuzzy quasi uniform C-dense set, then ψ⇀(λ,N) is
a pairwise soft fuzzy quasi uniform dense set in (Y, τV1 , τV2).
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Proof. Proof is obvious ¤

Notation: Let A ⊆ X and (λ,N) be any soft fuzzy set of X. Then, (λ,N)|A =
(λ|A,N ∩A).

The following Proposition exhibits how the nature of the peculiar set, ”C-set”
plays a vital role in it.

Proposition 4.11. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be a somewhat pairwise soft fuzzy
quasi uniform C-continuous function. Let A ⊆ X be such that (1A, A) u (µ,M) 6=
(0, φ), for all non-zero soft fuzzy C-quasi U1-open set or soft fuzzy C-quasi U2-open
set (µ,M) 6= (0, φ). Let τU1 |A and τU2 |A be the induced soft fuzzy quasi uniform
topological spaces on A. Then ψ|A : (A, τU1 |A, τU2 |A) → (Y, τV1 , τV2) is somewhat
pairwise soft fuzzy quasi uniform C-continuous.

Proof. Let (λ, N) be a soft fuzzy quasi V1-open set or soft fuzzy quasi V2-open set
such that ψ↼(λ,N) 6= (0, φ). Since ψ is somewhat pairwise soft fuzzy quasi uniform
C-continuous, there exists a soft fuzzy C-quasi U1-open set or soft fuzzy C-quasi U2-
open set (µ,M) 6= (0, φ) and (µ,M) v ψ↼(λ,N). Now, clearly (µ, M)|A is soft fuzzy
C-quasi U1-open set or soft fuzzy C-quasi U2-open set on A and (µ,M)|A 6= (0, φ).
Also,

(ψ|A)↼(λ,N) = (λ ◦ (ψ|A), (ψ|A)↼(N))

= (λ ◦ ψ,ψ↼(N))

= ψ↼(λ,N)

Hence, ψ↼(λ, N) 6= (0, φ) and ψ↼(λ,N) w (µ, M) = (µ,M)|A.
Assume that ψ|A is a somewhat pairwise soft fuzzy quasi uniform C-continuous

function. It must be shown that, ψ is a somewhat pairwise soft fuzzy C-continuous
function. Let (λ, N) be a soft fuzzy quasi V1/V2-open set such that (ψ|A)↼(λ,N) 6=
(0, φ) in (Y, τV1 , τV2). From the hypothesis, there exists a soft fuzzy C-quasi U1/U2-
open set, (µ,M) 6= (0, φ) on A in X such that (µ,M) v (ψ|A)↼(λ,N).
Define γ : X → I as follows:

γ(x) =
{

µ(x), x ∈ A
0, otherwise

and K be any subset of X. Clearly, (γ, K)|A = (µ,M) is a soft fuzzy C-quasi
U1/U2-open set. Now, (γ, K) is also a soft fuzzy C-quasi U1/U2-open set such that
(γ, K) v ψ↼(λ,N). This implies that, ψ is a somewhat pairwise soft fuzzy quasi
uniform C-continuous function. ¤

5. Somewhat pairwise soft fuzzy quasi uniform almost C-continuous
function

Definition 5.1. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. A function ψ : X → Y is pairwise soft fuzzy quasi
uniform almost C-continuous function if the inverse image of each soft fuzzy
quasi regular V1/V2-open set in (Y, τV1 , τV2) is a soft fuzzy C-quasi U1/U2-open set
in (X, τU1 , τU2).
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Proposition 5.2. Every pairwise soft fuzzy quasi uniform C-continuous function is
pairwise soft fuzzy quasi uniform almost C-continuous function.

Proof. Proof is obvious. ¤

The converse of the above property need not be true which is shown in the fol-
lowing example.

Example 5.3. Let X = {a, b, c} and Y = {p, q, r}. Let N, M1, M2 be the subset of
X. Let D1 denote the family of functions f1, f2, f3 : SF (X) → SF (X) be defined
as follows

f1(λ,N) =
{

(0, φ), if(λ, N) = (0, φ)
(1, X), otherwise

f2(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ1,M1), if(0, φ) 6= (λ,N) v (µ1,M1)
(1, X), otherwise

f3(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ2,M2), if(0, φ) 6= (λ,N) v (µ2,M2)
(1, X), otherwise

where (µ1,M1) and (µ2,M2) are defined as follows

µ1(a) = 1 µ1(b) = 0 µ1(c) = 1 M1 = {a, b}
µ2(a) = 1 µ2(b) = 1 µ2(c) = 0 M2 = {a}

Let U1, U2 be the subcollection of D1. Now, (X,U1) and (X,U2) form the soft fuzzy
quasi uniform space. Then,

τU1 = {(0, φ), (1, X), (µ1,M1)}
τU2 = {(0, φ), (1, X), (µ2,M2)}

are the soft fuzzy quasi uniform topologies, which are generated by U1 and U2. Thus,
(X, τU1 , τU2) is a soft fuzzy quasi uniform bitopological space.
Let M, K1,K2,K3 be the subset of Y . Let D2 denote the family of functions
g1, g2, g3, g4 : SF (Y ) → SF (Y ) be defined as follows

g1(µ,M) =
{

(0, φ), if (µ,M) = (0, φ)
(1, X), otherwise

g2(µ, M) =





(0, φ), if (µ,M) = (0, φ)
(γ1, K1), if(0, φ) 6= (µ,M) v (γ1,K1)
(1, X), otherwise

g3(µ, M) =





(0, φ), if (µ,M) = (0, φ)
(γ2, K2), if(0, φ) 6= (µ,M) v (γ2,K2)
(1, X), otherwise

g4(µ, M) =





(0, φ), if (µ,M) = (0, φ)
(γ3, K3), if(0, φ) 6= (µ,M) v (γ3,K3)
(1, X), otherwise
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where (γi, Ki) for i=1,2,3 are defined as follows:

γ1(a) = 1 γ1(b) = 0 γ1(c) = 0 K1 = {p}
γ2(a) = 1 γ2(b) = 0 γ2(c) = 1 K2 = {p}
γ3(a) = 0 γ3(b) = 1 γ3(c) = 1 K3 = {q, r}

Let V1, V2 be the subcollection of D2. Now, (X,V1) and (X,V2) form the soft fuzzy
quasi uniform space. Then,

τV1 = {(0, φ), (1, X)}
τV2 = {(0, φ), (1, X), (γ1,K1), (γ2,K2), (γ3, K3)}

are the soft fuzzy quasi uniform topologies, which are generated by V1 and V2. Thus,
(Y, τV1 , τV2) is a soft fuzzy quasi uniform bitopological space.
Let ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) be defined as

ψ(a) = p ψ(b) = p ψ(c) = r

Thus, ψ is pairwise soft fuzzy quasi uniform almost C-continuous function
but not pairwise soft fuzzy quasi uniform C-continuous function.

Proposition 5.4. Suppose (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be a function. Then, the following
conditions are equivalent.

(i) ψ is pairwise soft fuzzy quasi uniform almost C-continuous function.
(ii) ψ↼(λ,N) vC−intU1/U2(ψ

↼(intV1(clV1(λ,N)))) or
ψ↼(λ,N) vC−intU1/U2(ψ

↼ (intV2(clV2(λ,N)))) for each soft fuzzy quasi
V1-open set or soft fuzzy quasi V2-open set (λ,N) in (Y, τV1 , τV2).

iii) C-clU1/U2(ψ
↼(clV1(intV1(µ,M)))) v ψ↼(µ, M) or

C-clU1/U2(ψ
↼(clV2(intV2(µ,M)))) v ψ↼(µ,M) , for each soft fuzzy quasi

V1-closed set or soft fuzzy quasi V2-closed set (µ,M) in (Y, τV1 , τV2).
(iv) ψ↼(λ,N) is a soft fuzzy C-quasi U1-closed set or C-quasi U2-closed set, for

each soft fuzzy quasi regular V1/V2-closed set (λ,N) in (Y, τV1 , τV2).

Proof. Proof is obvious. ¤

Definition 5.5. A soft fuzzy set (λ,N) in (X, τU1 , τU2) is called a pairwise soft
fuzzy quasi uniform dense∗ set if there exists no soft fuzzy quasi U1-clopen set
and soft fuzzy quasi U2-clopen set, (µ,M) such that (λ,N) < (µ,M) < (1, X).

Definition 5.6. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. A function ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) is somewhat
pairwise soft fuzzy quasi uniform almost C-continuous function, if (λ,N)
is soft fuzzy quasi regular V1-open set or soft fuzzy quasi regular V2-open set and
ψ↼(λ, N) 6= (0, φ), then there exists a soft fuzzy C-quasi U1-open set or soft fuzzy
C-quasi U2-open set (µ,M) such that (µ,M) 6= (0, φ) and (µ,M) v ψ↼(λ,N).

It is clear from the definition, that every pairwise soft fuzzy quasi uniform al-
most C-continuous function is somewhat pairwise soft fuzzy quasi uniform almost
C-continuous , but the converse need not be true as shown in the following example.
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Example 5.7. Let X = {a, b, c} and Y = {p, q, r}. Let N, M1, M2 be the subset of
X. Let D1 denote the family of functions f1, f2, f3 : SF (X) → SF (X) be defined
as follows

f1(λ,N) =
{

(0, φ), if (λ, N) = (0, φ)
(1, X), otherwise

f2(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ1,M1), if(0, φ) 6= (λ,N) v (µ1,M1)
(1, X), otherwise

f3(λ,N) =





(0, φ), if (λ,N) = (0, φ)
(µ2,M2), if(0, φ) 6= (λ,N) v (µ2,M2)
(1, X), otherwise

where (µ1,M1) and (µ2,M2) are defined as follows

µ1(a) = 1 µ1(b) = 0 µ1(c) = 1 M1 = {a, b}
µ2(a) = 1 µ2(b) = 0 µ2(c) = 1 M2 = {a}

Let U1, U2 be the subcollection of D1. Now, (X,U1) and (X,U2) form the soft fuzzy
quasi uniform space. Then,

τU1 = {(0, φ), (1, X), (µ1,M1)}
τU2 = {(0, φ), (1, X), (µ2,M2)}

are the soft fuzzy quasi uniform topologies, which are generated by U1 and U2. Thus,
(X, τU1 , τU2) is a soft fuzzy quasi uniform bitopological space.
Let M, K1,K2 be the subsets of Y . Let D2 denote the family of functions g1, g2, g3 :
SF (Y ) → SF (Y ) be defined as follows

g1(µ,M) =
{

(0, φ), if (µ,M) = (0, φ)
(1, X), otherwise

g2(µ, M) =





(0, φ), if (µ,M) = (0, φ)
(γ1, K1), if(0, φ) 6= (µ,M) v (γ1,K1)
(1, X), otherwise

g3(µ, M) =





(0, φ), if (µ,M) = (0, φ)
(γ2, K2), if(0, φ) 6= (µ,M) v (γ2,K2)
(1, X), otherwise

where (γ1,K1) and (γ2,K2) are defined as follows

γ1(a) = 1 γ1(b) = 0 γ1(c) = 0 K1 = {p}
γ2(a) = 1 γ2(b) = 0 γ2(c) = 0 K2 = {q, r}

Let V1, V2 be the subcollection of D2. Now, (X,V1) and (X,V2) form the soft fuzzy
quasi uniform space. Then,

τV1 = {(0, φ), (1, X)}
τV2 = {(0, φ), (1, X), (γ1,K1), (γ2,K2)}
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are the soft fuzzy quasi uniform topologies, which are generated by V1 and V2. Thus,
(Y, τV1 , τV2) is a soft fuzzy quasi uniform bitopological space.
Let ψ : (X, τU1 , τU2) → (Y, τV1 , τV2) be defined as

ψ(a) = p ψ(b) = q ψ(c) = p

Thus, ψ is somewhat pairwise soft fuzzy quasi uniform almost C-continuous
function but not pairwise soft fuzzy quasi uniform almost C-continuous
function.

Proposition 5.8. Let (X, τU1 , τU2), (Y, τV1 , τV2) and (Z, τW1 , τW2) be the soft fuzzy
quasi uniform bitopological spaces. Let ψ : X → Y be a somewhat pairwise soft
fuzzy quasi uniform almost C-continuous and let φ : Y → Z be a pairwise soft
fuzzy quasi uniform almost continuous and pairwise soft fuzzy quasi uniform almost
open function. Then, φ ◦ ψ is a somewhat pairwise soft fuzzy almost C-continuous
function.

Proof. Proof is clear from the Remark: 4.4. ¤

Proposition 5.9. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be any function. Then, the following
are equivalent:
(i) ψ is somewhat pairwise soft fuzzy quasi uniform almost C-continuous function.
(ii) If (λ,N) is a pairwise soft fuzzy quasi uniform C-dense set, then ψ⇀(λ,N) is a
pairwise soft fuzzy quasi uniform dense∗ set in (Y, τV1 , τV2).

Proof. Proof is obvious. ¤

From the results proved so far, the following diagram of implications
is shown below :

Somewhat pairwise soft fuzzy quasi uniform C− continuous function
↑

Pairwise soft fuzzy quasi uniform C− continuous function
↓

Pairwise soft fuzzy quasi uniform almost C− continuous function
↓

Somewhat pairwise soft fuzzy quasi uniform almost C− continuous function

6. Somewhat pairwise soft fuzzy quasi uniform almost C-open
function

Definition 6.1. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. Then, ψ : X → Y is said to be a pairwise soft fuzzy
quasi uniform almost C-open function, if (λ,N) is soft fuzzy quasi regular U1-
open set or soft fuzzy quasi regular U2-open set in (X, τU1 , τU2), ψ⇀(λ,N) is a soft
fuzzy C-quasi V1-open set or soft fuzzy C-quasi V2-open set.

Definition 6.2. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi uni-
form bitopological spaces. Then, ψ : X → Y is said to be a somewhat pairwise
soft fuzzy quasi uniform almost C-open function iff (λ,N) is a soft fuzzy
quasi regular U1-open set or soft fuzzy quasi regular U2-open set and (λ,N) 6= (0, φ),
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then there exists a soft fuzzy C-quasi V1-open set or a soft fuzzy C-quasi V2-open
set, (µ,M) such that (µ, M) 6= (0, φ) and (µ,M) v ψ⇀(λ,N).

Proposition 6.3. Suppose (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be any function. Then the following
conditions are equivalent.
(i) ψ is somewhat pairwise soft fuzzy quasi uniform almost C-open function.
(ii) If (λ,N) is a soft fuzzy quasi regular U1/U2-closed set such that ψ⇀(λ,N) 6=
(1, Y ), then there exists a soft fuzzy C-quasi V1/V2-closed set (µ, M) such that
(µ,M) 6= (1, Y ) and (µ,M) = ψ⇀(λ,N).

Proof. (i) ⇒ (ii) Let (λ,N) be a soft fuzzy quasi regular U1/U2-closed set in
(X, τU1 , τU2) such that ψ⇀(λ, N) 6= (1, Y ). Then, (1, X)−(λ,N) is a soft fuzzy quasi
regular U1/U2-open set such that ψ⇀((1, X)− (λ,N)) = (1, Y )−ψ⇀(λ,N) 6= (0, φ).
As ψ is somewhat pairwise soft fuzzy quasi uniform almost C-open function, there
exists a soft fuzzy C-quasi V1/V2-open set (µ,M) such that (µ,M) 6= (0, φ) and
(µ,M) v ψ⇀[(1, X)−(λ, N)]. Since (µ,M) is soft fuzzy C-quasi V1/V2-open set such
that (µ,M) 6= (0, φ), (1, Y ) − (µ,M) is soft fuzzy C-quasi V1/V2-closed set (µ,M)
in (Y, τV1 , τV2) such that (1, Y )− (µ,M) 6= (1, Y ) and (1, Y )− (µ,M) = ψ⇀(λ, N).

(ii) ⇒ (i) Let (λ,N) be a soft fuzzy quasi regular U1/U2-open set such that
(λ,N) 6= (0, φ). Then (1, X) − (λ, N) is a soft fuzzy quasi regular U1/U2-closed set
and (1, X)−(λ,N) 6= (1, X). Now ψ⇀((1, X)−(λ,N)) = (1, Y )−ψ⇀(λ,N) 6= (1, Y ).
Hence by hypothesis, there exists soft fuzzy C-quasi V1/V2-closed set (µ,M) in
(Y, τV1 , τV2) such that (µ,M) 6= (1, Y ) and (µ,M) = ψ⇀((1, X)− (λ,N)) = (1, Y )−
ψ⇀(λ, N). This implies ψ⇀(λ, N) w (1, Y )− (µ,M). Clearly (1, Y )− (µ,M) is soft
fuzzy C-quasi V1/V2-open set in (Y, τV1 , τV2) such that (1, Y )− (µ,M) v ψ⇀(λ, N)
and (1, Y ) − (µ,M) 6= (0, φ). This shows that ψ is somewhat pairwise soft fuzzy
quasi uniform almost C-open function. ¤
Proposition 6.4. Suppose (X, τU1 , τU2) and (Y, τV1 , τV2) be any two soft fuzzy quasi
uniform bitopological spaces. Let ψ : X → Y be a surjective function. Then, the
following conditions are equivalent.
(i) ψ is somewhat pairwise soft fuzzy quasi uniform almost C-open function.
(ii) If (λ,N) is a pairwise soft fuzzy quasi uniform C-dense set in (Y, τV1 , τV2), then
ψ↼(λ, N) is a pairwise soft fuzzy quasi uniform dense∗ set in (X, τU1 , τU2).

Proof. (i) ⇒ (ii) Assume that ψ is somewhat pairwise soft fuzzy quasi uniform
almost C-open function. Suppose that (λ, N) is a pairwise soft fuzzy quasi uniform
C-dense set in (Y, τV1 , τV2). It must be shown that, ψ↼(λ,N) is a pairwise soft fuzzy
quasi uniform dense∗ set in (X, τU1 , τU2). Suppose if it is not, then there exists a
soft fuzzy quasi U1/U2-clopen set, (µ,M) such that ψ↼(λ,N) < (µ,M) < (1, X).
Now, (λ,N) = ψ⇀(ψ↼(λ,N)) < ψ⇀(µ,M) < ψ⇀(1, X) = (1, Y ). Since ψ is
somewhat pairwise soft fuzzy quasi uniform almost C-open function and every soft
fuzzy quasi U1/U2-clopen set is soft fuzzy quasi regular U1/U2-clopen set, there exists
a soft fuzzy C-quasi V1-closed set or soft fuzzy C-quasi V2-closed set (δ, L) such that
(δ, L) 6= (1, Y ) and (δ, L) = ψ⇀(µ,M). Thus, (λ,N) < ψ⇀(µ,M) < (δ, L) 6= (1, Y ).
This leads a contradiction that (λ,N) being a pairwise soft fuzzy quasi uniform C-
dense set in (Y, τV1 , τV2). Hence ψ↼(λ, N) is a pairwise soft fuzzy quasi dense∗ set
in (X, τU1 , τU2).
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(ii) ⇒ (i) Suppose (λ,N) 6= (0, φ) is a soft fuzzy quasi regular U1-open set or a soft
fuzzy quasi regular U2-open set. It must be shown that C-intV1(ψ

⇀(λ,N)) 6= (0, φ)
or C-intV2(ψ

⇀(λ,N)) 6= (0, φ). Suppose that C-intV1(ψ
⇀(λ,N)) = (0, φ) and C-

intV2(ψ
⇀(λ,N)) = (0, φ). Now

C-clV1((1, Y )− ψ⇀(λ,N)) = (1, Y )− C-intV1(ψ
⇀(λ,N)) = (1, Y )

and

C-clV2((1, Y )− ψ⇀(λ, N)) = (1, Y )− C-intV2(ψ
⇀(λ,N)) = (1, Y ).

This implies, (1, Y ) − (ψ⇀(λ,N)) is a pairwise soft fuzzy quasi uniform C-dense
set. Therefore by (ii), ψ↼((1, Y )−ψ⇀(λ,N)) is a pairwise soft fuzzy quasi uniform
dense∗ set in (X, τU1 , τU2). Therefore, (1, X) = clU1(ψ

↼((1, Y ) − ψ⇀(λ,N))) v
clU1((1, X)− (λ,N)) = (1, X)− (λ,N) and (1, X) = clU2(ψ

↼((1, Y )−ψ⇀(λ, N))) v
clU2((1, X) − (λ,N)) = (1, X) − (λ,N). This implies, (1, X) v (1, X) − (λ,N).
That is, (λ,N) v (0, φ). This leads a contradiction that (λ,N). Therefore, C-
intV1(ψ(λ,N)) 6= (0, φ) or C-intV2(ψ(λ,N)) 6= (0, φ) . Thus, ψ is somewhat pairwise
soft fuzzy quasi uniform almost C-open function. ¤

Proposition 6.5. Let (X, τU1 , τU2), (Y, τV1 , τV2) and (Z, τW1 , τW2) be the soft fuzzy
quasi uniform bitopological spaces. Let ψ : X → Y be a pairwise soft fuzzy quasi
uniform almost C-open function of a space X onto a space Y and let φ : Y → Z. If
φ◦ψ is a pairwise soft fuzzy quasi uniform almost continuous and pairwise soft fuzzy
quasi uniform almost open functions, then, φ is pairwise soft fuzzy quasi uniform
almost C-continuous function.

Proof. Let (λ,N) be a soft fuzzy quasi regular W1/W2-open set in Z. By the
Remark:4.1, (φ◦ψ)↼(λ,N) = ψ↼(φ↼(λ,N)) is soft fuzzy quasi regular U1/U2-open
set in X. Since ψ is a pairwise soft fuzzy quasi uniform almost C-open function and
ψ is surjective, ψ⇀(ψ↼(φ↼(λ,N))) = φ↼(λ, N) is soft fuzzy C-quasi V1/V2-open set
in Y . Thus, φ is pairwise soft fuzzy quasi uniform almost C-continuous function. ¤

Proposition 6.6. Let (X, τU1 , τU2), (Y, τV1 , τV2) and (Z, τW1 , τW2) be the soft fuzzy
quasi uniform bitopological spaces. Let ψ : X → Y , φ : Y → Z and suppose that
φ ◦ ψ is a somewhat pairwise soft fuzzy quasi uniform almost C-open function. If
ψ is pairwise soft fuzzy quasi uniform almost continuous and pairwise soft fuzzy
quasi uniform almost open surjection, then φ is somewhat pairwise soft fuzzy quasi
uniform almost C-open function.

Proof. Proof is obvious by using Remark : 4.4. ¤

Proposition 6.7. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be the soft fuzzy quasi uniform
bitopological spaces. Let ψ : X → Y be a pairwise soft fuzzy quasi uniform almost
C-open function and a bijective function. For any (λ,N) ∈ SF (Y ) and any soft
fuzzy quasi regular U1/U2-closed set (µ,M) w ψ↼(λ,N), there exists a soft fuzzy
C-quasi V1/V2-closed set (δ, L) w (λ,N) such that ψ↼(δ, L) v (µ,M).

Proof. Let (λ, N) ∈ SF (Y ) and (µ,M) be any soft fuzzy quasi regular U1/U2-closed
set such that (µ,M) w ψ↼(λ, N). Since ψ is a pairwise soft fuzzy quasi uniform
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almost C-open function and (1, X) − (µ, M) is a soft fuzzy quasi regular U1/U2-
open set, it follows that, (δ, L) = (1, Y ) − ψ⇀((1, X) − (µ, M)) is a soft fuzzy
C-quasi V1/V2-closed set in Y and (δ, L) w (1, Y ) − ψ⇀((1, X) − ψ↼(λ,N)) =
ψ⇀(ψ↼(λ,N)) = (λ,N). Now, ψ↼(δ, L) = ψ↼((1, Y ) − ψ⇀((1, X) − (µ,M))) =
(1, X)− ψ↼(ψ⇀((1, X)− (µ,M))) v (µ,M). Hence, it is proved. ¤

Proposition 6.8. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be the soft fuzzy quasi uniform
bitopological spaces. If ψ : X → Y is a pairwise soft fuzzy quasi uniform contin-
uous and pairwise soft fuzzy quasi uniform almost C-open bijection function, then
ψ↼(C-clV1/V2(intV1/V2(λ,N))) v clU1/U2(ψ

↼(intV1/V2(λ,N))), for each soft fuzzy
set (λ,N) in Y .

Proof. Proof is clear. ¤

Definition 6.9. A soft fuzzy quasi uniform bitopological space (X, τU1 , τU2) is called
as a pairwise soft fuzzy quasi uniform D∗-space (DC-space), if every non-zero
soft fuzzy quasi U1/U2-open set (λ,N) of X is soft fuzzy quasi uniform dense∗ ( soft
fuzzy quasi C-dense) set in X.

Proposition 6.10. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be the soft fuzzy quasi uniform
bitopological spaces. Let ψ be a pairwise soft fuzzy quasi uniform almost C-open
function from X onto the pairwise soft fuzzy quasi uniform DC-space, Y . Then X
is pairwise soft fuzzy quasi uniform D∗-space.
Proof. Proof is obvious. ¤

Proposition 6.11. Let (X, τU1 , τU2) and (Y, τV1 , τV2) be the soft fuzzy quasi uniform
bitopological spaces. Let ψ be a pairwise soft fuzzy quasi uniform almost C-open and
surjective function. If Y is the pairwise soft fuzzy quasi uniform DC-space, then
clU1/U2(ψ

↼(intV1/V2(λ,N))) = (1, X), for any soft fuzzy set (λ,N) in Y .

Proof. Let (λ, N) be any soft fuzzy set in Y . Let intV1/V2(λ,N) 6= (0, φ) be
a soft fuzzy quasi V1/V2-open set in Y . Since (Y, τV1 , τV2) is the pairwise soft
fuzzy quasi uniform DC-space and ψ is the soft fuzzy quasi uniform almost C-
open function, intV1/V2(λ,N) is a soft fuzzy quasi uniform C-dense set in Y and
ψ↼(intV1/V2(λ,N)) is the soft fuzzy quasi uniform dense∗ in X. This implies
that,clU1/U2(ψ

↼ (intV1/V2(λ,N))) = (1, X). ¤
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