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ABSTRACT. The aim of this paper is to study the generalization of the
intuitionistic fuzzy normed spaces such as intuitionistic fuzzy 2-normed
space. In this structure, we have discussed the intuitionistic fuzzy 2-
continuity and intuitionistic fuzzy 2-boundedness. Also, we have intro-
duced the intuitionistic fuzzy 1-2-normed space which is a generalization
of intuitionistic fuzzy 2-normed space. We have discussed some results in
this new set up.
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1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh[19] in 1965. After the pioneer
work of Zadeh, many researchers have extended this concept in various branches
of mathematics and introduced new theories like fuzzy set theory [9], fuzzy group
theory, fuzzy differential equation, fuzzy topology, fuzzy metric spaces [2, 5, 7], fuzzy
normed spaces [14] etc. We are especially interested in theory of fuzzy normed spaces
and their generalizations. Atanassov[3] introduced the concept of intuitionistic fuzzy
sets which is further studied by Coker[4]. Park[13] has introduced the concept of
intuitionistic fuzzy metric space. Saadati and Park[14] coined the notion of intu-
itionistic fuzzy normed space. Hee Won Kang, Jeong-Gon Lee, Kul Hur[8] studied
some fundamental properties of intuitionistic fuzzy mapping. Certainly, there are
some situations where the ordinary norm does not work and the concept of intu-
itionistic fuzzy norm seems to be more suitable. A lot of works have been done in
intuitionistic fuzzy normed spaces see in [17],[11],[12],[14], [6], [18].
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Recently, M. Mursaleen[10] defined the new structure intuitionistic fuzzy 2-normed
space and studied some basic results of normed linear spaces. In this paper, we have
studied the continuity and boundedness in intuitionistic fuzzy 2-normed spaces. T.K.
Samanta and Sumit Mohinta[I5] have introduced the concept of intuitionistic fuzzy
1-normed space and discussed continuity and boundedness in this structure. We
have coined the concept of intuitionistic fuzzy 1-2-normed space which is generaliza-
tion of intuitionistic fuzzy 2-normed space. It shall provide more suitable framework
to deal with the inexactness of the norm or 2-norm in some situations.

2. PRELIMINARIES

We recall some notations and basic definitions used in this paper.

Definition 2.1 ([I6]). A binary operation * : [0,1] x [0,1] — [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions:

(a) = is associative and commutative;

(b) * is continuous;

(c) a*x1=aforall a€l0,1];

(d) a*b<cxdwhenever a < ¢ and b < d for each a,b,c,d € [0, 1].

Example 2.2. Two typical examples of continuous t-norms are
a*xb=ab and a*b= min{a,b}.

Definition 2.3 ([16]). A binary operation ¢ : [0,1] x [0,1] — [0, 1] is said to be a
continuous t-conorm if it satisfies the following conditions:

(a) ¢ is associative and commutative;

(b) ¢ is continuous;

(¢) ao0=aforall a €0,1];

(d) aob<cod whenever a < ¢ and b < d for each a,b,c,d € [0, 1].

Example 2.4. Two typical examples of continuous t-conorms are
aob=min{a+b,1} and aob= max{a,b}.
M. Amini and R. Saadati studied some properties of t-norm in [I].

Definition 2.5 ([14]). The five-tuple (V, p,v,*,0) is said to be an intuitionistic
fuzzy normed space (for short, IFNS) if V is a vector space over F € {R,C}, x is a
continuous t-norm, ¢ is a continuous t-conorm, and p, v are fuzzy sets on V x (0, 00)
satisfying the following conditions. For every z,y € V and s,t > 0,
(a) p(z,t) + l/(x t) < 1;
) (@, t) >
c) w(z, )—11fand0nly1fx—0
d) plaz,t) = p(x T, 1 ‘)foreacha;«éo
e) p(®,t)* p(y,s) < p(@+y,t+ s);
) p(z,-) : (0,00) — [0,1] is continuous;
9) limy o0 p(,t) = 1 and limy_,q p(x, t) = 0;
h) v(z,t) <1;
) v(z,t) =0 if and only if z = 0;
) viaz,t) = v(x, e ‘) for each « # 0;
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(k) v(z,t)ov(y,s) >v(z+1t,y+s);
(1) v(z,-):(0,00) — [0, 1] is continuous;
(m) limy_ oo v(2,t) = 0 and limy_,q v(z,t) = 1.
In this case (u,v) is called an intuitionistic fuzzy norm.

Example 2.6. Let (V| - ||) be normed space over F. Denote a * b = ab and
aob=min{a+b,1},Va,b € [0,1] and let o and vy be fuzzy sets on V' x (0, c0)

]
_ )= , for all £ € R*. Th
r e ) = e e en

(V, 1o, Vo, *,©) is an intuitionistic fuzzy normed space over F € {R, C}.

defined as follows po(x,t) =

Definition 2.7 ([10]). Let V be a real vector space of dimension d, where 2 <
d < oco. A 2-norm on V is a function ||-,-|| : V x V' — R which satisfies, for every
z,y,z €V

(a) ||z, y|]| =0 if and only if x and y are linearly dependent;

©) llz,yll = lly, =[|;

(©) lloz, yll = lalllz, yl;

(@) llzy + 2] < llz, yll + [y, 2]-
The pair V, ||, || is then called a 2-normed space.

As an example of a 2-normed space take V = R? being equipped with the 2-norm

||z, y|| :== the area of the parallelogram spanned by the vectors  and y, which may
be given explicitly by the formula ||z, y|| = |z1y2 — x2v1|, 2 = (z1,22),y = (y1,Y2)-

Definition 2.8 ([10]). The five-tuple (V, p,v,*,0) is said to be an intuitionistic
fuzzy 2-normed space (for short, IF 2-NS) if V is a vector space over F € {R,C},
% is a continuous t-norm, ¢ is a continuous t-conorm, and u,v are fuzzy sets on
V xV x (0, 00) satisfying the following conditions. For every z,y,z € V and s,t > 0,

(a) p(z,y, )+V(w,y,t) <1
w(z,y,t) >

(z,y,t) = 1 1f and only if z and y are linearly dependent;
(

W
plaw,y, t) = p(z, y, \al) for each a # 0;

c
(d
) w@,y,t) * p(x,z,8) < p(@,y + z,t + s);
(f) m(z,y,-):(0,00) — [0, 1] is continuous;
(9) limyoo p(,y,t) = 1 and limy_,o p(x,y,t) = 0;
(h :u’(mayvt) = ,u(y,x,t),
(1) v(z,y,t) <1;
(j) v(z,y,t) =0 if and only if x and y are linearly dependent;
(k) v(az,y,t) = v(z,y, Ial) for each « # 0;
D) v(z,y,t)ov(z,z,8) > v(z,y+ 2,t+s);

v(z,y,-) : (0,00) — [0,1] is continuous;
limy 00 v(2,y,t) = 0 and lim;,g v(x,y,t) = 1,
v(w,y.t) = v(y,z.1).
In this case (u,v)s is called an intuitionistic fuzzy 2-norm on V. We denote it by

Example 2.9 ([10]). Let (V,]|-,-||) be 2-normed space over F' and let a *b = ab
and a ¢ b = min{a + b, 1}, for all a,b € [0,1] and every ¢t > 0, consider u(x,y,t) =
371
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t eyl
v(z,y,t) =
t+ [l yll’ t+ eyl
normed space.

Then (V, u,v,*,0) is an intuitionistic fuzzy 2-

Definition 2.10 ([10]). Let (V, u,v, *,0) be an intuitionistic fuzzy 2-normed space
and let 7 € (0,1),¢ > 0 and z € X. The set B(z,r,t) ={y € V : ply — z,2,t) >
1—7r v(y—=x,zt) <rVz eV} is called the open ball with center x and radius r
with respect to t.

Definition 2.11 ([10]). Let (V, p, v, *,0) be an intuitionistic fuzzy 2-normed space.
A set U C V is said to an open set if each of its points is the centre of some open ball
contained in U. The open set in an intuitionistic fuzzy 2-normed space (V, u, v, *, <)
is denoted by U.

Definition 2.12 ([10]). Let (V, pu, v, *,0) be an intuitionistic fuzzy 2-normed space.
A sequence {z,} in V is said to be Cauchy if for each r > 0 and each ¢ > 0, there
exists ng € N such that u(x, — xm,2,t) > 1 —r and v(z, — zy,2,t) < r for all
n,m > ng and for all z € V.

Definition 2.13 ([10]). Let (V, pu, v, *,0) be an intuitionistic fuzzy 2-normed space.
A sequence {x} is said to be convergent to L € V with respect to the intuitionistic
fuzzy 2-norm (u,v)s, if for every € > 0 and ¢ > 0, there exists kg € N such that
w(xg — L, z,t) > 1 —€and v(xg — L, 2,t) < e for all k > ko and for all z € V.

Definition 2.14 ([15]). Let ¢ be a function defined on the real field R into itself
satisfying the following properties;

(a) ¥(—t) = w(t) for allt € R

(0) ¥(1) =

(c) 9 is strlctly increasing and continuous on (0, 00)

(d) limg—o (@) =0 and lim,_ o (@) = co.
Example 2.15 ([15]). Consider (o) = |a]; ¢ () = |afP,p € RT; () = ‘ZOET%’TL €
N*. The function 1 allows us to generalize fuzzy metric and normed space.

Definition 2.16 ([15]). The five-tuple (V, pu, v, *,0) is said to be an intuitionistic
fuzzy 1-normed space if V is a vector space over F € {R,C}, * is a continuous
t-norm, ¢ is a continuous t-conorm and p, v are fuzzy sets on V x (0, 0c0) satisfying
the following conditions. For every x,y € V and s,t > 0,

(@) e ) + v(ort) <

(b) (1) >
(¢) ,u(a?,t) = 1 1f and only if x = 0;

(d) plaz,t) = p(z, 1/}(a)) for each « # 0;

(e) plz,t)*uly,s) < plz+y,t+s);

(f) w(z,-):(0,00) — [0,1] is continuous;

(9) limi— oo p(z,t) = 1 and lim;_,o p(z,t) = 0;
(h) v(z,t) <1,

(1) v(x,t) =0 if and only if z = 0;

(9) viaz,t) =v(z, (a)) for each « # 0;

(k) viz,t)ov(y,s) >v(z+t,y+s);
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(1) v(z,-):(0,00) — [0,1] is continuous;
(m) limy_ oo v(2,t) = 0 and limy_g v(z,t) = 1.

In this case (u,v) is called an intuitionistic fuzzy ¥-norm.

3. INTUITIONISTIC FUZZY 2-NORMED SPACE

Theorem 3.1. In an intuitionistic fuzzy 2-normed space (V, p, v, *,9), if
{2}, =2 g and {y,}22, =Wy,

then {x, + yn}52, is convergent to x + y. In other word, if (V,u,v,*,0) be an
intuitionistic fuzzy 2-normed space then the addition is continuous in (V, p, v, *,0).

Theorem 3.2. In an intuitionistic fuzzy 2-normed space (V,p,v,%,0), if Ap, A €
Rt Ay — A asn — oo and {x,}5%, =2 2 asn — oo then {\,x, 22, —H»)2
Azx. In other word, if (V,p,v,*,0) be an IF-2-NS then the scalar multiplication is
continuous in (V, p, v, *,0).

Proof. The proof of theorems (3.1) and (3.2)) directly follows from definitions. O

Lemma 3.3. Let {2,}52, —")2 2 as n — oo in intuitionistic fuzzy 2-normed
space (V, p, v, *,0). Then for every t >0 as n — oo,

(31) ,LL(ZL'n,Z7t) - H(I,Z,t), I/(In’zﬂf) - V(I’7Z,t).
Proof. Let {x,}5%, —#¥)2 xasn — oo in (V, u, v, *,0). Then t > 0, Vk € Nt,

t kt
PRy
t kt
*z»zam)*ﬂ(%%m
kt
xT,z, 7k+1
kt
‘r7zam)a

WXy, z,t) = plz, — 2+ x, 2,

)

> N(«'En

— L p( ); (n — o0)

=

kt

S0 Mneoo:u(xna th) 2 H(JH Z, m), (k = 1, 2, s )
Letting k — 400 yields that,

(32) Mﬂn—»oo/l’(zn’z7t) Z ,U,(.T,Z,t).

! ) 1> k >0
I N v
E+1 E+1 ) a8

1 k
) e > N

On the other hand, for all k¥ € Nt u(z — z,, 2,

n — 00. So there exists an N such that, u(x — z,, 2z,
Thus, Vn > N and V¢ > 0, we have
1 1

— )< t—).

k
ny at < ny 7t - 4ny
(0, 2, 1) * ns 2, 8) + pla — @ o

k+1 -
Thus,
k
k+1

1

ns ’t
(@, 2, t) * P
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Hence,

(z,z,t+

)

mn—m)o/’[/(xﬂm 2y t)

k+17~
forall k =1,2,3,---. Letting k — 400 yields that

3.3 limy—oopt(zn, 2,t) < plz, 2,t).
w w

Now (3.2),(3.3) implies that lim, o p(xn, 2,t) = p(z, 2, t).
Similarly, we get, lim,,—, o ¥(xy, 2,t) = v(z, 2,t). The proof is completed. O

k+1

Theorem 3.4. In an intuitionistic fuzzy 2-normed space (V, u, v, *,9), the mappings
vV xV x(0,00) — [0,1] are continuous.

Proof. Let x € V and t > 0 with (x,, z,t,) — (z,2,t) asn — oo in V x V x (0, 00).
Then z, —*")2 zasn —ooin V and ¢, — t as n — oo in (0,00). Thus, for every
0 > 0 such that § < min{%, 1}, there is ng € N such that for all n > ng,

(3.4) t—0<t,<t+0 and plz—x,,2,0)>1-9, v(x—x,,20) <.
Hence, for all n > ng, we see from (3.4)

,u(xn,z,tn) > Ty, 2,t — 6)

(
=p(z, —z+x,2,0 +1—20)
> u(x, —x,2,0) % u(z, 2, t — 20)
> (1—0)* pu(x, z,t — 20)

and
V(Zp, 2,tn) < v(Tp,z,t —9)

v, —x+x,2,0 +1—20)
<v(x, —x, 2,0)ov(x,z,t— 20)
<

dov(x,z,t—20).
n) 2

Thus, for all n > ng, p(z,,z,t (1 —90) * p(x,z,t — 20) and v(xp,2,t,) <

dov(x,z,t—26). This shows that

(3'5) himnﬂoo:u(xm zvtﬂ) 2 (1 - 6) * M(*T7 Z,t — 26)
and
(3.6) limy, oo (T, 2,tn) < o v(m, 2, — 26).

Letting § — 07, in (3.5), (3.6) yields that

(3.7) lim, oo pi(@n, 2,tn) = 15 p(@, 2,t) = p(x, 2, 1)
and
(3.8) limy, . oo/(Tn, 2,tn) < 00 v(x, 2, 1) = (7, 2, 1).

On the other hand, when n > ng. It follows from Lemma (3.3) that

WXy 2, tn) < p(@n, 2, +0) — p(x, z,t +0) as n— oo,
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and
V(Tny 2, tn) = V(@n, 2,t — ) = v(z,2,t — ) as n — oo.
Hence,
(3.9) limy, oot T, 2, tn) < p(z, 2,1+ 6)
and
(3.10) lim, ,  v(%n,2,t,) > v(z,2,t—0).

Letting 6 — 07, in (3.9) and (3.10)) yields that
limy, oo pt(Tn, 2, tn) < pulw, z,t) and lim,, | v(2n, 2,t,) > v(2, 2,1).
It follows from (3.7) and (3.8)) that

lim p(z,,2,tn) < p(z,z,t) and  lim v(z,,2,t,) > v(z, 2, t).

n—oo n—oo

Therefore, the mappings p, v : V x V x (0,00) — [0, 1] are continuous. O

Definition 3.5. A linear operator T : (V,pu,v, x,0) — (V, ,u/71//7*,<>) is said to
be intuitionistic fuzzy 2-bounded (shortly,IF-2-B) if there exist constants h,k €
R — {0} such that, y' (T, z,t) > p(ha,z t) and v (Tx, z,t) < v(kz, z,t) for every
x, z(nonzero) € V and for every t > 0.

Theorem 3.6. Suppose that (V, u, v, x,0) and (V, ul,ul, *,0) are intuitionistic fuzzy
2-normed spaces over F with

(a) 1>a>c>0and1>b>c>0 impliesaxb>c
) 0<a<c<1and0<b<c<1 impliesaocb<c.

If linear operators T, Ty, Ty : (V, p, v, %,0) — (V, W x,0) are (IF-2-B) intuitinistic
fuzzy 2-bounded, then Ty + Ty and ¢T'(c € F) are also IF-2-B.

Proof. Since, linear operators T,T1,T5 : (V,u,v,*,0) — (V, ;/,z/,*,o) are IF-2-B
there exists k1, k2, hi, ha € RT such that,

p (Tyz, 2,t) > p(hiz, 2,t) and V,(Tlx,z,t) > vk, z,t),

1 (Tox, 2,t) > plhow, 2,t) and v (Toz, z,t) > v(kez, 2, 1),
375
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for every x, z(nonzero) € V and for every t > 0. Put h = max{hy,ha} and k =
max{ki, ka} then for every z € V, we have

,u/((Tl + 1)z, z,t) = //(Tlx + Thx, z,t)

' t / t
>u (Thz, z, 5) wu (Thx, z, 5)

t t
> M(h1$7 2, 5) * /,L(hgx, 2, 5)

L

t
- ,LL(LU,Z, 7) * ,U(J%Za %

2hy

' t
> _
> u(w, z, 2h)*u(ﬂs,z, 2h)

t
7%)
= p(3hx, z,t).

> p(x, 2

Similarly, v (T} + Tb)z, 2,t) < u(3ha, z,t). Hence T) + Ty is IF-2-B. Similarly, we
can prove that T is TF-2-B. O

Definition 3.7. A linear operator 1" : (V, pu, v, x,0) — (V, /14/, V/, *,0) is said to be
intuitionistic fuzzy 2-continuous shortly,(IF-2-C) at a point = € V if a,, —#*)2 z as

n — oo in (V, u, v, *,o) implies that Tx,, —# ¥ )2 Tz as n — oo in (V, ,u’,v,,*,o).
An operator T is said to be IF-2-C if it is intuitionistic fuzzy 2-continuous every-
where.

Definition 3.8. A map T : (V, u,v,*,0) — (V, vk, ©) is said to be intuitionistic
fuzzy 2-continuous shortly, (IF-2-C) at a point o € V if for any given e > 0, a € (0,1)
there exist 6 = d(a, €) > 0, = B(a,€) € (0,1) such that for all z € V|

w(x — 20, 2,0) > 8=y (Tx — T, 2,€) > o,

vz —xzp,2,0) <1—0= V/(T‘T*TIQ,Z,E) <l-a.
Remark 3.9. The above definitions (3.7) and (3.8) are equivalent.

Theorem 3.10. Suppose that (V, p, v, *,0) and (V, ul, v, ©) are intuitionistic fuzzy
2-normed spaces over F. If linear operators Ty, Ty : (V, p,v,*,0) — (V, M/,y/,*,o)
are IF-2-C, then c1 Ty + coTy is IF-2-C for all scalars c¢1,co € F.

Proof. Let x, —>(“’”?2 T asm — 00 in (V, p, v, *%,0). Since, linear operators 11,75 :
(Vv %,0) — (Vo v, *,0) are IF-2-C, we get,
Tz s Tz, Thay, ENAF Tox as n — oo
in (V, ,u/,ul, *,0), by (3.1)),(3.2), we get for all ¢1,co € F
c1(Thxy) + co(Toxy,) ENRRR c1(Thz) + ca(Tex) as n— oo
which gives
(a1Th + c2T5)xy, —>(”/”’/)2 (111 4 c2To)x as n — 0.

Hence, ¢1T1 + coT5 is intuitinistic fuzzy 2-continuous. O
376
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Definition 3.11. A linear operator T : (V, u, v, x,0) — (V, //, y/,*7<>) is said to be
strongly intuitionistic fuzzy 2-continuous at a point z € V if for any given ¢ > 0
there exists d(e) > 0,

1 (Tx — Taxg, z,€) > p(x — x0,2,8) and v (Tx — Txg, z,€) < v(z — x0,2,0).

A linear operator T : (V, p, v, *,0) — (V/,,u/, v, *,0) is strongly IF —2 — C,if T is
strongly IF — 2 — C at each point of V.

Theorem 3.12. A linear operator T : (V,u,v,*,0) — (V/,,u/,ul,*,o) s strongly
IF —2—C, then it is IF — 2 — C, but converse is not true.

Proof. Let a linear operator T : (V, p, v, *,0) — (V, vk, ©) be strongly IF—2—C.
Let xo € V if for any given € > 0 there exists d(e) > 0 such that for all z € V,

1 (Tx — Txo, z,€) > p(x — xo,2,6) and v (Tx — Txo, 2, €) < vz — x0, 2,6).
Let {x,} be a sequence in V such that {z,} — x¢ for all £ > 0 then
nlLII;O w(x — xp,2,t) =1 and nlirr;o v(z — xzg,2,t) =0.
Thus we see that
ul (Tx, — Txo, 2,€) > p(x, — x0,2,0) and v (Txy,, — Txo, 2,€) < v(z, — 0, 2,0).

which implies that

lim g (Tz, — T, 2,€) =1 and lim v (Tx, — Txo, 2z €) = 0

which gives Tz, — Txq in (V, W *,0). Hence, T'is IF — 2 — C. Conversely, we
provide example, which is IF — 2 — C but not strongly IF — 2 — C. O

Example 3.13. Let (V = R,||-,||) be 2-normed space over F . Define a b =
min{a,b} and a o b = max{a,b}, for all a,b € [0,1]. Let p,v, 1,1/ are fuzzy sets

[z, 2|
VxVx(0 defined b )= ———— )= —F"FT—— d
on V x V x (0,00) defined by u(z,z,t) T v(z, 2, t) P P an
/( ) t
z,z, R ATITE
: t+ ko, 2]
’7 k
V (2, 2,t) = Kl 2l g ant e RY and k> 0.
t+ k||, 2|
In short,
1Yl ' t : k(Y]]
/”'(Kt): aV(Y7t): andu(}/’t)zi’y(y’t)zi
t+ Y t+|4|Y|| t+ kY] t+ kY]
Let us now define, T(Y') = Jﬁ forallY € V. Let Yy € V and {Y}} be a sequence

in V such that {Y;} — Yo in (V] p, v, %, 0),
i.e. for all t > O,klim w(Yy — Yo, t) =1 and klim w(Yy —Yo,t) =0,

. ¢l  Ya- Yol
= hIIl 7:1311(1 hm 710
e T4 [V — Y0 b L+ Yo — Yol

= limg oo {[|Yx — Yol } = 0.
377
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Now for all ¢ > 0,
t t

1 (TY, — TYy,t) = =
EHRITY, = TYoll ¢y k| 2

Y04
— gl

= lim 4 (TY, — TY,,t) = 1.

Similarly, we get, lim,, v (TY, —TYy,t) =0. Thus Tis IF -2 — C.
Let € > 0 be given. Then
W (TY — Ty, €) > u(Y — Yo, )
N elll + Y21+ Y|
L+ V2L + YT+ MY — Yll[(Y + Yo) (V2 1 Y2) + VIV2(Y + 1o)]
1)
Z -
§+ Y — Yol
and
V(TY = TYy,€) < v(Y — Yy, 6)
N E[IY — Yol[[|(Y + Yo) (Y2 + Y¢) + Y2YZ(Y + Yo)||
e+ [T+ Y21+ Y + K[Y = Yol [(Y + Yo) (Y2 + YF) + Y2YF(Y + Yo
)
S .
5+ Y — Yol
So,
(3.11) kS|l = Yoll|Y + Yoll|Y? + Y5 + Y2YG | < ell1 + Y21 + YZ Y — Yol|
ellt + Y21+ Y|
3.12 =<
(3.12) = WY = Vall[V2 + ¢ + V27|
We see that T' is IF-2-C at Yj if there exists § > 0 satisfying (3.11) for all Y # Yj. Let
. It + Y2t + Y3
01 = inf 2 2 32
1Y = Yol[[[Y2 + Y§ + Y2Y5||
Y # Yy. Then 0 = 16, satisfies (3.11). But é; = 0 which is impossible. Hence, T' is
not strongly IF-2-C.

(for Y #Yp).

where the infimum is taken over all Y, where,

Theorem 3.14. (V, pu,v,x,0) (V, ul,l//,*,o) are IF-2-NS and T : (V, p, v, x,0) —
(v, v, *,0) be a linear operators, then the following conditions are equivalent.
(a) T is intuitionistic fuzzy 2-bounded (IF-2-B).
(b) If there exist constants h, k € R—{0} such thatyu (Tx,z t) > p(hx, z,t) and
V (Tx,z,t) < vk, z,t) for every x, z(nonzero) € V and for every t > 0.
(¢) T is intuitionistic fuzzy 2-continuous at some point xg € V.
(d) T is intuitionistic fuzzy 2-continuous (IF-2-C).

Proof. (a) < (b) Obviously, result holds by definition (3.5).

(¢) & (d) Suppose, T is intuitionistic fuzzy 2-continuous at some point o € V. Let
{x,} =")2 asn — oo in (V, pu, v, *,0). By theorems (3.1) and (3.2), we see that,
(2 —x) + 20 =2 20 as n — oco.
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T((xp — ) +20) = V)2 Ty as n — oo.
Since T is a linear, we obtain that

(Tx, — Tx + Txp) =2 Teo as n— o0

implies that Tz, ENAF Tz. By definition (3.7), we conclude that, T" is IF-2-C.
Obviously, converse hold.
(a) & (d) Tt follows from [10] and converse holds by definitions (3.5), (3.8]). O

Definition 3.15. Let (V,u,v, *,¢) be an intuitionistic fuzzy-2-normed space. A
subset D of V is said to compact if any sequence in D has a subsequence converging
to an element of D.

Theorem 3.16. Let T : (Vq, 1, v1, %,0) — (Va, 2, V2, %,0) be a mapping and D be
a compact subset of V1. If T is a IF-2-C on Vi then T(D) is a compact subset of Va.

Proof. Let y, be a sequence in T'(D) then for each n there exist x,, € D such that
T(zyp) = yn. Since D is a compact there exists {x,,} a subsequence of {z,} and
xo € D such that {z,, } — ()2 gip (Vi, p1,v1,%,0). Since T is an intuitionistic
fuzzy-2-continuous at zy. By definition (3.7)

{am} =02 0y = T} =022 Tlag) = {yn ) =022 gy

for some yo € T(D) such that T'(z9) = yo implies that T(D) is compact subset of
Va. O

4. INTUITIONISTIC FUZZY 1-2-NORMED SPACE

Definition 4.1. The five-tuple (V, u, v, *,0) is said to be an intuitionistic fuzzy -
2-normed space, if V is a vector space over F € {R,C}, * is a continuous t-norm, ¢
is a continuous t-conorm, and p, v are fuzzy sets on V x V x (0, 00) satisfying the
following conditions. For every x,y,z € V and s,t > 0,

(a) p(z,y, )+V(33,y,t) <1
W@, y,t) >
w(z,y,t) = 1 1f and only if x and y are linearly dependent;
wlaz,y,t) = u(z, Ys 5lay ) for each a # 0;

@,y t) * p(x, 2, 5) <u(w y+z,t+s);

w(z,y,-): (0,00) — [0,1] is continuous;

limy 00 (2, y,t) = 1 and limy_,q (2, y,t) = 0;

)
)
)
)
)
)
; :U‘( z,Y, )* (y,x t)
)
)
)
)
)

(1) v(z,y,t) <

(7)) v(z,y,t) = 0 if and only if x and y are linearly dependent;
(k) viaz,y,t) =v(z,y, w(a)) for each a # 0;

(1) v(z,y,t)ov(z,z,8) > v(z,y+ 2z,t+ 3);

v(z,y,-): (0,00) — [0,1] is continuous;

(n) limi— oo v(z,y,t) =0 and lim; o v(z,y,t) = 1;

(0) v(z,y,t) = v(y,z,1).

In this case (u, V)2 is called an intuitionistic fuzzy 1-2-norm on V.
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Definition 4.2. Let (V,pu,v,*,0) be an intuitionistic fuzzy 1-2-normed space. A
sequence {z,} is said to be convergent to x € V with respect to the intuitionistic
fuzzy 1-2-norm (u,v)s, if for every » > 0 and ¢ > 0, r € (0,1) there exists ng € N
such that u(x, —x,2,t) > 1 —r and v(z, — z,2,t) < r for all n > ngy and for all
zeV.

Definition 4.3. Let (V, u,v,*,0) be an intuitionistic fuzzy -2-normed space. A
sequence {z,} in V is said to be Cauchy if for each r > 0 and each t > 0,r € (0,1)
there exists ng € N such that p(z, — m,2,t) > 1 —r and v(z, — Tm, 2,t) < r for
all n,m > ng and for all z € V.

Definition 4.4. Let (V, u,v,*,0) be an intuitionistic fuzzy 1-2-normed space and
let » € (0,1),¢ > 0 and z € X.The set B(z,r,t) = {y € V : uly — z,2,¢t) >
1—r, v(y—=x,z2t) <rVze V}is called the open ball with center z and radius r
with respect to t.

Definition 4.5. Let (V,u,v,*,0) be an intuitionistic fuzzy -2-normed space. A
set U C V is said to an open set if each of its points is the centre of some open ball
contained in U. The open set in an intuitionistic fuzzy ¥-2-normed space (V, u, v, *, )
is denoted by U.

Theorem 4.6. In intuitionistic fuzzy -2-normed space (V,u,v,*,0). A sequence
{zn} converges to x if and only if u(x, — x,2,t) — 1 and v(z, — z,2,t) — 0 as
n — oo.

Proof. Fix t > 0, Suppose {x,} converges to z in IF ¢-2-normed space (V, u, v, ¥, ©)
then for a given r, 7 € (0, 1) there exists an integer ng € N such that u(x, —x, z,t) >
1—rand v(z, —z,2,t) <r. Thus 1 — pu(z, — z,2,t) > r and v(z, — z,2,t) <,
hence, p(x, — z,2,t) — 1 and v(z, — z,2,t) — 0 as n — oo.

Conversely, if for each t > 0, pu(z, — x, 2,t) — 1 and v(z, — 2,2,t) = 0 as n — o0
then for every r € (0, 1), there exists an integer ng such that 1 — p(z, — z,z,t) > r
and v(x, —x, 2z,t) <r,Vn > ng. Hence, pu(x, —x,2,t) > 1—r and v(x, —z, z,t) < r.
Thus, {z,} converges to = in IF 1)-2-normed space (V, u, v, *,0). O

Theorem 4.7. The limit is unique for a convergent sequence {x,} in intuitionistic
fuzzy ¥-2-normed space (V, p, v, *,0).

Proof. Let lim,,_,o z, =z and lim, . T, = y.

. _  lmpeo p(Tn — T, 2,8) =1,
nh—{r;o Tn =2 = { limy, oo (2y — 2, 2,t) = 0.
. o lim;, o0 /J/(xn — Yz t) =1,
nh—>ngo In == { limy, 00 V(T — Y, 2,t) = 0.
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vic—y,z,s+t)=v(t—2p+z, —y,2,5+1)

zy(x_xnaZ,S)QV(@"n_yath)
]
=v(rn — 2,2, ——) oV Ty — Y, 2,1
( D) oM )
s
=v(T, —T,2,——)oV(Tn — Y, 2, ¢
( ) o )

=v(x, —x,z,8) ov(z, — ¥, 2,1).

As n — oo we have, v(z — y, 2,5 +t) = 0= x = y. Thus, The limit is unique for a
convergent sequence {z, } in intuitionistic fuzzy 1-2-normed space (V, i, v, *,0). O

Theorem 4.8. In IF ¢-2-NS (V, u, v, *,0). Every convergent sequence is a Cauchy
sequence.

Proof. Let {x,} be a convergent sequence in IF 1)-2-NS (V, u, v, %, 0) with lim,, o z,, =
x. Let 7 € (0,1), t,s > 0 then there exist an integer ng € N such that p(z, —
x,z,8) >1—rand v(z, —x,2,8) <r. Forn,peN

W(Zngp —Tn, 2,8 +18) = p(Tngp —c+2 —2p,2,5 + 1)

> w(Tntp — T, 2,8) * p(x — Ty, 2, 1)
= H(Eey = 2. 28) s = .2 )
= w(Tngp — 2, 2,8) * p(x, —x,2,t)
>1—r)x(1—r)
= (1—7r),¥n > no.

Similarly,

V(Zngp — &n, 2,8+ 1) =V(Tpgp — T+ 2 — Tp, 2,5+ 1)

<U(Tpsp — T, 2,8) ov(xT — Tp, 2, 1)
=V(Tpip — ,2,5) oV(T, — 2, 2, ¢(t_1))
=V(Tpyp — T,2,8) ov(Ty — T, 2,1)
<ror
=r,Vn > ng.

Hence, {z,} is a Cauchy sequence in IF ¢-2-NS (V, u, v, *,0). O

Theorem 4.9. In IF )-2-NS (V, p, v, *,0). A sequence {x,} is a Cauchy sequence
if and only if W(Tnip — x, 2,t) = 1 and v(zp4p — 2, 2,t) — 0 as n — oo.

Proof. Fix t > 0, Suppose {z,} is a Cauchy sequence in IF 1-2-normed space
(V, v, %,0) then for a given r € (0,1) there exists an integer ng € N such that
W(@ngp —Tn, 2,t) > 1—1r and v(Tpyp — Tpn,2,t) <. Thus 1 — p(zpntp — n, 2,t) > 7
and v(&p4p — Tn, 2,t) <1, hence, w(Tpnip — T, 2,t) — 1 and v(pyp — Tp,2,t) — 0
as m — 0.

Conversely, if for each t > 0, p(zpt+p — 2n, 2,t) — 1 and v(Tp4p — Tn, 2, t) — 0 as
n — oo then for every r, r € (0, 1), there exists an integer ng such that 1 — p(zp4p —
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T, 2,t) > 1 and V(Tpyp — Tn, 2, 1) < 7, V0 > ng. Hence, u(zptp — pn,2,t) >1—1
and v(Zp4p — Tn, 2,t) < r. Thus, {z,} is a Cauchy sequence in IF 1-2-normed space
(‘/7 /”L’ V7 *7 <>). D

Definition 4.10. An intuitionistic fuzzy ¢-2-normed space (V, u, v, *,0) is said to
be complete if every Cauchy sequence in IF ¢-2-NS (V| pu, v, *,¢) is convergent.

Theorem 4.11. Let (V, u,v, x,0) be a IF ¢-2-NS. A sufficient condition for the IF
Y-2-NS (V, u,v,%,0) to be complete is that every Cauchy sequence in (V, p, v, *,©)
has a convergent subsequence.
Proof. Let {xy}, be a Cauchy sequence in (V, p, v, *,0) and {z,, } be a subsequence
of {z,}n that converges to z € V and s,t,s +t > 0, Since {x,}, is a Cauchy
sequence in (V, p, v, *,0), We have for r € (0,1) there exists an integer ng € N such
that p(x, —xp, 2,8) > 1—r and v(x, —xg, 2,8) < r, ¥n,k > ng. Again, since {z,, }
converges to z. We have pu(x,, —x,z,t) > 1 —r and v(z,, —z,2,t) <r, Vn,k > ng
wxn, —x,2,8 +t) = plxy, — Tpy + Ty 2,8+ 1)
> /’(‘(xn — Tnyy 2, 8) * IU/(xnk -, %, t)
>(1—r)x(1—r)
=(1—-r),Yn > no.
Similarly,
V(Tp —,2,8+1) = V(T — Tpy + Ty, 2,8+ 1)
< M(xn — Tngy 2y S) Oﬂ(xnk — T,z t)
<ror
=r,Vn > ng.
Thus {z,}, converges to = in (V| u,v,*,0). Hence IF ¢-2-NS (V, u, v, *,0) is com-
plete. O

Remark 4.12. Straightforwardly, we get the results (3.1)), (3.2)), (3.3)), (3.4)), (3.6),
(3.10), (3.12), (3.14), (3.16)) are also holds in INF-2-NS.

Theorem 4.13. FEvery intuitionistic fuzzy 1-2-normed space is intuitionistic fuzzy
2-normed space, converse is not true.

Proof. Let (V, u, v, *,0) be a IF ¢-2-NS. By definition (2.14), take ¢ («) = |«| then
definition (2.8)) implies (V, u, v, *,0) be a IF 2-NS. Conversely, let (V, u, v, *,0) be a
IF 2-NS. If ¥(a) # || then definitions (4.1 and 2.14)) implies (V, p, v, *,¢) is not a
IF -2-NS. O

Acknowledgements. The authors are grateful to the referees for their valuable
comments and suggestions.

REFERENCES

[1] M. Amini and R. Saadati, Some properties of continuous t-norms and s-norms, Int. J. Pure
Appl. Math. 16 (2004) 157-164.
[2] M. Amini and R. Saadati, Topics in fuzzy metric space, J. Fuzzy Math. 4 (2003) 765-768.

382



S. G. Dapke et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 3, 369-383

[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87—-96.
[4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems
88 (1997) 81-89.
[5] A. George and P. V. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems
64 (1994) 395-399.
[6] Ioan Golet, On generalized fuzzy normed spaces, Int. Math. Forum 2(25) (2009) 1237-1242.
[7] V. Gregori, S. Romaguera and P. V. Veeramani, A note on intuitionistic fuzzy metric space,
Chaos Solitons Fractals 28 (2006) 902-905.
8] H. W. Kang, J. G. Lee and K. Hur, Intuitionistic fuzzy mappings and intuitionistic fuzzy
equivalence relations, Ann. Fuzzy Math. Inform. 3(1) (2012) 61-87.
[9] R. Lowen, Fuzzy set theory, Kluwer Academic Publishers, Dordrecht, (1996).

[10] M. Mursaleen and Q. M. Danish Lohani, Intuitionistic fuzzy 2-normed spaceand some related
concepts, Chaos Solitons Fractals 42 (2009) 224-234.

[11] M. Mursaleen and Q. M. Danish Lohani, Baire’s and Cantor’s theorems in intuitionistic fuzzy
2-metric spaces, Chaos Solitons Fractals 42 (2009) 2254-2259.

[12] M. Mursaleen, Q. M. Danish Lohani and S. A. Mohiuddine, Intuitionistic fuzzy 2-metric space
and its completion, Chaos Solitons Fractals 42 (2009) 1258-1265.

[13] J. H. Park, Intuitionistic fuzzy metric space, Chaos Solitons Fractals 22 (2004) 1039-1046.

[14] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons
Fractals 27 (2006) 331-344.

[15] T. K. Samanta and S. Mohinta, A note on generalized intuitionistic fuzzy 1 normed linear
space, Global Journal of Science Frontier Research 11 (2011) 23-33.

[16] B. Schweizer and A. Sklar, Statistical metric space, Pacific J. Math. 10 (1960) 314-334.

[17] Hai-Yan Si, Huai-Xin Cao and Ping Yang, Continuity in an intuitinistic fuzzy normed space,
Fuzzy Systems and Knowledge Discovery (FSKD), Seventh International Conference 1 (2010)
144-148.

[18] N. Thillaigovindan, S. Anita Shanthi and Y. B. Jun, On lacunary statistical convergence in
intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform. 1(2) (2011) 119-131.

[19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

S. G. DAPKE (sadashivgdapke®@gmail.com)
Assistant Professor, Department of mathematics, Iqra’s H. J. Thim College, Mehrun,
Jalgaon, India

C. T. AAGE (ctaage®@gmail.com)
Assistant Professor, School of Mathematical Sciences, North Maharashtra Univer-
sity, Jalgaon, India

J. N. SALUNKE (drjnsalunke@gmail.com)
Professor, School of Mathematical Sciences, Swami Ramanand Teerth Marathwada
University, Nanded, India

383



