Annals of Fuzzy Mathematics and Informatics Volume 7, No. 3, (March 2014), pp. 369–383 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic fuzzy generalized normed spaces

S. G. DAPKE, C. T. AAGE, J. N. SALUNKE

Received 5 May 2013; Revised 27 June 2013; Accepted 17 July 2013

ABSTRACT. The aim of this paper is to study the generalization of the intuitionistic fuzzy normed spaces such as intuitionistic fuzzy 2-normed space. In this structure, we have discussed the intuitionistic fuzzy 2-continuity and intuitionistic fuzzy 2-boundedness. Also, we have introduced the intuitionistic fuzzy ψ -2-normed space which is a generalization of intuitionistic fuzzy 2-normed space. We have discussed some results in this new set up.

2010 AMS Classification: 46A32, 46A70, 46A99, 46B20

Keywords: t-norm, t-conorm, Intuitionistic fuzzy 2-normed space, Intuitionistic fuzzy 2-continuity, Intuitionistic fuzzy 2-boundedness, Intuitionistic fuzzy ψ -2-normed space.

Corresponding Author: S. G. Dapke (sadashivgdapke@gmail.com)

1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh[19] in 1965. After the pioneer work of Zadeh, many researchers have extended this concept in various branches of mathematics and introduced new theories like fuzzy set theory [9], fuzzy group theory, fuzzy differential equation, fuzzy topology, fuzzy metric spaces [2, 5, 7], fuzzy normed spaces [14] etc. We are especially interested in theory of fuzzy normed spaces and their generalizations. Atanassov[3] introduced the concept of intuitionistic fuzzy sets which is further studied by Coker[4]. Park[13] has introduced the concept of intuitionistic fuzzy metric space. Saadati and Park[14] coined the notion of intuitionistic fuzzy normed space. Hee Won Kang, Jeong-Gon Lee, Kul Hur[8] studied some fundamental properties of intuitionistic fuzzy mapping. Certainly, there are some situations where the ordinary norm does not work and the concept of intuitionistic fuzzy normed spaces see in [17],[11],[12],[14], [6], [18].

Recently, M. Mursaleen[10] defined the new structure intuitionistic fuzzy 2-normed space and studied some basic results of normed linear spaces. In this paper, we have studied the continuity and boundedness in intuitionistic fuzzy 2-normed spaces. T.K. Samanta and Sumit Mohinta[15] have introduced the concept of intuitionistic fuzzy ψ -normed space and discussed continuity and boundedness in this structure. We have coined the concept of intuitionistic fuzzy ψ -2-normed space which is generalization of intuitionistic fuzzy 2-normed space. It shall provide more suitable framework to deal with the inexactness of the norm or 2-norm in some situations.

2. Preliminaries

We recall some notations and basic definitions used in this paper.

Definition 2.1 ([16]). A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be a continuous t-norm if it satisfies the following conditions:

- (a) * is associative and commutative;
- (b) * is continuous;
- (c) a * 1 = a for all $a \in [0, 1]$;
- (d) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Example 2.2. Two typical examples of continuous t-norms are

$$a * b = ab$$
 and $a * b = \min\{a, b\}$.

Definition 2.3 ([16]). A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous t-conorm if it satisfies the following conditions:

- $(a) \diamond$ is associative and commutative;
- (b) \diamond is continuous;
- (c) $a \diamond 0 = a$ for all $a \in [0, 1]$;
- (d) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Example 2.4. Two typical examples of continuous t-conorms are

 $a \diamond b = \min\{a + b, 1\}$ and $a \diamond b = \max\{a, b\}$.

M. Amini and R. Saadati studied some properties of t-norm in [1].

Definition 2.5 ([14]). The five-tuple $(V, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy normed space (for short, IFNS) if V is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, * is a continuous t-norm, \diamond is a continuous t-conorm, and μ, ν are fuzzy sets on $V \times (0, \infty)$ satisfying the following conditions. For every $x, y \in V$ and s, t > 0,

- (a) $\mu(x,t) + \nu(x,t) \le 1;$
- (b) $\mu(x,t) > 0;$
- (c) $\mu(x,t) = 1$ if and only if x = 0;
- (d) $\mu(\alpha x, t) = \mu(x, \frac{t}{|\alpha|})$ for each $\alpha \neq 0$;
- (e) $\mu(x,t) * \mu(y,s) \le \mu(x+y,t+s);$
- (f) $\mu(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (g) $\lim_{t\to\infty} \mu(x,t) = 1$ and $\lim_{t\to0} \mu(x,t) = 0$;
- (*h*) $\nu(x,t) < 1;$
- (i) $\nu(x,t) = 0$ if and only if x = 0;
- (j) $\nu(\alpha x, t) = \nu(x, \frac{t}{|\alpha|})$ for each $\alpha \neq 0$;

370

- (k) $\nu(x,t) \diamond \nu(y,s) \ge \nu(x+t,y+s);$
- (l) $\nu(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (m) $\lim_{t\to\infty} \nu(x,t) = 0$ and $\lim_{t\to0} \nu(x,t) = 1$.

In this case (μ, ν) is called an intuitionistic fuzzy norm.

Example 2.6. Let $(V, \|\cdot\|)$ be normed space over \mathbb{F} . Denote a * b = ab and $a \diamond b = \min\{a + b, 1\}, \forall a, b \in [0, 1]$ and let μ_0 and ν_0 be fuzzy sets on $V \times (0, \infty)$ defined as follows $\mu_0(x, t) = \frac{t}{t + \|x\|}, \nu_0(x, t) = \frac{\|x\|}{t + \|x\|}$, for all $t \in \mathbb{R}^+$. Then $(V, \mu_0, \nu_0, *, \diamond)$ is an intuitionistic fuzzy normed space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Definition 2.7 ([10]). Let V be a real vector space of dimension d, where $2 \leq d < \infty$. A 2-norm on V is a function $\|\cdot, \cdot\| : V \times V \to \mathbb{R}$ which satisfies, for every $x, y, z \in V$

- (a) ||x, y|| = 0 if and only if x and y are linearly dependent;
- (b) ||x,y|| = ||y,x||;
- (c) $\|\alpha x, y\| = |\alpha| \|x, y\|;$
- (d) $||x, y + z|| \le ||x, y|| + ||y, z||.$

The pair $V, \|\cdot, \cdot\|$ is then called a 2-normed space.

As an example of a 2-normed space take $V = \mathbb{R}^2$ being equipped with the 2-norm ||x, y|| := the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula $||x, y|| = |x_1y_2 - x_2y_1|, x = (x_1, x_2), y = (y_1, y_2).$

Definition 2.8 ([10]). The five-tuple $(V, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy 2-normed space (for short, IF 2-NS) if V is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, * is a continuous t-norm, \diamond is a continuous t-conorm, and μ, ν are fuzzy sets on $V \times V \times (0, \infty)$ satisfying the following conditions. For every $x, y, z \in V$ and s, t > 0,

- (a) $\mu(x, y, t) + \nu(x, y, t) \le 1;$
- (b) $\mu(x, y, t) > 0;$
- (c) $\mu(x, y, t) = 1$ if and only if x and y are linearly dependent;
- (d) $\mu(\alpha x, y, t) = \mu(x, y, \frac{t}{|\alpha|})$ for each $\alpha \neq 0$;
- (e) $\mu(x, y, t) * \mu(x, z, s) \le \mu(x, y + z, t + s);$
- (f) $\mu(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (g) $\lim_{t\to\infty} \mu(x, y, t) = 1$ and $\lim_{t\to0} \mu(x, y, t) = 0$;
- (h) $\mu(x, y, t) = \mu(y, x, t);$
- (*i*) $\nu(x, y, t) < 1;$
- (j) $\nu(x, y, t) = 0$ if and only if x and y are linearly dependent;
- $(k) \ \nu(\alpha x,y,t)=\nu(x,y,\frac{t}{|\alpha|}) \ \text{for each } \alpha\neq 0;$
- (l) $\nu(x, y, t) \diamond \nu(x, z, s) \ge \nu(x, y + z, t + s);$
- (m) $\nu(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (n) $\lim_{t\to\infty} \nu(x, y, t) = 0$ and $\lim_{t\to0} \nu(x, y, t) = 1$,
- (o) $\nu(x, y, t) = \nu(y, x, t).$

In this case $(\mu, \nu)_2$ is called an intuitionistic fuzzy 2-norm on V. We denote it by $(\mu, \nu)_2$.

Example 2.9 ([10]). Let $(V, \|\cdot, \cdot\|)$ be 2-normed space over F and let a * b = ab and $a \diamond b = \min\{a + b, 1\}$, for all $a, b \in [0, 1]$ and every t > 0, consider $\mu(x, y, t) = 371$

 $\frac{t}{t+\|x,y\|}, \ \nu(x,y,t) = \frac{\|x,y\|}{t+\|x,y\|}.$ Then $(V,\mu,\nu,*,\diamond)$ is an intuitionistic fuzzy 2-normed space.

Definition 2.10 ([10]). Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy 2-normed space and let $r \in (0, 1), t > 0$ and $x \in X$. The set $B(x, r, t) = \{y \in V : \mu(y - x, z, t) > 1 - r, \nu(y - x, z, t) < r, \forall z \in V\}$ is called the open ball with center x and radius r with respect to t.

Definition 2.11 ([10]). Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy 2-normed space. A set $U \subset V$ is said to an open set if each of its points is the centre of some open ball contained in U. The open set in an intuitionistic fuzzy 2-normed space $(V, \mu, \nu, *, \diamond)$ is denoted by \mathbb{U} .

Definition 2.12 ([10]). Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy 2-normed space. A sequence $\{x_n\}$ in V is said to be Cauchy if for each r > 0 and each t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mu(x_n - x_m, z, t) > 1 - r$ and $\nu(x_n - x_m, z, t) < r$ for all $n, m \ge n_0$ and for all $z \in V$.

Definition 2.13 ([10]). Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy 2-normed space. A sequence $\{x_k\}$ is said to be convergent to $L \in V$ with respect to the intuitionistic fuzzy 2-norm $(\mu, \nu)_2$, if for every $\epsilon > 0$ and t > 0, there exists $k_0 \in \mathbb{N}$ such that $\mu(x_k - L, z, t) > 1 - \epsilon$ and $\nu(x_k - L, z, t) < \epsilon$ for all $k \ge k_0$ and for all $z \in V$.

Definition 2.14 ([15]). Let ψ be a function defined on the real field \mathbb{R} into itself satisfying the following properties;

- (a) $\psi(-t) = \psi(t)$ for all $t \in \mathbb{R}$
- (b) $\psi(1) = 1$
- (c) ψ is strictly increasing and continuous on $(0, \infty)$
- (d) $\lim_{\alpha \to 0} \psi(\alpha) = 0$ and $\lim_{\alpha \to \infty} \psi(\alpha) = \infty$.

Example 2.15 ([15]). Consider $\psi(\alpha) = |\alpha|; \psi(\alpha) = |\alpha|^p, p \in \mathbb{R}^+; \psi(\alpha) = \frac{2\alpha^{2n}}{|\alpha|+1}, n \in \mathbb{N}^+$. The function ψ allows us to generalize fuzzy metric and normed space.

Definition 2.16 ([15]). The five-tuple $(V, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy ψ -normed space if V is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, * is a continuous t-norm, \diamond is a continuous t-conorm and μ, ν are fuzzy sets on $V \times (0, \infty)$ satisfying the following conditions. For every $x, y \in V$ and s, t > 0,

- (a) $\mu(x,t) + \nu(x,t) \le 1;$
- (b) $\mu(x,t) > 0;$
- (c) $\mu(x,t) = 1$ if and only if x = 0;
- (d) $\mu(\alpha x, t) = \mu(x, \frac{t}{\psi(\alpha)})$ for each $\alpha \neq 0$;
- (e) $\mu(x,t) * \mu(y,s) \le \mu(x+y,t+s);$
- (f) $\mu(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (g) $\lim_{t\to\infty} \mu(x,t) = 1$ and $\lim_{t\to0} \mu(x,t) = 0$;
- (*h*) $\nu(x,t) < 1;$
- (i) $\nu(x,t) = 0$ if and only if x = 0;
- (j) $\nu(\alpha x, t) = \nu(x, \frac{t}{\psi(\alpha)})$ for each $\alpha \neq 0$;
- (k) $\nu(x,t) \diamond \nu(y,s) \ge \nu(x+t,y+s);$

372

(l) $\nu(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous;

(m) $\lim_{t\to\infty} \nu(x,t) = 0$ and $\lim_{t\to0} \nu(x,t) = 1$.

In this case (μ, ν) is called an intuitionistic fuzzy ψ -norm.

3. Intuitionistic fuzzy 2-normed space

Theorem 3.1. In an intuitionistic fuzzy 2-normed space $(V, \mu, \nu, *, \diamond)$, if

 $\{x_n\}_{n=1}^{\infty} \to {}^{(\mu,\nu)_2} x \text{ and } \{y_n\}_{n=1}^{\infty} \to {}^{(\mu,\nu)_2} y,$

then $\{x_n + y_n\}_{n=1}^{\infty}$ is convergent to x + y. In other word, if $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy 2-normed space then the addition is continuous in $(V, \mu, \nu, *, \diamond)$.

Theorem 3.2. In an intuitionistic fuzzy 2-normed space $(V, \mu, \nu, *, \diamond)$, if $\lambda_n, \lambda \in \mathbb{R}^+, \lambda_n \to \lambda$ as $n \to \infty$ and $\{x_n\}_{n=1}^{\infty} \to (\mu, \nu)_2 x$ as $n \to \infty$ then $\{\lambda_n x_n\}_{n=1}^{\infty} \to (\mu, \nu)_2 \lambda x$. In other word, if $(V, \mu, \nu, *, \diamond)$ be an IF-2-NS then the scalar multiplication is continuous in $(V, \mu, \nu, *, \diamond)$.

Proof. The proof of theorems (3.1) and (3.2) directly follows from definitions.

Lemma 3.3. Let $\{x_n\}_{n=1}^{\infty} \to^{(\mu,\nu)_2} x$ as $n \to \infty$ in intuitionistic fuzzy 2-normed space $(V, \mu, \nu, *, \diamond)$. Then for every t > 0 as $n \to \infty$,

(3.1)
$$\mu(x_n, z, t) \to \mu(x, z, t), \qquad \nu(x_n, z, t) \to \nu(x, z, t)$$

Proof. Let $\{x_n\}_{n=1}^{\infty} \to (\mu, \nu)_2 x$ as $n \to \infty$ in $(V, \mu, \nu, *, \diamond)$. Then $t > 0, \forall k \in \mathbb{N}^+$,

$$\mu(x_n, z, t) = \mu(x_n - x + x, z, \frac{t}{k+1} + \frac{kt}{k+1})$$

$$\geq \mu(x_n - x, z, \frac{t}{k+1}) * \mu(x, z, \frac{kt}{k+1})$$

$$\to 1 * \mu(x, z, \frac{kt}{k+1}), (n \to \infty)$$

$$= \mu(x, z, \frac{kt}{k+1}),$$

so $\underline{lim}_{n\to\infty}\mu(x_n, z, t) \ge \mu(x, z, \frac{kt}{k+1}), (k = 1, 2, \cdots).$ Letting $k \to +\infty$ yields that,

(3.2)
$$\underline{lim}_{n \to \infty} \mu(x_n, z, t) \ge \mu(x, z, t)$$

On the other hand, for all $k \in \mathbb{N}^+$, $\mu(x - x_n, z, \frac{1}{k+1}) \to 1 > \frac{k}{k+1} > 0$, as $n \to \infty$. So there exists an N such that, $\mu(x - x_n, z, \frac{1}{k+1}) > \frac{k}{k+1}$, $(\forall n > N)$. Thus, $\forall n > N$ and $\forall t > 0$, we have

$$\mu(x_n, z, t) * \frac{k}{k+1} \le \mu(x_n, z, t) * \mu(x - x_n, z, \frac{1}{k+1}) \le \mu(x, z, t + \frac{1}{k+1}).$$

Thus,

$$\mu(x_n, z, t) * \frac{k}{k+1} \le \mu(x, z, t + \frac{1}{k+1}), (\forall n > N).$$
373

Hence,

$$\overline{\lim}_{n \to \infty} \mu(x_n, z, t) * \frac{k}{k+1} \le \mu(x, z, t + \frac{1}{k+1}).$$

for all $k = 1, 2, 3, \cdots$. Letting $k \to +\infty$ yields that

(3.3)
$$\overline{\lim}_{n \to \infty} \mu(x_n, z, t) \le \mu(x, z, t).$$

Now (3.2),(3.3) implies that $\lim_{n\to\infty} \mu(x_n, z, t) = \mu(x, z, t)$. Similarly, we get, $\lim_{n\to\infty} \nu(x_n, z, t) = \nu(x, z, t)$. The proof is completed.

Theorem 3.4. In an intuitionistic fuzzy 2-normed space $(V, \mu, \nu, *, \diamond)$, the mappings $\mu, \nu : V \times V \times (0, \infty) \rightarrow [0, 1]$ are continuous.

Proof. Let $x \in V$ and t > 0 with $(x_n, z, t_n) \to (x, z, t)$ as $n \to \infty$ in $V \times V \times (0, \infty)$. Then $x_n \to^{(\mu,\nu)_2} x$ as $n \to \infty$ in V and $t_n \to t$ as $n \to \infty$ in $(0,\infty)$. Thus, for every $\delta > 0$ such that $\delta < \min\{\frac{t}{2}, 1\}$, there is $n_0 \in N$ such that for all $n \ge n_0$,

$$(3.4) t - \delta < t_n < t + \delta \quad and \quad \mu(x - x_n, z, \delta) > 1 - \delta, \quad \nu(x - x_n, z, \delta) < \delta.$$

Hence, for all $n \ge n_0$, we see from (3.4)

$$\mu(x_n, z, t_n) \ge \mu(x_n, z, t - \delta)$$

= $\mu(x_n - x + x, z, \delta + t - 2\delta)$
 $\ge \mu(x_n - x, z, \delta) * \mu(x, z, t - 2\delta)$
 $\ge (1 - \delta) * \mu(x, z, t - 2\delta)$

and

$$\nu(x_n, z, t_n) \le \nu(x_n, z, t - \delta)$$

= $\nu(x_n - x + x, z, \delta + t - 2\delta)$
 $\le \nu(x_n - x, z, \delta) \diamond \nu(x, z, t - 2\delta)$
 $\le \delta \diamond \nu(x, z, t - 2\delta).$

Thus, for all $n \ge n_0$, $\mu(x_n, z, t_n) \ge (1 - \delta) * \mu(x, z, t - 2\delta)$ and $\nu(x_n, z, t_n) \le \delta \diamond \nu(x, z, t - 2\delta)$. This shows that

(3.5)
$$\underline{\lim}_{n \to \infty} \mu(x_n, z, t_n) \ge (1 - \delta) * \mu(x, z, t - 2\delta)$$

and

(3.6)
$$\overline{\lim}_{n \to \infty} \nu(x_n, z, t_n) \le \delta \diamond \nu(x, z, t - 2\delta).$$

Letting $\delta \to 0^+$, in (3.5), (3.6) yields that

(3.7)
$$\underline{\lim}_{n \to \infty} \mu(x_n, z, t_n) \ge 1 * \mu(x, z, t) = \mu(x, z, t)$$

and

(3.8)
$$\overline{\lim}_{n \to \infty} \nu(x_n, z, t_n) \le 0 \diamond \nu(x, z, t) = \nu(x, z, t).$$

On the other hand, when $n \ge n_0$. It follows from Lemma (3.3) that

$$\mu(x_n, z, t_n) \le \mu(x_n, z, t+\delta) \to \mu(x, z, t+\delta) \quad as \quad n \to \infty,$$

and

$$\nu(x_n, z, t_n) \ge \nu(x_n, z, t - \delta) \to \nu(x, z, t - \delta) \text{ as } n \to \infty.$$

Hence,

(3.9)
$$\overline{\lim}_{n \to \infty} \mu(x_n, z, t_n) \le \mu(x, z, t + \delta)$$

and

(3.10)
$$\underline{\lim}_{n \to \infty} \nu(x_n, z, t_n) \ge \nu(x, z, t - \delta).$$

Letting $\delta \to 0^+$, in (3.9) and (3.10) yields that

$$\overline{\lim}_{n\to\infty}\mu(x_n, z, t_n) \le \mu(x, z, t)$$
 and $\underline{\lim}_{n\to\infty}\nu(x_n, z, t_n) \ge \nu(x, z, t).$

It follows from (3.7) and (3.8) that

$$\lim_{n \to \infty} \mu(x_n, z, t_n) \le \mu(x, z, t) \text{ and } \lim_{n \to \infty} \nu(x_n, z, t_n) \ge \nu(x, z, t).$$

Therefore, the mappings $\mu, \nu: V \times V \times (0, \infty) \to [0, 1]$ are continuous.

Definition 3.5. A linear operator $T : (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ is said to be intuitionistic fuzzy 2-bounded (shortly,IF-2-B) if there exist constants $h, k \in \mathbb{R} - \{0\}$ such that, $\mu'(Tx, z, t) \ge \mu(hx, z, t)$ and $\nu'(Tx, z, t) \le \nu(kx, z, t)$ for every $x, z(nonzero) \in V$ and for every t > 0.

Theorem 3.6. Suppose that $(V, \mu, \nu, *, \diamond)$ and $(V, \mu', \nu', *, \diamond)$ are intuitionistic fuzzy 2-normed spaces over \mathbb{F} with

- (a) $1 \ge a \ge c \ge 0$ and $1 \ge b \ge c \ge 0$ implies $a * b \ge c$
- (b) $0 \le a \le c \le 1$ and $0 \le b \le c \le 1$ implies $a \diamond b \le c$.

If linear operators $T, T_1, T_2 : (V, \mu, \nu, *, \diamond) \rightarrow (V, \mu', \nu', *, \diamond)$ are (IF-2-B) intuitinistic fuzzy 2-bounded, then $T_1 + T_2$ and $cT(c \in \mathbb{F})$ are also IF-2-B.

Proof. Since, linear operators $T, T_1, T_2 : (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ are IF-2-B there exists $k_1, k_2, h_1, h_2 \in \mathbb{R}^+$ such that,

 $\mu'(T_1x, z, t) \ge \mu(h_1x, z, t) \text{ and } \nu'(T_1x, z, t) \ge \nu(k_1x, z, t),$

 $\mu'(T_2x, z, t) \ge \mu(h_2x, z, t) \quad and \quad \nu'(T_2x, z, t) \ge \nu(k_2x, z, t),$ 375 for every $x, z(nonzero) \in V$ and for every t > 0. Put $h = \max\{h_1, h_2\}$ and $k = \max\{k_1, k_2\}$ then for every $x \in V$, we have

$$\begin{split} \mu^{'}((T_{1}+T_{2})x,z,t) &= \mu^{'}(T_{1}x+T_{2}x,z,t) \\ &\geq \mu^{'}(T_{1}x,z,\frac{t}{2}) * \mu^{'}(T_{2}x,z,\frac{t}{2}) \\ &\geq \mu(h_{1}x,z,\frac{t}{2}) * \mu(h_{2}x,z,\frac{t}{2}) \\ &= \mu(x,z,\frac{t}{2h_{1}}) * \mu(x,z,\frac{t}{2h_{2}}) \\ &\geq \mu(x,z,\frac{t}{2h}) * \mu(x,z,\frac{t}{2h}) \\ &\geq \mu(x,z,\frac{t}{3h}) \\ &= \mu(3hx,z,t). \end{split}$$

Similarly, $\nu'((T_1 + T_2)x, z, t) \leq \mu(3hx, z, t)$. Hence $T_1 + T_2$ is IF-2-B. Similarly, we can prove that cT is IF-2-B.

Definition 3.7. A linear operator $T: (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ is said to be intuitionistic fuzzy 2-continuous shortly,(IF-2-C) at a point $x \in V$ if $x_n \to^{(\mu,\nu)_2} x$ as $n \to \infty$ in $(V, \mu, \nu, *, \diamond)$ implies that $Tx_n \to^{(\mu',\nu')_2} Tx$ as $n \to \infty$ in $(V, \mu', \nu', *, \diamond)$. An operator T is said to be IF-2-C if it is intuitionistic fuzzy 2-continuous everywhere.

Definition 3.8. A map $T : (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ is said to be intuitionistic fuzzy 2-continuous shortly,(IF-2-C) at a point $x_0 \in V$ if for any given $\epsilon > 0, \alpha \in (0, 1)$ there exist $\delta = \delta(\alpha, \epsilon) > 0, \beta = \beta(\alpha, \epsilon) \in (0, 1)$ such that for all $x \in V$,

$$\mu(x - x_0, z, \delta) > \beta \Rightarrow \mu'(Tx - Tx_0, z, \epsilon) > \alpha,$$
$$\nu(x - x_0, z, \delta) < 1 - \beta \Rightarrow \nu'(Tx - Tx_0, z, \epsilon) < 1 - \alpha.$$

Remark 3.9. The above definitions (3.7) and (3.8) are equivalent.

Theorem 3.10. Suppose that $(V, \mu, \nu, *, \diamond)$ and $(V, \mu', \nu', *, \diamond)$ are intuitionistic fuzzy 2-normed spaces over \mathbb{F} . If linear operators $T_1, T_2 : (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ are IF-2-C, then $c_1T_1 + c_2T_2$ is IF-2-C for all scalars $c_1, c_2 \in \mathbb{F}$.

Proof. Let $x_n \rightarrow^{(\mu,\nu)_2} x$ as $n \rightarrow \infty$ in $(V, \mu, \nu, *, \diamond)$. Since, linear operators $T_1, T_2 : (V, \mu, \nu, *, \diamond) \rightarrow (V, \mu', \nu', *, \diamond)$ are IF-2-C, we get,

$$T_1 x_n \to {}^{(\mu^{'}, \nu^{'})_2} T_1 x, \quad T_2 x_n \to {}^{(\mu^{'}, \nu^{'})_2} T_2 x \text{ as } n \to \infty$$

in $(V, \mu', \nu', *, \diamond)$, by (3.1),(3.2), we get for all $c_1, c_2 \in \mathbb{F}$

$$c_1(T_1x_n) + c_2(T_2x_n) \to (\mu', \nu')_2 c_1(T_1x) + c_2(T_2x) \quad as \quad n \to \infty$$

which gives

$$(c_1T_1 + c_2T_2)x_n \to (\mu, \nu)_2 (c_1T_1 + c_2T_2)x \text{ as } n \to \infty.$$

, ,

Hence, $c_1T_1 + c_2T_2$ is intuitinistic fuzzy 2-continuous. 376 **Definition 3.11.** A linear operator $T: (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ is said to be strongly intuitionistic fuzzy 2-continuous at a point $x \in V$ if for any given $\epsilon > 0$ there exists $\delta(\epsilon) > 0$,

$$\mu'(Tx - Tx_0, z, \epsilon) \ge \mu(x - x_0, z, \delta) \quad and \quad \nu'(Tx - Tx_0, z, \epsilon) < \nu(x - x_0, z, \delta).$$

A linear operator $T: (V, \mu, \nu, *, \diamond) \to (V', \mu', \nu', *, \diamond)$ is strongly IF - 2 - C, if T is strongly IF - 2 - C at each point of V.

Theorem 3.12. A linear operator $T : (V, \mu, \nu, *, \diamond) \rightarrow (V', \mu', \nu', *, \diamond)$ is strongly IF - 2 - C, then it is IF - 2 - C, but converse is not true.

Proof. Let a linear operator $T: (V, \mu, \nu, *, \diamond) \to (V, \mu', \nu', *, \diamond)$ be strongly IF - 2 - C. Let $x_0 \in V$ if for any given $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that for all $x \in V$,

 $\mu'(Tx - Tx_0, z, \epsilon) \ge \mu(x - x_0, z, \delta) \text{ and } \nu'(Tx - Tx_0, z, \epsilon) < \nu(x - x_0, z, \delta).$

Let $\{x_n\}$ be a sequence in V such that $\{x_n\} \to x_0$ for all t > 0 then

$$\lim_{n \to \infty} \mu(x - x_0, z, t) = 1 \text{ and } \lim_{n \to \infty} \nu(x - x_0, z, t) = 0$$

Thus we see that

$$\mu^{'}(Tx_{n} - Tx_{0}, z, \epsilon) \geq \mu(x_{n} - x_{0}, z, \delta) \text{ and } \nu^{'}(Tx_{n} - Tx_{0}, z, \epsilon) < \nu(x_{n} - x_{0}, z, \delta).$$

which implies that

$$\lim_{n \to \infty} \mu'(Tx_n - Tx_0, z, \epsilon) = 1 \text{ and } \lim_{n \to \infty} \nu'(Tx_n - Tx_0, z, \epsilon) = 0$$

which gives $Tx_n \to Tx_0$ in $(V, \mu', \nu', *, \diamond)$. Hence, T is IF - 2 - C. Conversely, we provide example, which is IF - 2 - C but not strongly IF - 2 - C.

Example 3.13. Let $(V = \mathbb{R}, ||\cdot, \cdot||)$ be 2-normed space over \mathbb{F} . Define $a * b = \min\{a, b\}$ and $a \diamond b = \max\{a, b\}$, for all $a, b \in [0, 1]$. Let μ, ν, μ', ν' are fuzzy sets on $V \times V \times (0, \infty)$ defined by $\mu(x, z, t) = \frac{t}{t + ||x, z||}$, $\nu(x, z, t) = \frac{||x, z||}{t + ||x, z||}$ and

 $\mu'(x, z, t) = \frac{t}{t + k ||x, z||},$ $\nu'(x, z, t) = \frac{k ||x, z||}{t + k ||x, z||}, \text{ for all } t \in \mathbb{R}^+ \text{ and } k > 0.$ In short,

$$\mu(Y,t) = \frac{t}{t+\|Y\|}, \nu(Y,t) = \frac{\|Y\|}{t+\|Y\|} \text{ and } \mu'(Y,t) = \frac{t}{t+k\|Y\|}, \nu'(Y,t) = \frac{k\|Y\|}{t+k\|Y\|}$$

Let us now define, $T(Y) = \frac{Y^4}{1+Y^2}$ for all $Y \in V$. Let $Y_0 \in V$ and $\{Y_k\}$ be a sequence
in V such that $\{Y_k\} \to Y$ in $(Y + \mu, \mu, \pi, \phi)$

in V such that $\{Y_k\} \to Y_0$ in $(V, \mu, \nu, *, \diamond)$, i.e. for all t > 0, $\lim_{k \to \infty} \mu(Y_k - Y_0, t) = 1$ and $\lim_{k \to \infty} \mu(Y_k - Y_0, t) = 0$, $\Rightarrow \lim_{k \to \infty} \frac{\|t\|}{t + \|Y_n - Y_0\|} = 1$ and $\lim_{k \to \infty} \frac{\|Y_n - Y_0\|}{t + \|Y_n - Y_0\|} = 0$

$$\Rightarrow \lim_{k \to \infty} \{ \| Y_k - Y_0 \| \} = 0.$$

Now for all t > 0,

$$\mu'(TY_n - TY_0, t) = \frac{t}{t + k \|TY_n - TY_0\|} = \frac{t}{t + k \|\frac{Y_n^4}{1 + Y_n^2} - \frac{Y_0^4}{1 + Y_0^2}\|}$$
$$\Rightarrow \lim_{n \to \infty} \mu'(TY_n - TY_0, t) = 1.$$

Similarly, we get, $\lim_{n\to\infty} \nu'(TY_n - TY_0, t) = 0$. Thus T is IF - 2 - C. Let $\epsilon > 0$ be given. Then

$$\mu (TY - TY_0, \epsilon) \ge \mu (Y - Y_0, \delta)$$

$$\Rightarrow \frac{\epsilon \|1 + Y^2\| \|1 + Y_0^2\|}{\epsilon \|1 + Y^2\| \|1 + Y_0^2\| + k \|Y - Y_0\| \|(Y + Y_0)(Y^2 + Y_0^2) + Y^2 Y_0^2(Y + Y_0)\|}$$

$$\ge \frac{\delta}{\delta + \|Y - Y_0\|}$$

and

$$\begin{split} \nu'(TY - TY_0, \epsilon) &\leq \nu(Y - Y_0, \delta) \\ \Rightarrow \frac{k \|Y - Y_0\| \|(Y + Y_0)(Y^2 + Y_0^2) + Y^2 Y_0^2(Y + Y_0)\|}{\epsilon + \|1 + Y^2\| \|1 + Y_0^2 + k\| \|Y - Y_0\| \|(Y + Y_0)(Y^2 + Y_0^2) + Y^2 Y_0^2(Y + Y_0)\|} \\ &\leq \frac{\delta}{\delta + \|Y - Y_0\|} \end{split}$$

So,

$$(3.11) \quad k\delta \|Y - Y_0\| \|Y + Y_0\| \|Y^2 + Y_0^2 + Y^2 Y_0^2\| \le \epsilon \|1 + Y^2\| \|1 + Y_0^2\| \|Y - Y_0\|$$

(3.12)
$$\Rightarrow \delta \le \frac{\epsilon \|1 + Y^2\| \|1 + Y_0^2\|}{k \|Y - Y_0\| \|Y^2 + Y_0^2 + Y^2 Y_0^2\|} (\text{for } Y \ne Y_0).$$

We see that T is IF-2-C at Y_0 if there exists $\delta > 0$ satisfying (3.11) for all $Y \neq Y_0$. Let $\delta_1 = \inf \frac{\|t + Y^2\| \|t + Y_0^2\|}{\|Y - Y_0\| \|Y^2 + Y_0^2 + Y^2 Y_0^2\|}$ where the infimum is taken over all Y, where, $Y \neq Y_0$. Then $\delta = \frac{\epsilon}{k} \delta_1$ satisfies (3.11). But $\delta_1 = 0$ which is impossible. Hence, T is not strongly IF-2-C.

Theorem 3.14. $(V, \mu, \nu, *, \diamond)$, $(V, \mu', \nu', *, \diamond)$ are *IF-2-NS* and $T : (V, \mu, \nu, *, \diamond) \rightarrow (V, \mu', \nu', *, \diamond)$ be a linear operators, then the following conditions are equivalent.

- (a) T is intuitionistic fuzzy 2-bounded (IF-2-B).
- (b) If there exist constants $h, k \in \mathbb{R} \{0\}$ such that, $\mu'(Tx, z, t) \ge \mu(hx, z, t)$ and $\nu'(Tx, z, t) \le \nu(kx, z, t)$ for every $x, z(nonzero) \in V$ and for every t > 0.
- (c) T is intuitionistic fuzzy 2-continuous at some point $x_0 \in V$.
- (d) T is intuitionistic fuzzy 2-continuous (IF-2-C).

Proof. (a) \Leftrightarrow (b) Obviously, result holds by definition (3.5). (c) \Leftrightarrow (d) Suppose, T is intuitionistic fuzzy 2-continuous at some point $x_0 \in V$. Let $\{x_n\} \rightarrow^{(\mu,\nu)_2} x$ as $n \rightarrow \infty$ in $(V, \mu, \nu, *, \diamond)$. By theorems (3.1) and (3.2), we see that,

$$(x_n - x) + x_0 \rightarrow^{(\mu,\nu)_2} x_0 \quad as \quad n \rightarrow \infty.$$

$$\therefore \quad T((x_n - x) + x_0) \to^{(\mu', \nu')_2} Tx_0 \quad as \quad n \to \infty.$$

Since T is a linear, we obtain that

$$(Tx_n - Tx + Tx_0) \rightarrow^{(\mu', \nu')_2} Tx_0 \quad as \quad n \rightarrow \infty$$

implies that $Tx_n \to (\mu', \nu')_2 Tx_0$. By definition (3.7), we conclude that, T is IF-2-C. Obviously, converse hold.

 $(a) \Leftrightarrow (d)$ It follows from [10] and converse holds by definitions (3.5), (3.8).

Definition 3.15. Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy-2-normed space. A subset D of V is said to compact if any sequence in D has a subsequence converging to an element of D.

Theorem 3.16. Let $T : (V_1, \mu_1, \nu_1, *, \diamond) \to (V_2, \mu_2, \nu_2, *, \diamond)$ be a mapping and D be a compact subset of V_1 . If T is a IF-2-C on V_1 then T(D) is a compact subset of V_2 .

Proof. Let y_n be a sequence in T(D) then for each n there exist $x_n \in D$ such that $T(x_n) = y_n$. Since D is a compact there exists $\{x_{n_k}\}$ a subsequence of $\{x_n\}$ and $x_0 \in D$ such that $\{x_{n_k}\} \rightarrow^{(\mu_1,\nu_1)_2} x_0$ in $(V_1,\mu_1,\nu_1,*,\diamond)$. Since T is an intuitionistic fuzzy-2-continuous at x_0 . By definition (3.7)

$$\{x_{n_k}\} \to^{(\mu_1,\nu_1)_2} x_0 \quad \Rightarrow \quad T\{x_{n_k}\} \to^{(\mu_2,\nu_2)_2} T(x_0) \quad \Rightarrow \quad \{y_{n_k}\} \to^{(\mu_2,\nu_2)_2} y_0,$$

for some $y_0 \in T(D)$ such that $T(x_0) = y_0$ implies that T(D) is compact subset of V_2 .

4. Intuitionistic fuzzy ψ -2-normed space

Definition 4.1. The five-tuple $(V, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy ψ -2-normed space, if V is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, * is a continuous t-norm, \diamond is a continuous t-conorm, and μ, ν are fuzzy sets on $V \times V \times (0, \infty)$ satisfying the following conditions. For every $x, y, z \in V$ and s, t > 0,

- (a) $\mu(x, y, t) + \nu(x, y, t) \le 1;$
- (b) $\mu(x, y, t) > 0;$
- (c) $\mu(x, y, t) = 1$ if and only if x and y are linearly dependent;
- (d) $\mu(\alpha x, y, t) = \mu(x, y, \frac{t}{\psi(\alpha)})$ for each $\alpha \neq 0$;
- (e) $\mu(x, y, t) * \mu(x, z, s) \le \mu(x, y + z, t + s);$
- (f) $\mu(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (g) $\lim_{t\to\infty} \mu(x, y, t) = 1$ and $\lim_{t\to0} \mu(x, y, t) = 0$;
- (h) $\mu(x, y, t) = \mu(y, x, t);$
- (*i*) $\nu(x, y, t) < 1;$
- (j) $\nu(x, y, t) = 0$ if and only if x and y are linearly dependent;
- (k) $\nu(\alpha x, y, t) = \nu(x, y, \frac{t}{\psi(\alpha)})$ for each $\alpha \neq 0$;
- (l) $\nu(x, y, t) \diamond \nu(x, z, s) \ge \nu(x, y + z, t + s);$
- (m) $\nu(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous;
- (n) $\lim_{t\to\infty} \nu(x, y, t) = 0$ and $\lim_{t\to0} \nu(x, y, t) = 1$;
- (o) $\nu(x, y, t) = \nu(y, x, t).$

In this case $(\mu, \nu)_2$ is called an intuitionistic fuzzy ψ -2-norm on V.

Definition 4.2. Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy ψ -2-normed space. A sequence $\{x_n\}$ is said to be convergent to $x \in V$ with respect to the intuitionistic fuzzy ψ -2-norm $(\mu, \nu)_2$, if for every r > 0 and t > 0, $r \in (0, 1)$ there exists $n_0 \in \mathbb{N}$ such that $\mu(x_n - x, z, t) > 1 - r$ and $\nu(x_n - x, z, t) < r$ for all $n \ge n_0$ and for all $z \in V$.

Definition 4.3. Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy ψ -2-normed space. A sequence $\{x_n\}$ in V is said to be Cauchy if for each r > 0 and each $t > 0, r \in (0, 1)$ there exists $n_0 \in \mathbb{N}$ such that $\mu(x_n - x_m, z, t) > 1 - r$ and $\nu(x_n - x_m, z, t) < r$ for all $n, m \ge n_0$ and for all $z \in V$.

Definition 4.4. Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy ψ -2-normed space and let $r \in (0,1), t > 0$ and $x \in X$. The set $B(x,r,t) = \{y \in V : \mu(y-x,z,t) > 1-r, \nu(y-x,z,t) < r, \forall z \in V\}$ is called the open ball with center x and radius r with respect to t.

Definition 4.5. Let $(V, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy ψ -2-normed space. A set $U \subset V$ is said to an open set if each of its points is the centre of some open ball contained in U. The open set in an intuitionistic fuzzy ψ -2-normed space $(V, \mu, \nu, *, \diamond)$ is denoted by \mathbb{U} .

Theorem 4.6. In intuitionistic fuzzy ψ -2-normed space $(V, \mu, \nu, *, \diamond)$. A sequence $\{x_n\}$ converges to x if and only if $\mu(x_n - x, z, t) \to 1$ and $\nu(x_n - x, z, t) \to 0$ as $n \to \infty$.

Proof. Fix t > 0, Suppose $\{x_n\}$ converges to x in IF ψ -2-normed space $(V, \mu, \nu, *, \diamond)$ then for a given r, $r \in (0, 1)$ there exists an integer $n_0 \in N$ such that $\mu(x_n - x, z, t) > 1 - r$ and $\nu(x_n - x, z, t) < r$. Thus $1 - \mu(x_n - x, z, t) > r$ and $\nu(x_n - x, z, t) < r$, hence, $\mu(x_n - x, z, t) \to 1$ and $\nu(x_n - x, z, t) \to 0$ as $n \to \infty$.

Conversely, if for each t > 0, $\mu(x_n - x, z, t) \to 1$ and $\nu(x_n - x, z, t) \to 0$ as $n \to \infty$ then for every $r \in (0, 1)$, there exists an integer n_0 such that $1 - \mu(x_n - x, z, t) > r$ and $\nu(x_n - x, z, t) < r$, $\forall n \ge n_0$. Hence, $\mu(x_n - x, z, t) > 1 - r$ and $\nu(x_n - x, z, t) < r$. Thus, $\{x_n\}$ converges to x in IF ψ -2-normed space $(V, \mu, \nu, *, \diamond)$.

Theorem 4.7. The limit is unique for a convergent sequence $\{x_n\}$ in intuitionistic fuzzy ψ -2-normed space $(V, \mu, \nu, *, \diamond)$.

Proof. Let $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} x_n = y$.

$$\lim_{n \to \infty} x_n = x = \begin{cases} \lim_{n \to \infty} \mu(x_n - x, z, t) = 1, \\ \lim_{n \to \infty} \nu(x_n - x, z, t) = 0. \end{cases}$$

$$\lim_{n \to \infty} x_n = y = \begin{cases} \lim_{n \to \infty} \mu(x_n - y, z, t) = 1, \\ \lim_{n \to \infty} \nu(x_n - y, z, t) = 0. \end{cases}$$
380

$$\begin{aligned} \nu(x-y,z,s+t) &= \nu(x-x_n+x_n-y,z,s+t) \\ &\geq \nu(x-x_n,z,s) \diamond \nu(x_n-y,z,t) \\ &= \nu(x_n-x,z,\frac{s}{\psi(-1)}) \diamond \nu(x_n-y,z,t) \\ &= \nu(x_n-x,z,\frac{s}{\psi(1)}) \diamond \nu(x_n-y,z,t) \\ &= \nu(x_n-x,z,s) \diamond \nu(x_n-y,z,t). \end{aligned}$$

As $n \to \infty$ we have, $\nu(x - y, z, s + t) = 0 \Rightarrow x = y$. Thus, The limit is unique for a convergent sequence $\{x_n\}$ in intuitionistic fuzzy ψ -2-normed space $(V, \mu, \nu, *, \diamond)$. \Box

Theorem 4.8. In IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$. Every convergent sequence is a Cauchy sequence.

Proof. Let $\{x_n\}$ be a convergent sequence in IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$ with $\lim_{n\to\infty} x_n = x$. Let $r \in (0, 1), t, s > 0$ then there exist an integer $n_0 \in N$ such that $\mu(x_n - x, z, s) > 1 - r$ and $\nu(x_n - x, z, s) < r$. For $n, p \in \mathbb{N}$

$$\mu(x_{n+p} - x_n, z, s+t) = \mu(x_{n+p} - x + x - x_n, z, s+t)$$

$$\geq \mu(x_{n+p} - x, z, s) * \mu(x - x_n, z, t)$$

$$= \mu(x_{n+p} - x, z, s) * \mu(x_n - x, z, \frac{t}{\psi(-1)})$$

$$= \mu(x_{n+p} - x, z, s) * \mu(x_n - x, z, t)$$

$$> (1 - r) * (1 - r)$$

$$= (1 - r), \forall n \ge n_0.$$

Similarly,

$$\nu(x_{n+p} - x_n, z, s+t) = \nu(x_{n+p} - x + x - x_n, z, s+t)$$

$$\leq \nu(x_{n+p} - x, z, s) \diamond \nu(x - x_n, z, t)$$

$$= \nu(x_{n+p} - x, z, s) \diamond \nu(x_n - x, z, \frac{t}{\psi(-1)})$$

$$= \nu(x_{n+p} - x, z, s) \diamond \nu(x_n - x, z, t)$$

$$< r \diamond r$$

$$= r, \forall n \ge n_0.$$

Hence, $\{x_n\}$ is a Cauchy sequence in IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$.

Theorem 4.9. In IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$. A sequence $\{x_n\}$ is a Cauchy sequence if and only if $\mu(x_{n+p} - x, z, t) \to 1$ and $\nu(x_{n+p} - x, z, t) \to 0$ as $n \to \infty$.

Proof. Fix t > 0, Suppose $\{x_n\}$ is a Cauchy sequence in IF ψ -2-normed space $(V, \mu, \nu, *, \diamond)$ then for a given $r \in (0, 1)$ there exists an integer $n_0 \in N$ such that $\mu(x_{n+p} - x_n, z, t) > 1 - r$ and $\nu(x_{n+p} - x_n, z, t) < r$. Thus $1 - \mu(x_{n+p} - x_n, z, t) > r$ and $\nu(x_{n+p} - x_n, z, t) < r$, hence, $\mu(x_{n+p} - x_n, z, t) \to 1$ and $\nu(x_{n+p} - x_n, z, t) \to 0$ as $n \to \infty$.

Conversely, if for each t > 0, $\mu(x_{n+p} - x_n, z, t) \to 1$ and $\nu(x_{n+p} - x_n, z, t) \to 0$ as $n \to \infty$ then for every r, $r \in (0, 1)$, there exists an integer n_0 such that $1 - \mu(x_{n+p} - 381)$

 $x_n, z, t) > r$ and $\nu(x_{n+p} - x_n, z, t) < r, \forall n \ge n_0$. Hence, $\mu(x_{n+p} - x_n, z, t) > 1 - r$ and $\nu(x_{n+p} - x_n, z, t) < r$. Thus, $\{x_n\}$ is a Cauchy sequence in IF ψ -2-normed space $(V, \mu, \nu, *, \diamond)$.

Definition 4.10. An intuitionistic fuzzy ψ -2-normed space $(V, \mu, \nu, *, \diamond)$ is said to be complete if every Cauchy sequence in IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$ is convergent.

Theorem 4.11. Let $(V, \mu, \nu, *, \diamond)$ be a IF ψ -2-NS. A sufficient condition for the IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$ to be complete is that every Cauchy sequence in $(V, \mu, \nu, *, \diamond)$ has a convergent subsequence.

Proof. Let $\{x_n\}_n$ be a Cauchy sequence in $(V, \mu, \nu, *, \diamond)$ and $\{x_{n_k}\}_k$ be a subsequence of $\{x_n\}_n$ that converges to $x \in V$ and s, t, s + t > 0, Since $\{x_n\}_n$ is a Cauchy sequence in $(V, \mu, \nu, *, \diamond)$, We have for $r \in (0, 1)$ there exists an integer $n_0 \in N$ such that $\mu(x_n - x_k, z, s) > 1 - r$ and $\nu(x_n - x_k, z, s) < r$, $\forall n, k \ge n_0$. Again, since $\{x_{n_k}\}$ converges to x. We have $\mu(x_{n_k} - x, z, t) > 1 - r$ and $\nu(x_{n_k} - x, z, t) < r$, $\forall n, k \ge n_0$

$$\mu(x_n - x, z, s + t) = \mu(x_n - x_{n_k} + x_{n_k}, z, s + t)$$

$$\geq \mu(x_n - x_{n_k}, z, s) * \mu(x_{n_k} - x, z, t)$$

$$> (1 - r) * (1 - r)$$

$$= (1 - r), \forall n \ge n_0.$$

Similarly,

$$\nu(x_n - x, z, s + t) = \nu(x_n - x_{n_k} + x_{n_k}, z, s + t)$$

$$\leq \mu(x_n - x_{n_k}, z, s) \diamond \mu(x_{n_k} - x, z, t)$$

$$< r \diamond r$$

$$= r, \forall n \ge n_0.$$

Thus $\{x_n\}_n$ converges to x in $(V, \mu, \nu, *, \diamond)$. Hence IF ψ -2-NS $(V, \mu, \nu, *, \diamond)$ is complete.

Remark 4.12. Straightforwardly, we get the results (3.1), (3.2), (3.3), (3.4), (3.6), (3.10), (3.12), (3.14), (3.16) are also holds in INF ψ -2-NS.

Theorem 4.13. Every intuitionistic fuzzy ψ -2-normed space is intuitionistic fuzzy 2-normed space, converse is not true.

Proof. Let $(V, \mu, \nu, *, \diamond)$ be a IF ψ -2-NS. By definition (2.14), take $\psi(\alpha) = |\alpha|$ then definition (2.8) implies $(V, \mu, \nu, *, \diamond)$ be a IF 2-NS. Conversely, let $(V, \mu, \nu, *, \diamond)$ be a IF 2-NS. If $\psi(\alpha) \neq |\alpha|$ then definitions (4.1 and 2.14) implies $(V, \mu, \nu, *, \diamond)$ is not a IF ψ -2-NS.

Acknowledgements. The authors are grateful to the referees for their valuable comments and suggestions.

References

- M. Amini and R. Saadati, Some properties of continuous t-norms and s-norms, Int. J. Pure Appl. Math. 16 (2004) 157–164.
- [2] M. Amini and R. Saadati, Topics in fuzzy metric space, J. Fuzzy Math. 4 (2003) 765–768.

- [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81–89.
- [5] A. George and P. V. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems 64 (1994) 395–399.
- [6] Ioan Golet, On generalized fuzzy normed spaces, Int. Math. Forum 2(25) (2009) 1237–1242.
- [7] V. Gregori, S. Romaguera and P. V. Veeramani, A note on intuitionistic fuzzy metric space, Chaos Solitons Fractals 28 (2006) 902–905.
- [8] H. W. Kang, J. G. Lee and K. Hur, Intuitionistic fuzzy mappings and intuitionistic fuzzy equivalence relations, Ann. Fuzzy Math. Inform. 3(1) (2012) 61–87.
- [9] R. Lowen, Fuzzy set theory, Kluwer Academic Publishers, Dordrecht, (1996).
- [10] M. Mursaleen and Q. M. Danish Lohani, Intuitionistic fuzzy 2-normed spaceand some related concepts, Chaos Solitons Fractals 42 (2009) 224–234.
- [11] M. Mursaleen and Q. M. Danish Lohani, Baire's and Cantor's theorems in intuitionistic fuzzy 2-metric spaces, Chaos Solitons Fractals 42 (2009) 2254–2259.
- [12] M. Mursaleen, Q. M. Danish Lohani and S. A. Mohiuddine, Intuitionistic fuzzy 2-metric space and its completion, Chaos Solitons Fractals 42 (2009) 1258–1265.
- [13] J. H. Park, Intuitionistic fuzzy metric space, Chaos Solitons Fractals 22 (2004) 1039–1046.
- [14] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006) 331–344.
- [15] T. K. Samanta and S. Mohinta, A note on generalized intuitionistic fuzzy ψ normed linear space, Global Journal of Science Frontier Research 11 (2011) 23–33.
- [16] B. Schweizer and A. Sklar, Statistical metric space, Pacific J. Math. 10 (1960) 314–334.
- [17] Hai-Yan Si, Huai-Xin Cao and Ping Yang, Continuity in an intuitinistic fuzzy normed space, Fuzzy Systems and Knowledge Discovery (FSKD), Seventh International Conference 1 (2010) 144–148.
- [18] N. Thillaigovindan, S. Anita Shanthi and Y. B. Jun, On lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform. 1(2) (2011) 119–131.
- [19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

S. G. DAPKE (sadashivgdapke@gmail.com)

Assistant Professor, Department of mathematics, Iqra's H. J. Thim College, Mehrun, Jalgaon, India

C. T. AAGE (ctaage@gmail.com)

Assistant Professor, School of Mathematical Sciences, North Maharashtra University, Jalgaon, India

J. N. SALUNKE (drjnsalunke@gmail.com)

Professor, School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India