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1. Introduction

The concept of fuzzy sets was introduced by Zadeh[12]. Fuzzy sets have appli-
cations in many fields such as information[9] and control[10]. The theory of fuzzy
topological spaces was introduced and developed by Chang[5]. The concept of fuzzy
normal space was introduced by Bruce Hutton[4]. Atanassov[1] introduced and stud-
ied intuitionistic fuzzy sets. On the otherhand, Coker[6] introduced the notions of
an intuitionistic fuzzy topological space and some other concepts. The concept of an
ordered fuzzy topological spaces was introduced and developed by A.K.Katsaras[8].
Later G.Balasubmanian[3] was introduced and studied the concepts of an ordered
L-fuzzy bitopological spaces. Ganster and Relly used locally closed sets[7] to define
LC-continuity and LC-irresoluteness. G.Balasubramanian[2] introduced and stud-
ied the concept of fuzzy β-open set in a fuzzy topological space. The concept of
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an π-open set in a topological space was introduced by V.Zaitsev[13]. In this paper
we introduced the concepts of pairwise intuitionistic fuzzy π-β-locally T1-ordered
space, pairwise intuitionistic fuzzy π-β-locally T2-ordered space, weakly pairwise in-
tuitionistic fuzzy π-β-locally T2-ordered space, almost pairwise intuitionistic fuzzy
π-β-locally T2-ordered space and strongly pairwise intuitionistic fuzzy π-β-locally
normally ordered space are introduced. Some interesting propositions are discussed.
Urysohn’s lemma and Tietze extension theorem of an strongly pairwise intuitionistic
fuzzy π-β-locally normally ordered space are studied and estabilished.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set and I is the closed inter-
val [0,1]. An intuitionistic fuzzy set(IFS) A is an object having the form A =
{〈x, µA(x), γA(x)〉 : x ∈ X}, where the mapping µA : X −→ I and γA : X −→ I
denote the degree of membership (namely µA(x)) and the degree of nonmember-
ship (namely γA(x)) for each element x ∈ X to the set A respectively and 0 ≤
µA(x) + γA(x) ≤ 1 for each x ∈ X. Obviously, every fuzzy set A on a nonempty set
X is an IFS of the following form, A = {〈x, µA(x), 1−µA(x)〉 : x ∈ X}. For the sake
of simplicity, we shall use the symbol A = 〈x, µA, γA〉 for the intuitionistic fuzzy set
A = {〈x, µA(x), γA(x)〉 : x ∈ X}.
Definition 2.2 ([1]). Let X be a nonempty set and the IFSs A and B in the form
A = {〈x, µA(x), γA(x)〉 : x ∈ X}, B = {〈x, µB(x), γB(x)〉 : x ∈ X}. Then

(i) A ⊆ B iff µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ X;
(ii) A = {〈x, γA(x), µA(x)〉 : x ∈ X}.

Definition 2.3 ([1]). The IFSs 0∼ and 1∼ are defined by 0∼={〈x, 0, 1〉 : x ∈ X}
and 1∼={〈x, 1, 0〉 : x ∈ X}.
Definition 2.4 ([6]). An intuitionistic fuzzy topology (IFT) in Coker’s sense on a
non empty set X is a family τ of IFSs in X satisfying the following axioms.

(T1) 0∼ ,1∼ ∈ τ
(T2) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ
(T3) ∪Gi ∈ τ for arbitrary family {Gi/i ∈ I} ⊆ τ
In this paper by (X, τ) or simply by X we will denote the Cocker’s intuitionistic

fuzzy topological space (IFTS). Each IFSs in τ is called an intuitionistic fuzzy open
set (IFOS) in X. The complement A of an IFOS A in X is called an intuitionistic
fuzzy closed set (IFCS) in X.

Definition 2.5 ([6]). Let A be an IFS in IFTS X. Then
int(A) =

⋃{G | G is an IFOS in X and G ⊆ A} is called an intuitionistic fuzzy
interior of A;

clA =
⋂{G | G is an IFCS in X and G ⊇ A} is called an intuitionistic fuzzy

closure of A.

Definition 2.6 ([5]). Let (X, τ) be an IFTS on X. If A = int(cl(A)), then A is
called an intuitionistic fuzzy regular open set in X.

Definition 2.7 ([6]). Let (X, τ) and (Y, σ) be two IFTSs and let f : X → Y be a
function. Then f is said to be fuzzy continuous iff the preimage of each IFS in σ is
an IFS in τ .

328



S. Padmapriya et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 2, 327–341

Definition 2.8 ([3]). A L-fuzzy set µ in a fuzzy topological space X is called a
neighbourhood of a point x ∈ X, if there exists an L-fuzzy set µ1 with µ1 ≤ µ and
µ1(x) > 0. It can be shown that a L-fuzzy set µ is open ⇐⇒ µ is a neighbourhood
of each x ∈ X for which µ(x) > 0.

Definition 2.9 ([3]). The L-fuzzy real line R(L) is the set of all monotone decreasing
elements λ ∈ LR satisfying ∨{λ(t) | t ∈ R} = 1 and ∧{λ(t) | t ∈ R} = 0, after the
identification of λ, µ ∈ LR iff λ(t−) = µ(t−) and λ(t+) = µ(t+) for all t ∈ R where
λ(t−) = ∧{λ(s) | s < t} and λ(t+) = ∨{λ(s) | s > t}.
Definition 2.10 ([3]). The natural L-fuzzy topology on R(L) is generated from the
subbasis {Lt, Rt | t ∈ R}, where Lt[λ]=λ(t−)′ and Rt[λ]=λ(t+)′.

Definition 2.11 ([3]). A partial order on R(L) is defined by [λ] ≤ [µ] ⇔ λ(t−) ≤
µ(t−) and λ(t+) ≤ µ(t+) for all t ∈ R.

Definition 2.12 ([3]). The L-fuzzy unit interval I(L) is a subset of R(L) such that
[λ] ∈ I(L) if λ(t) = 1 for 0 < t and λ(t) = 0 for t > 1. It is equipped with the
subspace L-fuzzy topology.

Definition 2.13 ([3]). Let (X, τ) be an L-fuzzy topological space. A function
f : X → R(L) is called lower (upper) semicontinuous if f−1(Rt)(f−1(Lt)) is open
for each t ∈ R. Equivalently f is lower (upper) semicontinuous ⇔ it is continuous
w.r.t the right hand (left hand) L-fuzzy topology on R(L) where the right hand (left
hand) topology is generated from the basis {Rt | t ∈ R}({Lt | t ∈ R}). Lower and
upper semi continuous with values in I(L) are defined in the analogous way.

Definition 2.14 ([3]). A L-fuzzy set λ in a partially ordered set X is called
(i) Increasing if x ≤ y =⇒ λ(x) ≤ λ(y)
(ii) Decreasing if x ≤ y =⇒ λ(x) ≥ λ(y).

Definition 2.15 ([2]). Let λ be any fuzzy set of the fuzzy topological space (X,T ).
Then λ is called fuzzy β-open set if λ ≤ cl(int(cl(A))).

The complement of fuzzy β-open set is called fuzzy β-closed set.

Definition 2.16 ([12]). The finite union of regular open sets is said to be π-open
set. The complement of π-open set is said to be π-closed set.

Definition 2.17 ([7]). A subset A of a space (X, τ) is called locally closed (briefly
lc) if A = C ∩D, where C is open and D is closed in (X, τ).

Definition 2.18 ([11]). Let (X, T ) be a normal L-space, A ⊂ X suitable closed and
f : (A, TA) → I(L) continuous. Then there exists a continuous function F : X →
I(L) which extends f over X.

Corollary 2.19 ([11]). (Urysohn’s type lemma). An L-space (X, T ) is normal iff for
each K ′, U ∈ T such that K ≤ U there exists a continuous function f : X → I(L)
such that K ≤ L1

′f ≤ R0f ≤ U .

3. Ordered intuitionistic fuzzy π-β-locally bitopological spaces

In this section, the concepts of an intuitionistic fuzzy π-open set, intuitionis-
tic fuzzy β-closed set,intuitionistic fuzzy π-β-locally closed set, upper pairwise in-
tuitionistic fuzzy π-β-locally T1-ordered space, lower pairwise intuitionistic fuzzy
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π-β-locally T1-ordered space, pairwise intuitionistic fuzzy π-β-locally T1-ordered
space, pairwise intuitionistic fuzzy π-β-locally T2-ordered space, weakly pairwise
intuitionistic fuzzy π-β-locally T2-ordered space, almost pairwise intuitionistic fuzzy
π-β-locally T2-ordered space and strongly pairwise intuitionistic fuzzy π-β-locally
normally ordered space are introduced. Some interesting propositions and char-
acterizations are discussed. Urysohn’s lemma and Tietze extension theorem of an
strongly pairwise intuitionistic fuzzy π-β-locally normally ordered space are studied
and estabilished.

Definition 3.1. Let (X, T ) be an intuitionistic fuzzy topological space. Let A =
〈x, µA, γA〉 be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space
(X, T ). Then A is said be an intuitionistic fuzzy π-open set if A =

⋃n
i=1 Ai, where

Ai = 〈x, µAi
, γAi

〉 is an intuitionistic fuzzy regular open set in an intuitionistic fuzzy
topological space (X,T).

The complement of an intuitionistic fuzzy π-open set is said to be an intuitionistic
fuzzy π-closed set.

Definition 3.2. Let A be any intuitionistic fuzzy set of an intuitionistic fuzzy topo-
logical space (X, T ). Then A is called an intuitionistic fuzzy β-open set (IFβOS) if
A ⊆ cl(int(cl(A))).

The complement of an intuitionistic fuzzy β-open set is said to be an intuitionistic
fuzzy β-closed set.

Definition 3.3. Let (X, T ) be an intuitionistic fuzzy topological space. Let A =
〈x, µA, γA〉 be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space
(X, T ). Then A is said be an intuitionistic fuzzy π-β-locally closed set (in short,
IFπ-β-lcs) if A = B ∩ C, where B is an intuitionistic fuzzy π-open set and C is an
intuitionistic fuzzy β-closed set.

The complement of an intuitionistic fuzzy π-β-locally closed set is said to be an
intuitionistic fuzzy π-β-locally open set (in short, IFπ-β-los).

Definition 3.4. Let (X, T ) be an intuitionistic fuzzy topological space. Let A =
〈x, µA, γA〉 be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space
(X, T ). The intuitionistic fuzzy π-β-locally closure of A is denoted and defined by

IFπ-β-lcl(A)=
⋂{B:B = 〈x, µB , γB〉 is an intuitionistic fuzzy π-β-locally closed

set in X and A ⊆ B}.

Definition 3.5. Let (X, T ) be an intuitionistic fuzzy topological space. Let A =
〈x, µA, γA〉 be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space
(X, T ). The intuitionistic fuzzy π-β-locally interior of A is denoted and defined by

IFπ-β-lint(A)=
⋃{B:B = 〈x, µB , γB〉 is an intuitionistic fuzzy π-β-locally open

set in X and B ⊆ A}.

Definition 3.6. An intuitionistic fuzzy set A = 〈x, µA, γA〉 in an intuitionistic fuzzy
topological space (X, T ) is said to be an intuitionistic fuzzy neighbourhood of a point
x ∈ X, if there exists an intuitionistic fuzzy open set B = 〈x, µB , γB〉 with B ⊆ A
and B(x) ⊇ 0∼.
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Definition 3.7. An intuitionistic fuzzy set A = 〈x, µA, γA〉 in an intuitionistic fuzzy
topological space (X, T ) is said to be an intuitionistic fuzzy π-β-locally neighbour-
hood of a point x ∈ X, if there exists an intuitionistic fuzzy π-β-locally open set
B = 〈x, µB , γB〉 with B ⊆ A and B(x) ⊇ 0∼.

Definition 3.8. An intuitionistic fuzzy set A = 〈x, µA, γA〉 in a partially ordered
set (X,≤) is said to be an

(i) increasing intuitionistic fuzzy set if x ≤ y implies A(x) ⊆ A(y). That is
µA(x) ≤ µA(y) and γA(x) ≥ γA(y).

(ii) decreasing intuitionistic fuzzy set if x ≤ y implies A(x) ⊇ A(y). That is
µA(x) ≥ µA(y) and γA(x) ≤ γA(y).

Definition 3.9. An ordered intuitionistic fuzzy bitopological space is an intuition-
istic fuzzy bitopological space (X, τ1, τ2,≤) (where τ1 and τ2 are intuitionistic fuzzy
topologies on X ) equipped with a partial order ≤.

Definition 3.10. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be an upper pairwise intuitionistic fuzzy T1-ordered space if a, b ∈ X such
that a � b, there exists an decreasing τ1 intuitionistic fuzzy neighbourhood (or) an
decreasing τ2 intuitionistic fuzzy neighbourhood A of b such that A = 〈x, µA, γA〉 is
not an intuitionistic fuzzy neighbourhood of a.

Definition 3.11. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be an lower pairwise intuitionistic fuzzy T1-ordered space if a, b ∈ X such
that a � b, there exists an increasing τ1 intuitionistic fuzzy neighbourhood (or) an
increasing τ2 intuitionistic fuzzy neighbourhood A of a such that A = 〈x, µA, γA〉 is
not an intuitionistic fuzzy neighbourhood of b.

Definition 3.12. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be an pairwise intuitionistic fuzzy T1-ordered space if and only if it is both
upper and lower pairwise intuitionistic fuzzy T1-ordered space.

Definition 3.13. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be an upper pairwise intuitionistic fuzzy π-β-locally T1-ordered space if
a, b ∈ X such that a � b, there exists an decreasing τ1 intuitionistic fuzzy π-β-locally
neighbourhood (or) an decreasing τ2 intuitionistic fuzzy π-β-locally neighbourhood
A = 〈x, µA, γA〉 of b such that A is not an intuitionistic fuzzy π-β-locally neighbour-
hood of a.

Definition 3.14. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be an lower pairwise intuitionistic fuzzy π-β-locally T1-ordered space if
a, b ∈ X such that a � b, there exists an increasing τ1 intuitionistic fuzzy π-β-locally
neighbourhood (or) an increasing τ2 intuitionistic fuzzy π-β-locally neighbourhood
A = 〈x, µA, γA〉 of a such that A is not an intuitionistic fuzzy π-β-locally neighbour-
hood of b.

Definition 3.15. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤) is
said to be an pairwise intuitionistic fuzzy π-β-locally T1-ordered space if and only if
it is both upper and lower pairwise intuitionistic fuzzy π-β-locally T1-ordered space.
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Remark 3.16. Russian translation of A. Kaufmann’s book [301] and decided to
add to the definition, a second degree (degree of nonmembership) and studied the
properties of a set with both degrees. Of course, observed that the new set is an
extension of the ordinary fuzzy set, but did not immediately notice that it has essen-
tially different properties. So the first research works of mine in this area followed,
step-by-step, the existing results in fuzzy sets theory. Of course, some concepts are
not so difficult to extend formally. It is interesting to show that the respective ex-
tension has specific properties, absent in the basic concept. An intuitionistic fuzzy
set A = 〈x, µA(x), γA(x)〉, when γA(x) = 1−µA(x). Then A is also called fuzzy set.

Proposition 3.17. For an ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤
) the following are equivalent

(i) X is an lower (resp.upper) pairwise intuitionistic fuzzy π-β-locally T1-ordered
space.

(ii) For each a, b ∈ X such that a � b, there exists an increasing (resp.decreasing)
τ1 intuitionistic fuzzy π-β-locally open set (or) an increasing (resp.decreasing) τ2 in-
tuitionistic fuzzy π-β-locally open set A = 〈x, µA, γA〉 such that A(a) > 0 (resp.A(b) >
0) and A is not an intuitionistic fuzzy π-β-locally neighbourhood of b (resp.a).

Proof. (i)⇒(ii) Let X be an lower pairwise intuitionistic fuzzy π-β-locally T1-
ordered space. Let a, b ∈ X such that a � b. There exists an increasing τ1 intu-
itionistic fuzzy π-β-locally neighbourhood (or) an increasing τ2 intuitionistic fuzzy
π-β-locally neighbourhood A of a such that A is not an intuitionistic fuzzy π-β-locally
neighbourhood of b.It follows that there exists an τi intuitionistic fuzzy π-β-locally
open set(i = 1(or)2), Ai = 〈x, µAi , γAi〉 with Ai ⊆ A and Ai(a) = A(a) > 0. As A is
an increasing intuitionistic fuzzy set, A(a) > A(b) and since A is not an intuitionistic
fuzzy π-β-locally neighbourhood of b, Ai(b) < A(b) implies Ai(a) = A(a) > A(b) ≥
Ai(b). This shows that Ai is an increasing intuitionistic fuzzy set and Ai is not an
intuitionistic fuzzy π-β-locally neighbourhood of b, since A is not an intuitionistic
fuzzy π-β-locally neighbourhood of b.

(ii)⇒(i) Since A1 is an increasing τ1 intuitionistic fuzzy π-β-locally open set (or)
increasing τ2 intuitionistic fuzzy π-β-locally open set. Now, A1 is an intuitionistic
fuzzy π-β-locally neighbourhood of a with A1(a) > 0. By (ii), A1 is not an intu-
itionistic fuzzy π-β-locally neighbourhood of b. This implies, X is an lower pairwise
intuitionistic fuzzy π-β-locally T1-ordered space. ¤
Remark 3.18. Similar proof holds for upper pairwise intuitionistic fuzzy π-β-locally
T1-ordered space.

Proposition 3.19. If (X, τ1, τ2,≤) is an lower (resp.upper) pairwise intuitionistic
fuzzy π-β-locally T1-ordered space and τ1 ⊆ τ∗1 , τ2 ⊆ τ∗2 , then (X, τ1

∗, τ2
∗,≤) is an

lower (resp. upper) pairwise intuitionistic fuzzy π-β-locally T1-ordered space.

Proof. Let (X, τ1, τ2,≤) be an lower pairwise intuitionistic fuzzy π-β-locally T1-
ordered space. Then if a, b ∈ X such that a � b, there exists an increasing τ1 intu-
itionistic fuzzy π-β-locally neighbourhood (or) an increasing τ2 intuitionistic fuzzy
π-β-locally neighbourhood A = 〈x, µA, γA〉 of a such that A is not an intuitionis-
tic fuzzy π-β-locally neighbourhood of b. Since τ1 ⊆ τ∗1 and τ2 ⊆ τ∗2 . Therefore, if
a, b ∈ X such that a � b, there exists an increasing τ1

∗ intuitionistic fuzzy π-β-locally
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neighbourhood (or) an increasing τ2
∗ intuitionistic fuzzy π-β-locally neighbourhood

A = 〈x, µA, γA〉 of a such that A is not an intuitionistic fuzzy π-β-locally neighbour-
hood of b. Thus (X, τ1

∗, τ2
∗,≤) is an lower pairwise intuitionistic fuzzy π-β-locally

T1-ordered space. ¤
Remark 3.20. Similar proof holds for upper pairwise intuitionistic fuzzy π-β-locally
T1-ordered space.

Definition 3.21. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤) is
said to be an pairwise intuitionistic fuzzy T2-ordered space if for a, b ∈ X with a � b,
there exist an intuitionistic fuzzy open sets A = 〈x, µA, γA〉 and B = 〈x, µB , γB〉 such
that A is an increasing τi intuitionistic fuzzy neighbourhood of a,B is an decreasing
τj intuitionistic fuzzy neighbourhood of b (i, j = 1, 2 and i 6= j) and A ∩B = 0∼.

Definition 3.22. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤
) is said to be an pairwise intuitionistic fuzzy π-β-locally T2-ordered space if for
a, b ∈ X with a � b, there exist an intuitionistic fuzzy π-β-locally open sets A =
〈x, µA, γA〉 and B = 〈x, µB , γB〉 such that A is an increasing τi intuitionistic fuzzy
π-β-locally neighbourhood of a,B is an decreasing τj intuitionistic fuzzy π-β-locally
neighbourhood of b (i, j = 1, 2 and i 6= j) and A ∩B = 0∼.

Definition 3.23. Let (X,≤) be a partially ordered set. Let G = {(x, y) ∈ X ×X |
x ≤ y, y = f(x)}. Then G is called an intuitionistic fuzzy graph of the partially
ordered ≤.

Definition 3.24. Let (X, T ) be an intuitionistic fuzzy topological space and A ⊂ X
be a subset of X. An intuitionistic fuzzy characteristic function of A = 〈x, µA, γA〉
is defined as χA(x) =

{
1∼ if x ∈ A
0∼ if x 6∈ A

Definition 3.25. Let A = 〈x, µA, γA〉 be an intuitionistic fuzzy set in an ordered
intuitionistic fuzzy bitopological space (X, τ1, τ2,≤). Then for i = 1(or)2, we define
Iτi-π-β-li(A) = increasing τi intuitionistic fuzzy π-β-locally interior of A

= the greatest increasing τi intuitionistic fuzzy π-β-locally open set
contained in A

Dτi
-π-β-li(A) = decreasing τi intuitionistic fuzzy π-β-locally interior of A

= the greatest decreasing τi intuitionistic fuzzy π-β-locally open set
contained in A

Iτi-π-β-lc(A) = increasing τi intuitionistic fuzzy π-β-locally closure of A
= the smallest increasing τi intuitionistic fuzzy π-β-locally closed set

containing in A
Dτi-π-β-lc(A) = decreasing τi intuitionistic fuzzy π-β-locally closure of A

= the smallest decreasing τi intuitionistic fuzzy π-β-locally closed set
containing in A.

Notation 3.26.
(i) The complement of the characteristic function χG,where G is the intuitionistic

fuzzy graph of the partial order of X is denoted by χG.
(ii) Iτi-π-β-lc(A) is denoted by Ii(A) and Dτj -π-β-lc(A) is denoted by Dj(A)

where
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A = 〈x, µA, γA〉 is an intuitionistic fuzzy set in an ordered intuitionistic fuzzy bitopo-
logical space (X, τ1, τ2,≤), for i, j = 1, 2 and i 6= j.

(iii) Iτi
-π-β-li(A) is denoted by Ii

◦(A) and Dτj
-π-β-li(A) is denoted by Dj

◦(A)
where
A = 〈x, µA, γA〉 is an intuitionistic fuzzy set in an ordered intuitionistic fuzzy bitopo-
logical space (X, τ1, τ2,≤), for i, j = 1, 2 and i 6= j.

Proposition 3.27. For an ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤
) the following are equivalent

(i) X is a pairwise intuitionistic fuzzy π-β-locally T2-ordered space.
(ii) For each pair a, b ∈ X such that a � b, there exists an τi intuitionistic fuzzy

π-β-locally open set A = 〈x, µA, γA〉 and τj intuitionistic fuzzy π-β-locally open set
B = 〈x, µB , γB〉 such that A(a) > 0, B(b) > 0 and A(x) > 0, B(y) > 0 together
imply that x � y.

(iii) The characteristic function χG,where G is the intuitionistic fuzzy graph of
the partial order of X is a τ∗-intuitionistic fuzzy π-β-locally closed set,where τ∗ is
either τ1 × τ2 or τ2 × τ1 in X ×X.

Proof. (i)⇒(ii) Let X be a pairwise intuitionistic fuzzy π-β-locally T2-ordered space.
Assume that suppose A(x) > 0,B(y) > 0 and suppose x ≤ y. Since A is an increasing
τi intuitionistic fuzzy π-β-locally open set and B is an decreasing τj intuitionistic
fuzzy π-β-locally open set, A(x) ≤ A(y) and B(y) ≤ B(x). Therefore 0 < A(x) ∩
B(y) ≤ A(y)∩B(x), which is a contradiction to the fact that A∩B = 0∼. Therefore
x � y.

(ii)⇒(i) Let a, b ∈ X with a � b, there exists an intuitionistic fuzzy sets A and B
satisfying the properties in (ii). Since Ii

◦(A) is an increasing τi intuitionistic fuzzy
π-β-locally open set and Dj

◦(B)is an decreasing τj intuitionistic fuzzy π-β-locally
open set, we have Ii

◦(A) ∩ Dj
◦(B)=0∼. Suppose z ∈ X is such that Ii

◦(A)(z) ∩
Dj

◦(B)(z) > 0.Then Ii
◦(A) > 0 and Dj

◦(B)(z) > 0. If x ≤ z ≤ y, then x ≤ z implies
that Dj

◦(B)(x) ≥ Dj
◦(B)(z) > 0 and z ≤ y implies that Ii

◦(A)(y) ≥ Ii
◦(A)(z) > 0

then Dj
◦(B)(x) > 0 and Ii

◦(A)(y) > 0. Hence by (ii), x � y but then x ≤ y. This
is a contradiction. This implies that X is pairwise intuitionistic fuzzy π-β-locally
T2-ordered space.

(i)⇒ (iii) We want to show that χG is an τ∗ intuitionistionic fuzzy π-β-locally
closed set. That is to show that χG is an τ∗ intuitionistionic fuzzy π-β-locally open
set. It is sufficient to prove that χG is an intuitionistionic fuzzy π-β-locally neigh-
bourhood of a point (x, y) ∈ X×X such that χG (x, y) > 0. Suppose (x, y) ∈ X×X
is such that χG (x, y) > 0. That is χG(x, y) < 1. This means χG(x, y) = 0.That
is (x, y) 6∈ G. That is x � y. Therefore by assumption (i) there exist intuitionistic
fuzzy π-β-locally open sets A and B such that A is an increasing τi intuitionistic
fuzzy π-β-locally neighbourhood of a, B is an decreasing τj intuitionistic fuzzy π-β-
locally neighbourhood of b(i, j = 1, 2 and i 6= j)and A ∩ B = 0∼. Clearly A × B is
an IFτ∗ π-β-locally neighbourhood of (x, y). It is easy to verify that A×B ⊆ χG.
Thus we find that χG is an τ∗ IFπ-β-locally open set. Hence (iii) is established.

(iii)⇒(i) Suppose x � y. Then (x, y) 6∈ G, where G is an intuitionistic fuzzy
graph of the partial order. Given that χG is an τ∗ intuitionistic fuzzy π-β-locally
closed set. That is χG is an τ∗ intuitionistic fuzzy π-β-locally open set. Now,
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(x, y) 6∈ G implies that χG(x, y) > 0. Therefore χG is an τ∗ intuitionistic fuzzy π-β-
locally neighbourhood of (x, y) ∈ X ×X. Hence we can find that τ∗ intuitionistic
fuzzy π-β-locally open set A×B such that A×B ⊆ χG and A is an τi intuitionistic
fuzzy π-β-locally open set such that A(x) > 0 and B is an τj intuitionistic fuzzy
π-β-locally open set such that B(y) > 0. We now claim that Ii

◦(A) ∩ Dj
◦(B)=0∼.

For if z ∈ X is such that (Ii
◦(A) ∩ Dj

◦(B))(z)> 0, then Ii
◦(A)(z) ∩ Dj

◦(B)(z) > 0.
This means Ii

◦(A)(z)> 0 and Dj
◦(B)(z)> 0. And if a ≤ z ≤ b, then z ≤ b implies

that Ii
◦(A)(b)≥ Ii

◦(A)(z)> 0 and a ≤ z implies that Dj
◦(B)(a)≥ Dj

◦(B)(z)> 0.
Then Dj

◦(B)(a)> 0 and Ii
◦(A)(b)> 0 implies that a � b but then a ≤ b. This is a

contradiction. Hence (i) is established. ¤

Definition 3.28. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤) is
said to be a weakly pairwise intuitionistic fuzzy T2-ordered space if given b < a (that
is b ≤ a and b 6= a),there exist an τi intuitionistic fuzzy open set A = 〈x, µA, γA〉
such that A(a) > 0 and τj intuitionistic fuzzy open set B = 〈x, µB , γB〉 such that
B(b) > 0 (i, j = 1, 2 and i 6= j) such that if x, y ∈ X, A(x) > 0, B(y) > 0 together
imply that y < x.

Definition 3.29. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be a weakly pairwise intuitionistic fuzzy π-β-locally T2-ordered space if
given b < a (that is b ≤ a and b 6= a), there exist an τi intuitionistic fuzzy π-β-locally
open set A = 〈x, µA, γA〉 such that A(a) > 0 and τj intuitionistic fuzzy π-β-locally
open set B = 〈x, µB , γB〉 such that B(b) > 0 (i, j = 1, 2 and i 6= j) such that if
x, y ∈ X, A(x) > 0, B(y) > 0 together imply that y < x.

Definition 3.30. The symbol x ‖ y means that x � y and y � x.

Example 3.31. Let x, y ∈ X and A = 〈a, (0.2, 0.3), (0.7, 0.5)〉 be an intuitionistic
fuzzy set. This implies that x � y and y � x. Therefore x||y if and only if x ≤ y
and y ≤ x.

Definition 3.32. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is said to be a almost pairwise intuitionistic fuzzy T2-ordered space if given a ‖ b,
there exist an τi intuitionistic fuzzy open set A = 〈x, µA, γA〉 such that A(a) > 0
and τj intuitionistic fuzzy open set B = 〈x, µB , γB〉 such that B(b) > 0 (i, j = 1, 2
and i 6= j) such that if x, y ∈ X, A(x) > 0 and B(y) > 0 together imply that x ‖ y.

Definition 3.33. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤) is
said to be a almost pairwise intuitionistic fuzzy π-β-locally T2-ordered space if given
a ‖ b, there exist an τi intuitionistic fuzzy π-β-locally open set A = 〈x, µA, γA〉 such
that A(a) > 0 and τj intuitionistic fuzzy π-β-locally open set B = 〈x, µB , γB〉 such
that B(b) > 0 (i, j = 1, 2 and i 6= j) such that if x, y ∈ X, A(x) > 0 and B(y) > 0
together imply that x ‖ y.

Proposition 3.34. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is a pairwise intuitionistic fuzzy π-β-locally T2-ordered space if and only if it is a
weakly pairwise intuitionistic fuzzy π-β-locally T2-ordered and almost pairwise intu-
itionistic fuzzy π-β-locally T2-ordered space.
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Proof. Let (X, τ1, τ2,≤) be a pairwise intuitionistic fuzzy π-β-locally T2-ordered
space. Then by Proposition(3.3) and Definition(3.20) it is a weakly pairwise in-
tuitionistic fuzzy π-β-locally T2-ordered space. Let a ‖ b. Then a � b and b � a.
Since a � b and X is a pairwise intuitionistic fuzzy π-β-locally T2-ordered space.
We have τi intuitionistic fuzzy π-β-locally open set A = 〈x, µA, γA〉 and τj intu-
itionistic fuzzy π-β-locally open set B = 〈x, µB , γB〉 such that A(a) > 0, B(b) > 0
and A(x) > 0,B(y) > 0 together imply that x � y. Also since b � a,there ex-
ist τi intuitionistic fuzzy π-β-locally open set A∗=〈x, µA∗ , γA∗〉 and τj intuitionistic
fuzzy π-β-locally open set B∗=〈x, µB∗ , γB∗〉 such that A∗(a) > 0,B∗(b) > 0 and
A∗(x) > 0,B∗(y) > 0 together imply that y � x. Thus Ii

◦(A ∩ A∗) is an τi intu-
itionistic fuzzy π-β-locally open set such that Ii

◦(A ∩ A∗)(a) > 0 and Ij
◦(B ∩ B∗)

is an τj intuitionistic fuzzy π-β-locally open set such that Ij
◦(B ∩B∗)(b) > 0. Also

Ii
◦(A ∩A∗)(x) > 0 and Ij

◦(B ∩B∗)(y) > 0 togetherimply that x ‖ y. Hence X is a
almost pairwise intuitionistic fuzzy π-β-locally T2-ordered space.
Conservely, let X be a weakly pairwise intuitionistic fuzzy π-β-locally T2-ordered
and almost pairwise intuitionistic fuzzy π-β-locally T2-ordered space. We want to
show that X is a pairwise intuitionistic fuzzy π-β-locally T2-ordered space. Let
a � b.Then either b < a (or) b � a. If b < a then X being weakly pairwise intuition-
istic fuzzy π-β-locally T2-ordered space, there exist τi intuitionistic fuzzy π-β-locally
open set A and τj intuitionistic fuzzy π-β-locally open set B such that A(a) > 0,
B(b) > 0 and such that A(x) > 0, B(y) > 0 together imply that y < x. That is
x � y.If b � a, then a ‖ b and the result follows easily since X is a almost pairwise
intuitionistic fuzzy π-β-locally T2-ordered space. Hence X is a pairwise intuitionistic
fuzzy π-β-locally T2-ordered space. ¤

Definition 3.35. Let A = 〈x, µA, γA〉 and B = 〈x, µB , γB〉 be intuitionistic fuzzy
sets in an ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤). Then A is
said to be an τi intuitionistic fuzzy neighbourhood of B if B ⊆ A and there exists
τi intuitionistic fuzzy open set C = 〈x, µC , γC〉 such that B ⊆ C ⊆ A, (i = 1(or)2).

Definition 3.36. Let A = 〈x, µA, γA〉 and B = 〈x, µB , γB〉 be intuitionistic fuzzy
sets in an ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤). Then A is
said to be an τi intuitionistic fuzzy π-β-locally neighbourhood of B if B ⊆ A and
there exists τi intuitionistic fuzzy π-β-locally open set C = 〈x, µC , γC〉 such that
B ⊆ C ⊆ A,(i = 1(or)2).

Definition 3.37. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤) is
said to be a strongly pairwise intuitionistic fuzzy π-β-locally normally ordered space
if for every pair A = 〈x, µA, γA〉 is an decreasing τi intuitionistic fuzzy π-β-locally
closed set and B = 〈x, µB , γB〉 is an decreasing τj intuitionistic fuzzy π-β-locally
open set such that A ⊆ B then there exist decreasing τj intuitionistic fuzzy π-β-
locally open set A1=〈x, µA1 , γA1〉 such that A ⊆ A1 ⊆ Di(A1) ⊆ B, (i, j = 1, 2 and
i 6= j).

Proposition 3.38. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
the following are equivalent

(i) (X, τ1, τ2,≤) is a strongly pairwise intuitionistic fuzzy π-β-locally normally
ordered space.
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(ii) For each increasing τi intuitionistic fuzzy π-β-locally open set A=〈x, µA, γA〉
and decreasing τj intuitionistic fuzzy π-β-locally open set B=〈x, µB , γB〉 with A ⊆ B
there exists an decreasing τj intuitionistic fuzzy π-β-locally open set A1 such that
A ⊆ A1 ⊆ IFπ-β-lclτi

(A1) ⊆ B, (i, j = 1, 2 and i 6= j).

Proof. The Proof is simple. ¤
Definition 3.39. Let (X, τ1, τ2,≤) be an ordered intuitionistic fuzzy bitopological
space. A function f : X → R(I) is said to be an τi lower∗(resp.upper∗) intuitionistic
fuzzy π-β-locally continuous function if f−1(Rt) (resp.f−1(Lt)) is an increasing (or)
an decreasing τi (resp.τj) intuitionistic fuzzy π-β-locally open set,for each t ∈ R
(i, j = 1, 2 and i 6= j).

Proposition 3.40. Let (X, τ1, τ2,≤) be an ordered intuitionistic fuzzy bitopological
space. Let A = 〈x, µA, γA〉 be an intuitionistic fuzzy set in X and let f : X → R(I)

be such that f(x)(t) =





1 if t < 0
A(x) if 0 ≤ t ≤ 1
0 if t > 1

for all x ∈ X. Then f is an τi lower∗(resp.τjupper∗) intuitionistic fuzzy π-β-locally
continuous function if and only if A is an increasing (or) an decreasing τi (resp.τj)
intuitionistic fuzzy π-β-locally open(resp.closed) set (i, j = 1, 2 and i 6= j).

Proof. f−1(Rt) =





1 if t < 0
A(x) if 0 ≤ t ≤ 1
0 if t > 1

implies that f is an τi lower∗ intuitionistic fuzzy π-β-locally continuous function if
and only if A is an increasing (or) an decreasing τi intuitionistic fuzzy π-β-locally
open set in X.

f−1(Lt) =





1 if t < 0
A(x) if 0 ≤ t ≤ 1
0 if t > 1

implies that f is an τj upper∗ intuitionistic fuzzy π-β-locally continuous function if
and only if A is an increasing (or) an decreasing τj intuitionistic fuzzy π-β-locally
closed set in X (i, j = 1, 2 and i 6= j). ¤
Uryshon’s Lemma

Proposition 3.41. An ordered intuitionistic fuzzy bitopological space (X, τ1, τ2,≤)
is a strongly pairwise intuitionistic fuzzy π-β-locally normally ordered space if and
only if for every A = 〈x, µA, γA〉 is an decreasing τi intuitionistic fuzzy closed
set and B = 〈x, µB , γB〉 is an increasing τj intuitionistic fuzzy closed set with
A ⊆ B, there exists increasing intuitionistic fuzzy function f : X → I such that
A ⊆ f−1(L1) ⊆ f−1(R0) ⊆ B and f is an τi upper∗ intuitionistic fuzzy π-β-
locally continuous function and τj lower∗ intuitionistic fuzzy π-β-locally continuous
function(i, j = 1, 2 and i 6= j).

Proof. Suppose that there exists a function f satisfying the given conditions. Let
C = 〈x, µC , γC〉=f−1(Lt) and D = 〈x, µD, γD〉=f−1(Rt) for some 0 ≤ t ≤ 1. Then
C ∈ τi and D ∈ τj and such that A ⊆ C ⊆ D ⊆ B. It is easy to verify that D is
an decreasing τj intuitionistic fuzzy π-β-locally open set and C is an increasing τi
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intuitionistic fuzzy π-β-locally closed set. Then there exists decreasing τj intuition-
istic fuzzy π-β-locally open set C1 such that C ⊆ C1 ⊆ Di(C1) ⊆ D, (i, j = 1, 2
and i 6= j). This proves that X is a strongly pairwise intuitionistic fuzzy π-β-locally
normally ordered space.
Conversely, let X be a strongly pairwise intuitionistic fuzzy π-β-locally normally
ordered space. Let A be an decreasing τi intuitionistic fuzzy π-β-locally closed set
and B be an increasing τj intuitionistic fuzzy π-β-locally closed set.By the Proposi-
tion(3.6),we can construct a collection {Ct | t ∈ I} ⊆ τj ,where C = 〈x, µCt

, γCt
〉,t ∈

I such that A ⊆ Ct ⊆ B, IFπ-β-lclτi
(Cs) ⊆ Ct whenever s < t, A ⊆ C0, C1 = B

and Ct = 0∼ for t < 0, Ct = 1∼ for t > 1. We define a function f : X → I by
f(x)(t) = C1−t(x). Clearly f is well defined. Since A ⊆ C1−t ⊆ B, for t ∈ I. We
have A ⊆ f−1(L1) ⊆ f−1(R0) ⊆ B. Furthermore f−1(Rt) =

⋃
s<1−t Cs is an τj

intuitionistic fuzzy π-β-locally open set and f−1(Lt) =
⋂

s>1−t Cs =
⋂

s>1−t IFπ-
β-lclτi(Cs) is an τi intuitionistic fuzzy π-β-locally closed set. Thus f is an τj lower∗

intuitionistic fuzzy π-β-locally continuous function and τi upper∗ intuitionistic fuzzy
π-β-locally continuous function and is an increasing intuitionistic fuzzy function. ¤

Tietze Extension Theorem

Proposition 3.42. Let (X, τ1, τ2,≤) be an ordered intuitionistic fuzzy bitopological
space the following statements are equivalent.

(i) (X, τ1, τ2,≤) is a strongly pairwise intuitionistic fuzzy π-β-locally normally
ordered space.

(ii) If g, h : X → R(I),g is an τi upper∗ intuitionistic fuzzy π-β-locally continuous
function,h is an τj lower∗ intuitionistic fuzzy π-β-locally continuous function and
g ⊆ h,then there exists f : X → R(I) such that g ⊆ f ⊆ h and f is an τi upper∗

intuitionistic fuzzy π-β-locally continuous function and τj lower∗ intuitionistic fuzzy
π-β-locally continuous function(i, j = 1, 2 and i 6= j).

Proof. (ii)⇒(i) Let A = 〈x, µA, γA〉 and B = 〈x, µB , γB〉 be an intuitionistic fuzzy
π-β-locally open sets such that A ⊆ B. Define g, h : X → R(I) by

g(x)(t) =





1 if t < 0
A(x) if 0 ≤ t ≤ 1
0 if t > 1

and

h(x)(t) =





1 if t < 0
B(x) if 0 ≤ t ≤ 1
0 if t > 1

for each x ∈ X. By Proposition(3.6), g is an τi upper∗ intuitionistic fuzzy π-β-locally
continuous function and h is an τj lower∗ intuitionistic fuzzy π-β-locally continuous
function. Clearly, g ⊆ h holds,so that there exists f : X → R(L) such that g ⊆ f ⊆
h. Suppose t ∈ (0, 1). Then A = g−1(Rt) ⊆ f−1(Rt) ⊆ f−1(Lt) ⊆ h−1(Lt) = B. By
Proposition(3.7),X is a strongly pairwise intuitionistic fuzzy π-β-locally normally
ordered space.

(i)⇒(ii) Define two mappings A,B : Q → I by A(r) = Ar = h−1(Rr) and
B(r) = Br = g−1(Lr),for all r ∈ Q (Q is the set of all rationals). Clearly, A
and B are monotone increasing families of an decreasing τi intuitionistic fuzzy π-
β-locally closed sets and decreasing τj intuitionistic fuzzy π-β-locally open sets of
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X. Moreover Ar ⊂ Br′ if r < r′. By Proposition(3.5) there exists an decreasing
τj intuitionistic fuzzy π-β-locally open set C = 〈x, µC , γC〉 such that Ar ⊆ IFπ-β-
lintτi

(Cr), IFπ-β-lclτi
(Cr) ⊆ IFπ-β-lintτi

(Cr′), IFπ-β-lclτi
(Cr) ⊆ Br′ whenever

r < r′ (r, r′ ∈ Q). Letting Vt =
⋂

r<t Cr for t ∈ R, we define a monotone decreasing
family {Vt | t ∈ R} ⊆ I. Moreover we have IFπ-β-lclτi(Vt) ⊆ IFπ-β-lintτi(Vs)
whenever s < t. We have,

⋃

t∈R

Vt =
⋃

t∈R

⋂
r<t

Cr ⊇
⋃

t∈R

⋂
r<t

Br =
⋃

t∈R

⋂
r<t

g−1(Lr)

=
⋃

t∈R

g−1(Lt) = g−1(
⋃

t∈R

Lt) = 1∼

Similarly,
⋂

t∈R Vt = 0∼. Now define a function f : (X, τ1, τ2,≤) → R(L) satisfying
the required conditions. Let f(x)(t) = Vt(x), for all x ∈ X and t ∈ R. By the above
discussion, it follows that f is well defined. To prove f is an τi upper∗ intuitionistic
fuzzy π-β-locally continuous function and τj lower∗ intuitionistic fuzzy π-β-locally
continuous function(i, j = 1, 2 and i 6= j). Observe that

⋃
s>t Vs =

⋃
s>t IFπ-

β-lintτi
(Vs) and

⋂
s>t Vs =

⋂
s>t IFπ-β-lclτi

(Vs). Then f−1(Rt) =
⋃

s>t Vs =⋃
s>t IFπ-β-lintτi(Vs) is an increasing τi intuitionistic fuzzy π-β-locally open set.

Now, f−1(Lt) =
⋂

s>t Vs =
⋂

s>t IFπ-β-lclτi(Vs) is an decreasing τj intuitionistic
fuzzy π-β-locally closed set. So that f is an τi upper∗ intuitionistic fuzzy π-β-
locally continuous function and τj lower∗ intuitionistic fuzzy π-β-locally continuous
function. To conclude the proof it remains to show that g ⊆ f ⊆ h. That is
g−1(Lt) ⊆ f−1(Lt) ⊆ h−1(Lt) and g−1(Rt) ⊆ f−1(Rt) ⊆ h−1(Rt) for each t ∈ R.
We have,

g−1(Lt) =
⋂
s<t

g−1(Ls) =
⋂
s<t

⋂
r<s

g−1(Lr) =
⋂
s<t

⋂
r<s

Br

⊆
⋂
s<t

⋂
r<s

Cr =
⋂
s<t

Vs = f−1(Lt)

and

f−1(Lt) =
⋂
s<t

Vs =
⋂
s<t

⋂
r<s

Cr ⊆
⋂
s<t

⋂
r<s

Ar

=
⋂
s<t

⋂
r<s

h−1(Rr) =
⋂
s<t

h−1(Ls) = h−1(Lt)

Similarly, we obtain

g−1(Rt) =
⋃
s>t

g−1(Rs) =
⋃
s>t

⋃
r>s

g−1(Lr) =
⋃
s>t

⋃
r>s

Br

⊆
⋃
s>t

⋃
r>s

Cr =
⋃
s>t

Vs = f−1(Rt)

and

f−1(Rt) =
⋃
s>t

Vs =
⋃
s>t

⋃
r>s

Cr ⊆
⋃
s>t

⋃
r>s

Ar

=
⋃
s>t

⋃
r>s

h−1(Rr) =
⋃
s>t

h−1(Rs) = h−1(Rt)
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This completes the proof. ¤
Proposition 3.43. Let (X, τ1, τ2,≤) be a strongly pairwise intuitionistic fuzzy π-
β-locally normally ordered space. Let A ∈ τ1 and A ∈ τ2 be crisp and let f :
(A, τ1/A, τ2/A) → I be an τi upper∗ intuitionistic fuzzy π-β-locally continuous func-
tion and τj lower∗ intuitionistic fuzzy π-β-locally continuous function (i, j = 1, 2
and i 6= j). Then f has an intuitionistic fuzzy extension over (X, τ1, τ2,≤) (that
is,F : (X, τ1, τ2,≤) → I).

Proof. Define g : X → I by

g(x) = f(x) if x ∈ A

= [A0] if x /∈ A

and also define h : X → I by

h(x) = f(x) if x ∈ A

= [A1] if x /∈ A

where [A0] is the equivalence class determined by A0 : R → I such that

A0(t) = 1∼ if t < 0
= 0∼ if t > 0

and [A1] is the equivalence class determined by A1 : R → I such that

A1(t) = 1∼ if t < 1
= 0∼ if t > 1

g is an τi upper∗ intuitionistic fuzzy π-β-locally continuous function and h is an
τj lower∗ intuitionistic fuzzy π-β-locally continuous function and g ⊆ h.Hence by
the Proposition(3.8),there exists a function F : X → I such that F is an τi upper∗

intuitionistic fuzzy π-β-locally continuous function and τj lower∗ intuitionistic fuzzy
π-β-locally continuous function and g(x) ⊆ h(x) ⊆ f(x) for all x ∈ X. Hence for all
x ∈ A, f(x) ⊆ F (x) ⊆ f(x). So that F is an required extension of f over X. ¤
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