Annals of Fuzzy Mathematics and Informatics Volume 7, No. 2, (February 2014), pp. 303–311 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

L-fuzzy 0-(1- or 2- or 3-) 2-absorbing ideals in semirings

Ahmad Yousefian Darani, Ashraf Hashempoor

Received 14 December 2010; Revised 29 January 2011; Accepted 31 January 2011

ABSTRACT. Let R be a commutative semiring. We define the concept of L-fuzzy $\mathfrak{o} - (\mathfrak{1} - \operatorname{or} \mathfrak{2} - \operatorname{or} \mathfrak{3} -)2$ -absorbing ideals of R. Then we study some basic results concerning these classes of L-fuzzy ideals and discuss on the relationship among these classes of L-fuzzy ideals of R.

2010 AMS Classification: 03E72, 16N60, 16Y60

Keywords: L-Fuzzy ideal, L-Fuzzy K-ideal, L-Fuzzy 0-(1- or 2-) prime ideal, L-Fuzzy 0-(1- or 2- or 3-) 2-absorbing ideal.

Corresponding Author: Ahmad Yousefian Darani (yousefian@uma.ac.ir)

1. INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring (R, +, .). Some of them – in particular, semirings – have been proven very useful. Semirings (called also halfrings) are algebras (R, +, .) sharing the same properties as a ring except that (R, +) is assumed to be a semigroup rather than a commutative group. Semirings, ordered semirings and hemirings appear in a natural manner in some applications to the theory of automata (see for example [8] and [14]) and formal languages (see [2], [10] and [9]). The concept of semirings was introduced by H. S. Vandiver in 1935 and has studied extensively by many authors (e.g. [3, 4]). A nonempty set R together with two associative binary operations called addition and multiplication (denoted by + and ., respectively) will be called a semiring provided that:

(1) (R, +) is a commutative monoid with identity element 0.

(2) (R, .) is a monoid with identity element $1 \neq 0$.

(3) The multiplication is distributive with respect to the addition both from the left and from the right.

(4) a.0 = 0.a = 0 for all $a \in R$.

A semiring R is commutative if (R, .) is a commutative semigroup.

A nonempty subset I of a semiring R will be called an ideal if $a, b \in I$ and $r \in R$ imply that $a + b \in I$ and $ra \in I$. A subtractive ideal (=k-ideal) I is an ideal of R such that if $a, a + b \in I$ then $b \in I$. Let A be a subset of R. The semiring ideal generated by A, denoted by A_d , is $\{r_1a_1 + r_2a_2 + ...r_sa_s | r_i \in R, a_i \in A, s \in \mathbb{N}_0\}$. The subtractive ideal (=k-ideal) generated by A, denoted by A_{sub} , is $\bigcap\{I | I \subseteq A \text{ and } I \text{ is a subtractive ideal of } R\}$. It is proved in [11, Theorem 1.2] that $A_{sub} = \{x \in R | \exists a \in A_d \text{ such that } a + x \in A_d\}$. In this case, if A is an ideal of R is a proper ideal P of R for which whenever $a, b \in R$ with $ab \in P$ then either $a \in P$ or $b \in P$. So P is a prime ideal of R if and only if for ideals A, B of R with $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$, where $AB = \{ab | a \in A \text{ and } b \in B\}$ (see [4, Theorem 5]). R is called a prime semiring if 0 is a prime ideal of R.

In his classic paper [18], Zadeh introduced the notion of a fuzzy subset of a set X as a mapping from X to the interval [0, 1]. The fuzzy set theory developed by Zadeh himself and others can be found in mathematics and many applied areas. W. Liu [12] introduced and studied fuzzy subrings as well as fuzzy ideals in rings. Later, T. K. Mukherjee and M.K. Sen [13], K.L.N. Swamy and U.M. Swamy [15], and Zhang Yue [16] fuzzified certain standard concepts on rings and ideals. T. K. Dutta and B. K. Biswas [6] studied fuzzy ideals and fuzzy prime ideals of semirings, and they defined fuzzy k-ideals of semirings and characterized fuzzy prime k-ideals of semirings of nonnegative integers. P. Dheena and S. Coumaressane in [5] initiated the notion of fuzzy 2 - (o - or 1 -) prime ideal, fuzzy k-closure and fuzzy ideals and fuzzy m-system and studied the relation ship among these classes of fuzzy ideals and fuzzy m-systems.

The first author, in [17], defined the concept of o - (1-, 2-, 3-)2-absorbing ideals of the semiring R. In this paper we generalize the concept of fuzzy o - (1-, 2-) prime ideals of R.

2. Preliminaries

For the sake of completeness, we would like to recall some definitions and results proposed in this field earlier. Throughout this paper R stands for a semiring, and $L = (L, \leq, \land, \lor)$ will be a completely distributive lattice, which has the least and the greatest elements, say 0 and 1, respectively.

Definition 2.1. Let R be a semiring.

(1) A mapping $\mu : R \to L$ is called an *L*-fuzzy subset of *R*.

(2) For any two *L*-fuzzy subsets ν and μ of *R*, we say that μ is contained in ν and we write $\mu \subseteq \nu$ if $\mu(a) \leq \nu(a)$, for all $a \in R$.

(3) If μ is an *L*-fuzzy subset of *R*, then the image of μ denoted by $Im(\mu) = \{\mu(a) | a \in R\}$ and $|Im\mu|$ denotes the cardinality of $Im(\mu)$.

(4) For any *L*-fuzzy subset μ of R, μ_* denotes the subset $\{x \in R | \mu(x) = \mu(0)\}$ of R.

The set of all L-fuzzy subsets of R is called the L-power set of R and is denoted by L^R .

Definition 2.2. Let μ be any *L*-fuzzy subset of *R*. For $t \in L$ the set $\mu_t = \{x \in R | \mu(x) \ge t\}$ is called a *t*-level subset of μ .

Definition 2.3. Let μ, ν be any two *L*-fuzzy subsets of *R*. Then $\mu \cap \nu, \mu \cup \nu, \mu \cdot \nu$ and $\mu + \nu$ are *L*-fuzzy subsets of *R* defined by

$$(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\}$$
$$(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\}$$
$$(\mu.\nu)(x) = \begin{cases} \sup_{x=yz} \{\min\{\mu(y), \nu(z)\}\}, & \text{if x is expressed as x=yz;} \\ 0, & \text{otherwise.} \end{cases}$$
$$(\mu + \nu)(x) = \begin{cases} \sup_{x=y+z} \{\min\{\mu(y), \nu(z)\}\}, & \text{if x is expressed as x=y+z;} \\ 0, & \text{otherwise.} \end{cases}$$

By an L-fuzzy point x_r of $R, x \in R; r \in L \setminus \{0\}$, we mean $x_r \in L^R$ defined by

$$x_r(y) = \begin{cases} r, & \text{if } y=x; \\ 0, & \text{otherwise.} \end{cases}$$

If x_r is an *L*-fuzzy point of R and $x_r \subseteq \mu \in L^R$, we write $x_r \in \mu$. Note that $x_t \in \mu$ if and only if $x \in \mu_t$. Moreover for every *L*-fuzzy subset μ of R, it is easy to check that $\mu = \bigcup_{x_r \in \mu} x_r$. For $A \subseteq R$ the characteristic function of A, $\chi_A \in L^R$, is defined by

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A; \\ 0, & \text{otherwise.} \end{cases}$$

Definition 2.4. An *L*-fuzzy subset μ of *R* is said to be an *L*-fuzzy left (resp. right) ideal of *R* if for all $x, y \in R$,

(1) $\mu(x+y) \ge \min\{\mu(x), \mu(y)\};$ and

(2) $\mu(xy) \ge \mu(y)$ (resp. $\mu(xy) \ge \mu(y)$).

 μ is an L-fuzzy ideal of R if it is both an L-fuzzy left and an L-fuzzy right ideal of R.

Lemma 2.5. Let I be an ideal of R and $\alpha < \beta \in L$. Then the L-fuzzy subset of R defined by

$$A(x) = \begin{cases} \alpha, & \text{if } x \in I; \\ \beta, & \text{otherwise} \end{cases}$$

is an L-fuzzy ideal of R.

Proof. [5, Lemma 2.6].

Definition 2.6. An *L*-fuzzy ideal μ of *R* is said to be an *L*-fuzzy subtractive ideal (=k-ideal) of *R* if $\mu(x) \ge \min\{\mu(x+y), \mu(y)\}$ for all $x, y \in R$.

Definition 2.7. If μ is any *L*-fuzzy subset of *R*, then μ_{sub} is defined as, for any $a \in R$, $\mu_{sub}(a) = \sup_{x \in R} \{\min(a + x), \mu(x)\}\}$. μ_{sub} is called the *L*-fuzzy *k*-closure of μ (or *L*-fuzzy subtractive ideal of *R* generated by μ).

Clearly $\mu \leq \mu_{sub}$. Moreover, it is proved in [5, Lemma 2.18 and Lemma 2.19] that if μ is any *L*-fuzzy ideal of *R*, then μ_{sub} is an *L*-fuzzy *k*-ideal of *R*, and if μ is an *L*-fuzzy *k*-ideal of *R*, then $\mu = \mu_{sub}$. It has also proved in [5, Theorem 2.12] that the intersection of each two *L*-fuzzy *k*-ideals of *R* is again an *L*-fuzzy *k*-ideal of *R*.

Definition 2.8. Let R be a semiring, and let P be an ideal of R.

(i) P is called a \mathfrak{o} -prime (resp. 2-prime) ideal of R if whenever I and J are ideals (resp. k-ideals) of R such that $IJ \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

(ii) P is called a 1-prime ideal of R if whenever I and J are ideals of R such that one of them is a k-ideal with $IJ \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

Definition 2.9. Let R be a semiring, and let P be an L-fuzzy ideal of R.

(i) P is called an L-fuzzy \mathfrak{o} -prime (resp. L-fuzzy $\mathfrak{2}$ -prime) ideal of R if whenever I and J are L-fuzzy ideals (resp. L-fuzzy k-ideals) of R such that $IJ \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

(ii) P is called an L-fuzzy 1-prime ideal of R if whenever I and J are L-fuzzy ideals of R such that one of them is an L-fuzzy k-ideal with $IJ \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

Definition 2.10. Let R be a semiring, and let A be an ideal of R.

(i) A is called a $\mathfrak{o}-2$ -absorbing (resp. $\mathfrak{z}-2$ -absorbing) ideal of R if whenever I, J and K are ideals (resp. k-ideals) of R such that $IJK \subseteq A$, then $IJ \subseteq A$ or $IK \subseteq A$ or $JK \subseteq A$.

(ii) A is called a 1–2-absorbing ideal of R if whenever I, J and K are ideals of R such that one of them is a k-ideal with $IJK \subseteq A$, then $IJ \subseteq A$ or $IK \subseteq A$ or $JK \subseteq A$.

(iii) A is called a 2–2-absorbing ideal of R if whenever I, J and K are ideals of R such that two of them are k-ideals with $IJK \subseteq A$, then $IJ \subseteq A$ or $IK \subseteq A$ or $JK \subseteq A$.

3. L-Fuzzy 2-Absorbing ideals

Definition 3.1. Let R be a commutative semiring and let η be an L-fuzzy ideal of R. We say that η is a fuzzy 2-absorbing ideal of R if η is non-constant and for any fuzzy points $a_r, b_s, c_t \in L^R$, $(a, b, c \in R \text{ and } r, s, t \in L)$, $a_r b_s c_t \in \eta$ implies that either $a_r b_s \in \eta$ or $a_r c_t \in \eta$ or $b_s c_t \in \eta$.

It is evident that every L-fuzzy prime ideal of R is L-fuzzy 2-absorbing. Now consider the following result:

Theorem 3.2. Let η and μ be two distinct L-fuzzy prime ideals of R. Then $\eta \cap \mu$ is an L-fuzzy 2-absorbing ideal of R.

Proof. Suppose that $a_r b_s c_t \in \eta \cap \mu$ for some *L*-fuzzy points $a_r, b_s, c_t \in L^R$, but $a_r b_s \notin \eta \cap \mu$ and $a_r c_t \notin \eta \cap \mu$. If $a_r b_s \notin \eta$ and $a_r c_t \notin \eta$, then, since η is an *L*-fuzzy prime ideal of *R* we have $c_t \in \eta$. In this case $a_r c_t \in \eta$ which is a contradiction. A similar argument leads us to a contradiction if $a_r b_s \notin \mu$ and $a_r c_t \notin \mu$. Therefore either $a_r b_s \notin \eta$ and $a_r c_t \notin \mu$ or $a_r b_s \notin \mu$ and $a_r c_t \notin \eta$. If the former case holds, then from $a_r b_s c_t \in \eta \cap \mu$ we get $c_t \in \eta$ and $b_s \in \mu$. Hence $b_s c_t \in \eta \cap \mu$. By a similar argument, we may show that $b_s c_t \in \eta \cap \mu$ if the latter case holds. Consequently, $\eta \cap \mu$ is an *L*-fuzzy 2-absorbing ideal of *R*.

Theorem 3.3. If η is an L-fuzzy 2-absorbing ideal of R, then η_t is a 2-absorbing ideal of R for every $t \in L$ with $\eta_t \neq R$.

Proof. Let η be an *L*-fuzzy 2-absorbing ideal of *R*. Assume that $abc \in \eta_t$ for some $a, b, c \in R$. In this case from $\eta(abc) \geq t$ we have $a_t b_t c_t = (abc)_t \in \eta$. Since η is assumed to be an *L*-fuzzy 2-absorbing ideal of *R*, we have $(ab)_t = a_t b_t \in \eta$ or $(ac)_t = a_t c_t \in \eta$ or $(bc)_t = b_t c_t \in \eta$. Hence $ab \in \eta_t$ or $ac \in \eta_t$ or $bc \in \eta_t$. This shows that η_t is a 2-absorbing ideal of *R*.

Corollary 3.4. If η is an L-fuzzy 2-absorbing ideal of R, then η_* is a 2-absorbing ideal of R.

Definition 3.5. Let $1 \neq \alpha \in L$. Then α is called a 2-absorbing element of L if $r \wedge s \wedge t \leq \alpha$ implies that $r \wedge s \leq \alpha$ or $r \wedge t \leq \alpha$ or $s \wedge t \leq \alpha$ for all $r, s, t \in L$.

Proposition 3.6. If η is an L-fuzzy 2-absorbing ideal of R, then $\alpha = \eta(1)$ is a 2-absorbing element of L.

Proof. Assume that $r \wedge s \wedge t \leq \alpha$ for some $r, s, t \in L$. In this case, $1_r, 1_s, 1_t$ are three fuzzy points of R with $1_r 1_s 1_t = 1_{r \wedge s \wedge t} \in \eta$. Now since η is assumed to be an L-fuzzy 2-absorbing ideal, we have $1_{r \wedge s} = 1_r 1_s \in \eta$ or $1_{r \wedge t} = 1_r 1_t \in \eta$ or $1_{s \wedge t} = 1_r 1_t \in \eta$. So $r \wedge s \leq \eta(1) = \alpha$ or $r \wedge t \leq \eta(1) = \alpha$ or $s \wedge t \leq \eta(1) = \alpha$, and the result follows. \Box

Theorem 3.7. Let A be a 2-absorbing ideal of R and α a 2-absorbing element of L. Then the L-fuzzy subset of R defined by

$$\mu(x) = \begin{cases} 1, & \text{if } x \in A; \\ \alpha, & \text{otherwise.} \end{cases}$$

is an L-fuzzy 2-absorbing ideal of R.

Proof. Since A is a 2-absorbing ideal of R we have $A \neq R$. Hence η is non-constant. Assume that $a_r b_s c_t \in \eta$ but $a_r b_s \notin \eta$ and $a_r c_t \notin \eta$ and $b_s c_t \notin \eta$, where $a_r, b_s, c_t \in F(R)$ are L-fuzzy points of R. Then $\eta(ab) = \alpha$ and so $ab \notin A$. Similarly, $ac \notin A$ and $bc \notin A$. But A is assumed to be a 2-absorbing ideal of R. So $abc \notin A$. So $\eta(abc) = \alpha$. Also from $(abc)_{r \land s \land t} = a_r b_s c_t \in \eta$ we have $r \land s \land t \leq \eta(abc) = \alpha$. Hence $r \land s \leq \alpha$ or $r \land t \leq \alpha$ or $s \land t \leq \alpha$, since α is a 2-absorbing element, which is a contradiction. Thus $a_r b_s \in \eta$ or $a_r c_t \in \eta$ or $b_s c_t \in \eta$.

Example 3.8. As we mentioned previously, every *L*-fuzzy prime ideal of *R* is *L*-fuzzy 2-absorbing. In this example we show that the converse is not necessarily true. Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the semiring with the usual addition and multiplication. The prime ideals of \mathbb{N} are $0, p\mathbb{N}$ (*p* is a prime number), and $M = N \setminus \{1\}$. Every ideal of \mathbb{N} has the form dA where *A* is an ideal of \mathbb{N} containing all natural numbers larger than some natural number (See [1] for details). Now set $A = 6\mathbb{N}$. Than *A* is a 2-absorbing ideal of *R* which is not a prime ideal. Define $\eta : \mathbb{N} \to [0, 1]$ by

$$\eta(x) = \begin{cases} 1, & \text{if } x \in 6\mathbb{N}; \\ 0, & \text{otherwise.} \end{cases}$$

Then, by Theorem 3.7, η is a fuzzy 2-absorbing ideal of R. Moreover $\eta_0 = A$ is a 2-absorbing ideal of R that is not a prime ideal. Hence η is not a fuzzy prime ideal of R.

4. L-Fuzzy o - (1-, 2-, 3-)2-Absorbing ideals

In this section we introduce the concepts of $\mathfrak{o} - (\mathfrak{1} -, \mathfrak{2} -, \mathfrak{3} -)2$ -absorbing ideals of the semiring R and give some basic properties of these classes of ideals.

Definition 4.1. Let R be a semiring and assume that η is a fuzzy ideal of R. Then:

- η is called an *L*-fuzzy $\mathfrak{o}-2$ -absorbing (resp. $\mathfrak{z}-2$ -absorbing) ideal of R if η is non-constant and for any *L*-fuzzy ideals (resp. *L*-fuzzy *k*-ideals) λ, μ and ν of R, $\lambda\mu\nu \subseteq \eta$ implies that $\lambda\mu \subseteq \eta$ or $\mu\nu \subseteq \eta$ or $\lambda\nu \subseteq \eta$.
- η is called an *L*-fuzzy 1–2-absorbing ideal of *R* if η is non-constant and whenever λ is a *L*-fuzzy *k*-ideal of *R*, and μ, ν are *L*-fuzzy ideals of *R*, then, $\lambda \mu \nu \subseteq \eta$ implies that $\lambda \mu \subseteq \eta$ or $\mu \nu \subseteq \eta$ or $\lambda \nu \subseteq \eta$.
- η is called an *L*-fuzzy 2–2-absorbing ideal of *R* if η is non-constant and whenever λ, μ are *L*-fuzzy *k*-ideals of *R* and ν is a *L*-fuzzy ideal of *R*, then, $\lambda \mu \nu \subseteq \eta$ implies that $\lambda \mu \subseteq \eta$ or $\mu \nu \subseteq \eta$ or $\lambda \nu \subseteq \eta$.

Remark 4.2. The following diagram shows all implications among these classes of fuzzy ideals of a semiring (including the relations by transitivity):

Theorem 4.3. Let η and μ be L-fuzzy ideals of R.

(1) If η and μ are L-fuzzy \circ - prime ideals of R, then $\eta \cap \mu$ is an L-fuzzy \circ -2-absorbing ideal of R.

(2) If R is a commutative semiring, and if η and μ are L-fuzzy 1- prime ideals of R, then $\eta \cap \mu$ is an L-fuzzy 2-2-absorbing ideal of R.

(3) If R is a commutative semiring, and if η and μ are L-fuzzy 2-prime k-ideals of R, then $\eta \cap \mu$ is an L-fuzzy 3-2-absorbing ideal of R.

Proof. (1) Assume that λ, ν and θ are *L*-fuzzy ideals of *R* such that $\lambda \nu \theta \subseteq \eta \cap \mu$ but $\lambda \nu \notin \eta \cap \mu$ and $\lambda \theta \notin \eta \cap \mu$. Then we have the following cases:

Case 1. $\lambda \nu \not\subseteq \eta$ and $\lambda \theta \not\subseteq \eta$. Then it follows from $\lambda \nu \theta \subseteq \mu \cap \eta$ that $\theta \subseteq \eta$ since η is an *L*-fuzzy prime ideal of *R*. Therefore $\lambda \theta \subseteq \eta$ which is a contradiction.

Case 2. A similar argument as in the Case 1 leads us to a contradiction if $\lambda \nu \not\subseteq \mu$ and $\lambda \theta \not\subseteq \mu$.

Case 3. $\lambda \nu \not\subseteq \eta$ and $\lambda \theta \not\subseteq \mu$. In this case from $\lambda \nu \theta \subseteq \eta \cap \mu$ we have $\theta \subseteq \eta$ and $\nu \subseteq \mu$. Therefore $\nu \theta \subseteq \eta \cap \mu$.

Case 4. $\lambda \nu \not\subseteq \mu$ and $\lambda \theta \not\subseteq \eta$. By a similar argument as in the case 3 we may show that $\nu \theta \subseteq \eta \cap \mu$.

Consequently, $\eta \cap \mu$ is a fuzzy \mathfrak{o} -2-absorbing ideal of R.

(2) Let λ be an *L*-fuzzy ideal of *R*, and let ν and θ be *L*-fuzzy *k*-ideals of *R* such that $\lambda\nu\theta \subseteq \eta \cap \mu$ but $\lambda\nu \not\subseteq \eta \cap \mu$ and $\lambda\theta \not\subseteq \eta \cap \mu$. Then we have the following cases:

Case 1. $\lambda \nu \not\subseteq \eta$ and $\lambda \theta \not\subseteq \eta$. Then it follows from $\lambda \nu \theta \subseteq \mu$, $\lambda \nu \not\subseteq \eta$ and the fact that θ is an *L*-fuzzy *k*-ideal of *R*, that $\theta \subseteq \eta$ since η is an *L*-fuzzy \mathfrak{o} -prime ideal of *R*. Therefore $\lambda \theta \subseteq \eta$ which is a contradiction.

Case 2. A similar argument as in the Case 1 leads us to a contradiction if $\lambda \nu \not\subseteq \mu$ and $\lambda \theta \not\subseteq \mu$.

Case 3. $\lambda \nu \not\subseteq \eta$ and $\lambda \theta \not\subseteq \mu$. In this case from $\lambda \nu \theta \subseteq \eta$, $\lambda \nu \not\subseteq \eta$ and the fact that θ is an *L*-fuzzy *k*-ideal of *R*, we get $\theta \subseteq \eta$. In a similar way, from $\lambda \nu \theta \subseteq \mu$ we get $\nu \subseteq \mu$. Therefore $\nu \theta \subseteq \eta \cap \mu$.

Case 4. $\lambda \nu \nsubseteq \mu$ and $\lambda \theta \nsubseteq \eta$. By a similar argument as in the case 3 we may show that $\nu \theta \subseteq \eta \cap \mu$.

Therefore, $\eta \cap \mu$ is a fuzzy 2–2-absorbing ideal of R.

(3) Let λ, ν and θ be *L*-fuzzy *k*-ideals of *R* such that $\lambda \nu \theta \subseteq \eta \cap \mu$ but $\lambda \nu \nsubseteq \eta \cap \mu$ and $\lambda \theta \nsubseteq \eta \cap \mu$. Then we have the following cases:

Case 1. $\lambda \nu \notin \eta$ and $\lambda \theta \notin \eta$. Since η is an *L*-fuzzy *k*-ideal of *R*, we have $(\lambda \nu)_{sub} \theta \subseteq \eta$ by [5, Lemma 2.20]. Moreover, by [5, Lemma 2.18], $(\lambda \nu)_{sub}$ is an *L*-fuzzy *k*-ideal of *R*. On the other hand $\lambda \nu \subseteq (\lambda \nu)_{sub}$; so $(\lambda \nu)_{sub} \notin \eta$. These imply that $\theta \subseteq \eta$ since η is an *L*-fuzzy 2-prime ideal of *R*. Therefore $\lambda \theta \subseteq \eta$ which is a contradiction.

Case 2. A similar argument as in the Case 1 leads us to a contradiction if $\lambda \nu \not\subseteq \mu$ and $\lambda \theta \not\subseteq \mu$.

Case 3. $\lambda \nu \notin \eta$ and $\lambda \theta \notin \mu$. Since η is an *L*-fuzzy *k*-ideal of *R*, we have $(\lambda \nu)_{sub} \theta \subseteq \eta$ by [5, Lemma 2.20]. Moreover, by [5, Lemma 2.18], $(\lambda \nu)_{sub}$ is an *L*-fuzzy *k*-ideal of *R*. On the other hand $\lambda \nu \subseteq (\lambda \nu)_{sub}$; so $(\lambda \nu)_{sub} \notin \eta$. These imply that $\theta \subseteq \eta$ since η is an *L*-fuzzy 2-prime ideal of *R*. By a similar argument, it follows from $\lambda \nu \theta \subseteq \mu$ that $\nu \subseteq \mu$. Therefore $\nu \theta \subseteq \eta \cap \mu$.

Case 4. $\lambda \nu \not\subseteq \mu$ and $\lambda \theta \not\subseteq \eta$. By a similar argument as in the case 3 we may show that $\nu \theta \subseteq \eta \cap \mu$.

Hence, $\eta \cap \mu$ is a fuzzy 3–2-absorbing ideal of R.

As it is mentioned previously, every *L*-fuzzy o-2-absorbing ideal of *R* is *L*-fuzzy 3-2-absorbing, but the converse is not necessarily true. Now consider the following result.

Theorem 4.4. Let μ be an L-fuzzy k-ideal of R. Then μ is an L-fuzzy $\mathfrak{o}-2$ -absorbing ideal of R if and only if it is an L-fuzzy $\mathfrak{z}-2$ -absorbing ideal of R.

Proof. If μ is an *L*-fuzzy $\mathfrak{o}-2$ -absorbing ideal of R, then obviously, it is an *L*-fuzzy $\mathfrak{z}-2$ -absorbing ideal of R. Conversely, assume that μ is an *L*-fuzzy $\mathfrak{z}-2$ -absorbing ideal of R and let λ , θ and ν be *L*-fuzzy ideas of R such that $\lambda\theta\nu \subseteq \mu$. Then from [5, Lemma 2.20] we have $\lambda_{sub}\theta_{sub}\nu_{sub}\subseteq \mu$ where λ_{sub} , θ_{sub} and ν_{sub} are fuzzy k-ideals of R by [5, Lemma 2.18]. Since μ is $\mathfrak{z}-2$ -absorbing ideal of R, we have $\lambda_{sub}\theta_{sub}\subseteq \mu$ or $\theta_{sub}\nu_{sub}\subseteq \mu$ or $\lambda_{sub}\nu_{sub}\subseteq \mu$. Furthermore, $\lambda \subseteq \lambda_{sub}$, $\theta \subseteq \theta_{sub}$ and $\nu \subseteq \nu_{sub}$. So we have $\lambda\theta \subseteq \mu$ or $\theta\nu \subseteq \mu$ or $\lambda\nu \subseteq \mu$. That is μ is a fuzzy $\mathfrak{o}-2$ -absorbing ideal of R.

Theorem 4.5. Let η be an L-fuzzy ideal of R. The following statements are equivalent:

- (i) η is an L-fuzzy 3-2-absorbing ideal of R.
- (ii) For every $t \in L$, the t-level subset η_t of η is a 3-2-absorbing ideal of R.

Proof. (i) \Rightarrow (ii) Let η be an *L*-fuzzy 3–2–absorbing ideal of *R* and let *I*, *J* and *K* be *k*-ideals of *R* such that $IJK \subseteq \eta_t$. Then from $IJK \subseteq \eta_t$ we have $1_I 1_J 1_L \subseteq \eta$. But $1_I, 1_J, 1_L$ are fuzzy *k*-ideals of *R* by [7, Theorem 2.2]. Since η is assumed to be an *L*-fuzzy \ni –2–absorbing ideal of *R*, we have $1_I 1_J \subseteq \eta$ or $1_I 1_K \subseteq \eta$ or $1_J 1_K \subseteq \eta$. Therefore, $IJ \subseteq \eta_t$ or $IK \subseteq \eta_t$ or $JK \subseteq \eta_t$. Hence η_t is a 3–2–absorbing ideal of *R*.

(ii) \Rightarrow (i) Now assume that η_t is a 3-2-absorbing ideal of R for every $t \in L$. Suppose that λ, μ, ν are L-fuzzy k-ideals of R such that $\lambda \mu \nu \subseteq \eta$. Then for every $t \in L$, we have $\lambda_t \mu_t \nu_t \subseteq \eta_t$. But by assumption η_t is a 3-2-absorbing ideal of R. Consequently, $\lambda_t \mu_t \subseteq \eta_t$ or $\mu_t \nu_t \subseteq \eta_t$ or $\lambda_t \nu_t \subseteq \eta_t$, and so we have $\lambda \mu \subseteq \eta$ or $\mu \nu \subseteq \eta$ or $\lambda \nu \subseteq \eta$. So η is an L-fuzzy 3-2-absorbing ideal of R.

References

- P. J. Allen and L. Dale, Ideal theory in the semiring Z₊, Publ. Math. Debrecen 22(3-4) (1975) 219–224.
- [2] A. W. Aho and J. D. Ullman, Introduction to automata theory, languages and computation, Addison-Wesley, Reading. 1979.
- [3] P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969) 412–416.
- [4] P. J. Allen and J. Neggers, Ideal theory in commutative semirings, Kyungpook Math. J. 46 (2006) 261–271.
- [5] P. Dheena and S. Coumaressane, Fuzzy 2-(0- or 1-) prime ideals in semirings, Bull. Korean Math. Soc. 43 (2006) 559–573.
- [6] T. K. Dutta and B. K. Biswas, Fuzzy k-ideals of semirings, Bull. Calcutta Math. Soc. 87 (1995) 91–96.
- [7] S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Sets and Systems 95 (1998) 103-108.
- [8] W. Kuich, Semirings and formal power series: their relevance to formal languages and automata theory, In: Rozenberg G, Salomaa A (eds) Handbook of formal languages, vol 1. Springer, Heidelberg. (1997) 609–677.
- [9] W. Kuich and G. Rahonis, Fuzzy regular languages over finite and infinite words, Fuzzy Sets and Systems 157 (2006) 1532–1549.
- [10] W. Kuich and A. Salomaa, Semirings, automata, languages, Monographs in Theoretical Computer Science, 5 Springer, Heidelberg 1986.
- [11] S. LaGrassa, Semirings: Ideals and Polynomials, Ph. D. Thesis, The University of Iowa 1995.
- [12] Wang-jin Liu, Fuzzy invariants subgroups and fuzzy ideals, Fuzzy Sets and Systems 5 (1987) 133–139.
- [13] T. K. Mukherjee and M. K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets and Systems 21 (1987) 99–104.
- [14] A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series, Texts and Monographs in Computer Science, Springer, Heidelberg 1978.
- [15] U. M. Swamy and K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988) 94–103.
- [16] Zhang Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 27 (1988) 345–350.
- [17] A. Yousefian Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52(1) (2012) 91–97.
- [18] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

<u>AHMAD YOUSEFIAN DARANI</u> (yousefian@uma.ac.ir, youseffian@gmail.com) Department of Mathematics and Applications, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran

Ashraf Hashempoor (hashempoor.ashraf@yahoo.com)

Department of Mathematics and Applications, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran