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1. Introduction

Zadeh [49] introduced the concept of fuzzy set theory. It has a wide range of
applications in almost all the branches in science, where mathematics is used. The
notion of fuzzyness are using by many researchers for Cybernetics, Artificial Intelli-
gence, Expert System and Fuzzy Control, Pattern recognition, Operation Research,
Decision making, Image Analysis, Projectiles, Probabilty theory, Weather forecast-
ing etc. It attracted many workers on sequence spaces and summability theory to
introduce different types of fuzzy sequence spaces and study their different proper-
ties. Our studies are based on the linear spaces of sequences of fuzzy numbers which
are very important for higher level studies in Quantum Mechanics, Particle Physics
and Statistical Mechanics etc. Different classes of sequences of fuzzy numbers have
been discussed by Nanda [35], Nuray and Savas [36], Matloka [31], Mursaleen and
Basarir [32], Mursaleen [1], Tripathy and Dutta [48], Hazarika [20] and references
therein.

Kostyrko et al. [28] introduced the notion of I-convergence with the help of an
admissible ideal I denotes the ideal of subsets of N, which is a generalization of
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statistical convergence (see [8]). It was further studied by Cakalli and Hazarika [2],
Esi and Hazarika ([5, 6]), Hazarika([10, 11, 12, 13, 14, 15, 18, 19, 21]), Hazarika
and Kumar [24], Hazarika and Savas [22], Kumar and Kumar [29], Mursaleen and
Mohiuddine [33], Mursaleen et al., [34], S̆alát et al. ([39, 40]), Savas [41], Tripathy
and Hazarika ([44, 45, 46], Subramanian et al., [42] and references therein.

Goes and Goes [9] initially introduced the differential sequence space dE and the
integrated sequence space

∫
E for a given sequence space E, by using the multiplier

sequences (k−1) and (k) respectively, where E = c, c0, `∞. A multiplier sequence can
be used to accelerate the convergence of the sequences. In some sense, it can be
viewed as a catalyst, which is used to accelerate the process of chemical reaction.
Sometimes the associated multiplier sequence delays the rate of the convergence of
a sequence. This it also covers a larger class of sequences for study. Tripathy and
Mahanta [47] used a general multiplier sequence Λ = (λk) of non-zero scalars for all
k ∈ N.

Let Λ = (λk) be a sequence of non-zero scalars. Then for a given sequence
space E, the multiplier sequence space E(Λ) associated with multiplier sequence Λ
is defined by (for details see [47])

E(Λ) = {(xk) : (λkxk) ∈ E}.
Recall in [27] that an Orlicz function M is continuous, convex , nondecreasing

function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of
Orlicz function is replaced by M(x + y) ≤ M(x) + M(y) then this function is called
the modulus function and characterized by Ruckle [38]. An Orlicz function M is
said to satisfy ∆2 − condition for all values of u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Lemma 1.1. Let M be an Orlicz function which satisfies ∆2 − condition and let
0 < δ < 1. Then for each t ≥ δ, we have M(t) < Kδ−1M(2) for some constant
K > 0.

Two Orlicz functions M1 and M2 are said to be equivalent if there exist positive
constants α, β and x0 such that

M1(α) ≤ M2(x) ≤ M1(β) for all x with 0 ≤ x < x0.

Lindenstrauss and Tzafriri [30] studied some Orlicz type sequence spaces defined
as follows:

`M =

{
(xk) ∈ w :

∞∑

k=1

M(
|xk|
ρ

) < ∞, for some ρ > 0

}
.

The space `M with the norm

|| x || = inf

{
ρ > 0 :

∞∑

k=1

M(
|xk|
ρ

) ≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space `M is
closely related to the space `p which is an Orlicz sequence space with M(t) = |t|p,
for 1 ≤ p < ∞.
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In the later stage Orlicz sequence spaces were introduced and studied by Parashar
and Choudhary [37], Esi [3], Esi and Et [4], Hazarika ([16, 17]), Tripathy and Sarma
[43], Esi and Hazarika [7], Hazarika et al [23] and references therein.

Throughout the article wF , cF , cF
0 and `F

∞ denote the classes of all, convergent,
null and bounded fuzzy real-valued sequence spaces, respectively. Also N and R
denote the set of positive integers and set of real numbers, respectively. The zero
sequence is denoted by θ.

Throughout the paper, we denote I is an admissible ideal of subsets of N, unless
otherwise stated.

2. Preliminaries

We now recall some difinitions related to ideal convergence and sequences of fuzzy
real numbers.

Definition 2.1 ([28]). Let X be a non-empty set, then a family of sets I ⊂ 2X (the
class of all subsets of X) is called an ideal on X if and only if

(i) φ ∈ I.
(ii) for each A,B ∈ I, we have A ∪B ∈ I
(iii) for each A ∈ I and each B ⊂ A, we have B ∈ I.

Definition 2.2 ([28]). A non-empty family of sets F ⊂ 2X is a filter on X if and
only if

(i) φ /∈ F
(ii) for each A,B ∈ F, we have A ∩B ∈ F
(iii) each A ∈ F and each A ⊂ B, we have B ∈ F.

Definition 2.3 ([28]). An ideal I is called non-trivial ideal if I 6= φ and X /∈ I.

Clearly I ⊂ 2X is a non-trivial ideal if and only if F = F (I) = {X − A : A ∈ I}
is a filter on X.

Definition 2.4 ([28]). A non-trivial ideal I ⊂ 2X is called
(i) admissible if and only if {{x} : x ∈ X} ⊂ I.
(ii) maximal if there cannot exists any non-trivial ideal J 6= I containing I as a

subset.

If we take I = If = {A ⊆ N : A is a finite subset }. Then If is a non-trivial
admissible ideal of N and the corresponding convergence coincides with the usual
convergence. If we take I = Iδ = {A ⊆ N : δ(A) = 0} where δ(A) denote the
asyptotic density (see [8]) of the set A. Then Iδ is a non-trivial admissible ideal of
N and the corresponding convergence coincides with the statistical convergence.

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R. For X,Y ∈ D, we define X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2,

d(X, Y ) = max{|x1 − y1|, |x2 − y2|}, where X = [x1, x2] and Y = [y1, y2].

Then it can be easily seen that d defines a metric on D and (D, d) is a complete
metric space (see [25]). Also the relation ” ≤ ” is a partial order on D. A fuzzy
number X is a fuzzy subset of the real line R i.e. a mapping X : R → J(= [0, 1])
associating each real number t with its grade of membership X(t).
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Definition 2.5. A fuzzy number X is said to be
(i) convex if X(t) ≥ X(s) ∧X(r) = min{X(s), X(r)}, where s < t < r.
(ii) normal if there exists t0 ∈ R such that X(t0) = 1.
(iii) upper semi-continuous if for each ε > 0, X−1([0, a + ε)) for all a ∈ [0, 1] is

open in the usual topology of R.

Let R(J) denote the set of all fuzzy numbers which are upper semicontinuous
and have compact support, i.e. if X ∈ R(J) the for any α ∈ [0, 1], [X]α is compact,
where

[X]α = {t ∈ R : X(t) ≥ α, if α ∈ [0, 1]},
[X]0 = closure of ({t ∈ R : X(t) > α, if α = 0}).

The set R of real numbers can be embedded in R(J) if we define r ∈ R(J) by

r(t) =
{

1, if t = r :
0, if t 6= r

The absolute value , |X| of X ∈ R(J) is defined by (for details see [25])

|X|(t) =
{

max {X(t), X(−t)} , if t ≥ 0 :
0, if t < 0

Define a mapping d̄ : R(J)× R(J) → R+ ∪ {0} by

d̄(X, Y ) = sup
0≤α≤1

d([X]α, [Y ]α).

It is known that (R(J), d̄) is a complete metric space (for details see [25]).

Definition 2.6 ([32]). A metric on R(J) is said to be translation invariant if

d̄(X + Z, Y + Z) = d̄(X, Y ), for X, Y, Z ∈ R(J).

Definition 2.7 ([31]). A sequence X = (Xk) of fuzzy numbers is said to be
(i) convergent to a fuzzy number X0 if for every ε > 0, there exists a positive

integer n0 such that d̄(Xk, X0) < ε for all n ≥ n0 .
(ii) bounded if the set {Xk : k ∈ N} of fuzzy numbers is bounded.

Definition 2.8 ([29]). A sequence X = (Xk) of fuzzy numbers is said to be
(i) I-convergent to a fuzzy number X0 if for each ε > 0 such that

A = {k ∈ N : d̄(Xk, X0) ≥ ε} ∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xk) of fuzzy numbers and
we write I − lim Xk = X0.

(ii) I-bounded if there exists M > 0 such that

{k ∈ N : d̄(Xk, 0̄) > M} ∈ I.

Definition 2.9. A sequence space EF of fuzzy numbers is said to be
(i) solid ( or normal) if (Yk) ∈ EF whenever (Xk) ∈ EF and d̄(Yk, 0̄) ≤ d̄(Xk, 0̄)

for all k ∈ N.
(ii) symmetric if (Xk) ∈ EF implies (Xπ(k)) ∈ EF where π is a permutation of N.
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Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is
a sequence space

λE
K = {(xkn) ∈ w : (kn) ∈ E}.

A canonical preimage of a sequence {(xkn
)} ∈ λE

K is a sequence {yk} ∈ w defined
as

yk =
{

xk, if k ∈ E
0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages of all

elements in λE
K , i.e. y is in canonical preimage of λE

K if and only if y is canonical
preimage of some x ∈ λE

K .

Definition 2.10. A sequence space EF is said to be monotone if EF contains the
canonical pre-images of all its step spaces.

The following well-known inequality will be used throughout the article. Let
p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,D =
max{1, 2G−1} then

|ak + bk|pk ≤ D(|ak|pk + |bk|pk) for all k ∈ N and ak, bk ∈ C
Also |ak|pk ≤ max{1, |a|G} for all a ∈ C.

First we procure some known results; those will help in establishing the results
of this article.

Lemma 2.11. A sequence space EF is normal implies EF is monotone. (For the
crisp set case, one may refer to Kamthan and Gupta [26], page 53).

Lemma 2.12. (Kostyrko et al., [28], Lemma 5.1). If I ⊂ 2N is a maximal ideal,
then for each A ⊂ N we have either A ∈ I or N−A ∈ I.

3. Some new multiplier sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces and ex-
amine topological and algebraic properties of the resulting sequence spaces. Let
p = (pk) be a sequence of positive real numbers for all k ∈ N. Let M = (Mk) be
a sequence of Orlicz functions and Λ = (λk) be a sequence of non-zero scalars and
X = (Xk) be a sequence of fuzzy numbers, we define the following sequence spaces
as foolows:

W I(F )(M, Λ, p) = {(Xk) ∈ wF :
{

n ∈ N : 1
n

n∑
k=1

[
Mk

(
d̄(λkXk,X0)

ρ

)]pk ≥ ε

}
∈ I

for some ρ > 0 and X0 ∈ R(J)},
W

I(F )
0 (M, Λ, p) = {(Xk) ∈ wF :

{
n ∈ N : 1

n

n∑
k=1

[
Mk

(
d̄(λkXk,0̄)

ρ

)]pk ≥ ε

}
∈ I

for some ρ > 0},
WF
∞(M, Λ, p) = {(Xk) ∈ wF : sup 1

n

n∑
k=1

[
Mk

(
d̄(λkXk,0̄)

ρ

)]pk

< ∞
for some ρ > 0},

W
I(F )
∞ (M, Λ, p) = {(Xk) ∈ wF : ∃K > 0 s.t.{

n ∈ N : 1
n

n∑
k=1

[
Mk

(
d̄(λkXk,0̄)

ρ

)]pk ≥ K

}
∈ I for some ρ > 0}.
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It is not possible in general to find some fuzzy number X − Y such that X =
Y +(X−Y ) (called the Hukuhara difference when it exists). Since, every real number
is a fuzzy number, we can assume that TwF ⊂ wF be such a set of sequences of
fuzzy numbers with Hukuhara difference property.

Now, we examine the basic topological and algebraic properties of these spaces
and obtain the inclusion relation between these spaces.

Theorem 3.1. W I(F )(M, Λ, p), W
I(F )
0 (M,Λ, p), and W

I(F )
∞ (M,Λ, p) are linear

spaces.

Proof. We prove the result only for the space W
I(F )
0 (M, Λ, p). The other spaces can

be treated, similarly. Let X = (Xk) and Y = (Yk) be two elements of W
I(F )
0 (M,Λ, p).

Then there exist ρ1 > 0 and ρ2 > 0 such that

A ε
2

=

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

≥ ε

2

}
∈ I

and

B ε
2

=

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≥ ε

2

}
∈ I

Let α, β be two scalars. By the continuity of the function M = (Mk) the following
inequality holds:

1
n

n∑

k=1

[
Mk

(
d̄(λk(αXk + βYk, 0̄))

|α|ρ1 + |β|ρ2

)]pk

≤ D
1
n

n∑

k=1

[ |α|
|α|ρ1 + |β|ρ2

Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

+D
1
n

n∑

k=1

[ |β|
|α|ρ1 + |β|ρ2

Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≤ D
1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

+ D
1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

.

From the above relation we obtain the following:{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λk(αXk + βYk, 0̄))

|α|ρ1 + |β|ρ2

)]pk

≥ ε

}
⊆

{
n ∈ N : DK

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

≥ ε

2

}

∪
{

n ∈ N : DK
1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≥ ε

2

}
∈ I.

This completes the proof. ¤

Remark 3.2. It is easy to verify that WF
∞(M, Λ, p) is a linear space.
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For the next result, we consider TWF
∞(M, Λ, p) ⊂ WF

∞(M,Λ, p) be the space of
sequences of fuzzy numbers with Hukuhara difference property.

Theorem 3.3. The space TWF
∞(M, Λ, p) is a paranormed space (not totally para-

normed) with the paranorm gΛ defined by

gΛ(X) = inf
{

ρ
pk
H : sup

k
Mk

(
d̄(λkXk, 0̄)

ρ

)
≤ 1, for some ρ > 0

}
,

where H = max {1, supk pk} .

Proof. Clearly gΛ(−X) = gΛ(X) and gΛ(θ) = 0. Let X = (Xk) and Y = (Yk) be
two elements of TWF

∞(M, Λ, p). Then for ρ > 0 we put

A1 =
{

ρ > 0 : sup
k

Mk

(
d̄(λkXk, 0̄)

ρ

)
≤ 1

}

and

A2 =
{

ρ > 0 : sup
k

Mk

(
d̄(λkYk, 0̄)

ρ

)
≤ 1

}
.

Let ρ1 ∈ A1 and ρ2 ∈ A2. If ρ = ρ1 + ρ2 then we obtain the following

Mk

(
d̄(λk(Xk + Yk), 0̄)

ρ

)
≤ ρ1

ρ1 + ρ2
Mk

(
d̄(λkXk, 0̄)

ρ1

)
+

ρ2

ρ1 + ρ2
Mk

(
d̄(λkYk, 0̄)

ρ2

)
.

Thus we have

sup
k

[
Mk

(
d̄(λk(Xk + Yk), 0̄)

ρ

)]pk

≤ 1

and
gΛ(X + Y ) = inf

{
(ρ1 + ρ2)

pk
H : ρ1 ∈ A1, ρ2 ∈ A2

}

≤ inf
{

ρ
pk
H
1 : ρ1 ∈ A1

}
+ inf

{
ρ

pk
H
2 : ρ2 ∈ A2

}

= gΛ(X) + gΛ(Y ).
Let tk → t where tk, t ∈ C and let gΛ(Xk − X) → 0 as k → ∞. To prove that

gΛ(tkXk − tX) → 0 as k →∞.

We put

A3 =
{

ρk > 0 : sup
k

[
Mk

(
d̄(λkXk, 0̄)

ρk

)]pk

≤ 1
}

and

A4 =
{

ρl > 0 : sup
k

[
Mk

(
d̄(λkYk, 0̄)

ρl

)]pk

≤ 1
}

.

By the continuity of the function M = (Mk) we observe that

Mk

(
d̄(λk(tkXk − tX), 0̄)
|tk − t|ρk + |t|ρl

)

≤ Mk

(
d̄(λk(tkXk − tXk), 0̄)
|tk − t|ρk + |t|ρl

)
+ Mk

(
d̄(λk(tXk − tX), 0̄)
|tk − t|ρk + |t|ρl

)

≤ |tk − t|ρk

|tk − t|ρk + |t|ρl
Mk

(
d̄(λkXk, 0̄)

ρk

)
+

|t|ρl

|tk − t|ρk + |t|ρl
Mk

(
d̄(λkYk, 0̄)

ρl

)
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From the above inequality it follows that

sup
k

[
Mk

(
d̄(λk(tkXk − tX), 0̄)
|tk − t|ρk + |t|ρl

)]pk

≤ 1

and consequently

gΛ(tkXk − tX) = inf
{

(|tk − t|ρk + |t|ρl)
pk
H : ρk ∈ A3, ρl ∈ A4

}

≤ |tk − t| pk
H inf

{
(ρk)

pk
H : ρk ∈ A3

}
+ |t| pk

H inf
{

(ρl)
pk
H : ρl ∈ A4

}

(3.1) ≤ max
{

1, |tk − t| pk
H

}
gΛ(Xk) + max

{
1, |t| pk

H

}
gΛ(Xk −X).

Note that gΛ(Xk) ≤ gΛ(X) + gΛ(Xk + X) for all k ∈ N.
Hence by our assumption the right hand side of the relation (3.1) tends to 0 as

k →∞ and the result follows. This completes the proof. ¤

Theorem 3.4. Let M = (Mk) and S = (Sk) be sequences of Orlicz functions.
Then the following hold:

(i) W
I(F )
0 (S, Λ, p) ⊆ W

I(F )
0 (M.S, Λ, p), provided p = (pk) be such that G0 =

inf pk > 0.

(ii) W
I(F )
0 (M,Λ, p) ∩W

I(F )
0 (S, Λ, p) ⊆ W

I(F )
0 (M + S,Λ, p).

Proof. (i) Let ε > 0 be given. Choose ε1 > 0 such that max
{

εG
1 , εG0

1

}
< ε. Choose

0 < δ < 1 such that 0 < t < δ implies that Mk(t) < ε1 for each k ∈ N. Let X = (Xk)
be any element in W

I(F )
0 (S,Λ, p). Put

Aδ =

{
n ∈ N :

1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

≥ δG

}
.

Then by the definition of ideal we have Aδ ∈ I. If n /∈ Aδ we have

1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< δG

⇒
n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< nδG

⇒
[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< δG, for k = 1, 2, 3, ..., n

(3.2) ⇒ Sk

(
d̄(λkXk, 0̄)

ρ

)
< δG, for k = 1, 2, 3, ..., n.

Using the continuity of the function M = (Mk) from the relation (3.2) we have

Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))
< ε1, for k = 1, 2, 3, ..., n.
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Consequently we get
n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

< n. max
{

εG
1 , εG0

1

}
< nε

⇒ 1
n

n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

< ε.

This implies that{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

≥ ε

}
⊆ Aδ ∈ I.

This completes the proof.

(ii) Let X = (Xk) ∈ W
I(F )
0 (M, Λ, p) ∩ W

I(F )
0 (S,Λ, p). Then by the following

inequality the result follows:

1
n

n∑

k=1

[
(Mk + Sk)

(
d̄(λkXk, 0̄)

ρ

)]pk

≤ D
1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ

)]pk

+ D
1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

.

¤

The proof of the following theorems are easy and so omitted.

Theorem 3.5. Let 0 < pk ≤ qk and
(

qk

pk

)
is bounded, then

W
I(F )
0 (M, Λ, q) ⊆ W

I(F )
0 (M, Λ, p).

Theorem 3.6. For any two sequences p = (pk) and q = (qk) of positive real
numbers, then the following holds:

Z(M,Λ, p) ∩ Z(M, Λ, q) 6= φ, , for Z = W I(F ),W
I(F )
0 , W

I(F )
∞ and WF

∞.

Proposition 3.7. The sequence spaces Z(M, Λ, p) are normal as well as monotone,
for Z = W

I(F )
0 and W

I(F )
∞ .

Proof. We shall give the prove of the theorem for W
I(F )
0 (M, Λ, p) only. Let X =

(Xk) ∈ W
I(F )
0 (M, Λ, p) and Y = (Yk) be such that d̄(Yk, 0̄) ≤ d̄(Xk, 0̄) for all k ∈ N.

Then for given ε > 0 we have

B =

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ

)]pk

≥ ε

}
∈ I.

Again the set E =
{

n ∈ N : 1
n

n∑
k=1

[
Mk

(
d̄(λkYk,0̄)

ρ

)]pk ≥ ε

}
⊆ B.

Hence E ∈ I and so Y = (Yk) ∈ W
I(F )
0 (M, Λ, p). Thus the space W

I(F )
0 (M,Λ, p)

is normal. Also from the Lemma 2.11, it follows that W
I(F )
0 (M, Λ, p) is monotone.
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Proposition 3.8. If I is not a maximal ideal, then the space W I(F )(M,Λ, p) is
neither normal nor monotone.

Proof. We first prove that the space W I(F )(M, Λ, p) is not monotone. Let us consider
a sequence X = (Xk) of fuzzy numbers defined by

Xk(t) =





2−1(1 + t), if t ∈ [−1, 1];
2−1(−t + 3), if t ∈ [1, 3];

0, otherwise

Then (Xk) ∈ W I(F )(M, Λ, p).
Since I is not maximal, so by Lemma 2.12, there exists a subset K in N such that

K /∈ I and N−K /∈ I.
Let us define a sequence Y = (Yk) by

Yk =
{

Xk, if k ∈ K;
1, otherwise

Then Y = (Yk) belongs to the canonical pre-image of the K-step space of (Xk) ∈
W I(F )(M, Λ, p). But (Yk) /∈ W I(F )(M, Λ, p). Hence W I(F )(M, Λ, p) is not monotone.
Therefore by Lemma 2.11, it follows that the space W I(F )(M,Λ, p) is not normal. ¤

Proposition 3.9. If I is neither maximal nor I = If then the spaces W I(F )(M,Λ, p)
and W

I(F )
0 (M,Λ, p) are not symmetric.

Proof. Let us consider a sequence X = (Xk) of fuzzy real numbers defined by

Xk(t) =





1 + t− 2k, if t ∈ [2k − 1, 2k];
1− t + 2k, if t ∈ [2k, 2k + 1];

0, otherwise

for k ∈ A ⊂ I an infinite set. Then (Xk) ∈ W
I(F )
0 (M,Λ, p) ⊆ W I(F )(M, Λ, p). Let

K ⊆ N be such that K /∈ I and N−K /∈ I (the set K exists by Lemma 2.12, as I is
not maximal).

Consider a sequence Y = (Yk) a rearrangement of the sequence (Xk) defined as
follows:

Yk =
{

Xk, if k ∈ K;
1, otherwise

Then (Yk) /∈ W
I(F )
0 (M, Λ, p). Also (Yk) /∈ W I(F )(M,Λ, p). Hence W I(F )(M,Λ, p)

and W
I(F )
0 (M,Λ, p) are not symmetric. ¤

Proposition 3.10. If I is neither maximal nor I = If then the space W
I(F )
∞ (M, Λ, p)

is not symmetric.

Proof. Let us consider a sequence X = (Xk) of W
I(F )
∞ (M, Λ, p) defined by

Xk(t) =





1 + t− 3k, if t ∈ [3k − 1, 3k];
1− t + 3k, if t ∈ [3k, 3k + 1];

0, otherwise

for k ∈ A ⊂ I an infinite set. Otherwise Xk = 1̄.
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Since I is not maximal, so by Lemma 2.12, there exists a subset K in N such that
K /∈ I and N−K /∈ I. Let f : K → A and h : N−K → N−A be bijections.
Consider a sequence Y = (Yk) a rearrangement of the sequence (Xk) defined as
follows:

Yk =
{

Xf(k), if k ∈ K;
Xh(k), if k ∈ N−K

Then (Yk) /∈ W
I(F )
∞ (M, Λ, p). Hence W

I(F )
∞ (M, Λ, p) is not symmetric. ¤
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