Annals of Fuzzy Mathematics and Informatics Volume 7, No. 2, (February 2014), pp. 281–287 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On induced fuzzy supra-topological spaces

ARAFA A. NASEF, R. MAREAY

Received 23 March 2013; Revised 31 May 2013; Accepted 28 June 2013

ABSTRACT. The concept of induced fuzzy topological space, introduced by Weiss [J. Math. Anal. Appl. 50(1975), 142-150], was defined with the notion of a lower semi-continuous function. The aim of this paper is to introduce and study the concepts of induced fuzzy supra-topological spaces and s-lower β -continuous functions. s-Lower β -continuous functions turn out to be the natural tool for studying the induced fuzzy supra-topological spaces.

2010 AMS Classification: 54E55, 54C10

Keywords: β -open subset, Lower β -continuity, Supra-topology, Fuzzy supracontinuity, Strong r-cut, Induced fuzzy topological space.

Corresponding Author: Arafa A. Nasef (nasefa50@yahoo.com)

1. INTRODUCTION

In 1997 [6], Bhaumik and Mukherjee introduced and studied the concepts of induced fuzzy supra-topological spaces and s-Lower semi-continuous functions. In 1998 [10], Mukherjee defined and studied a new class of fuzzy supra topological space under the name of α -induced fuzzy supra topological space. Moreover, Mukherjee in 2003 [11], introduced the concept of S-induced L- fuzzy supra topological space and Scott s-continuity. After the introduction of β -open subsets by Abd El-Monsef et al. [1], various concepts in topological space were introduced with the help of β -open subsets instead of open subsets. In Section 2, the concept of s-lower β continuous function is introduced by using β -open subsets. Some characterizations and properties of these functions are examined. In Section 3, these functions are used to define a new class of fuzzy supra-topological spaces, called induced fuzzy supra-topological spaces. The fuzzy supra-continuous functions and initial supratopological spaces are also investigated. The supra-interior and supra-closure of a fuzzy subset μ are denoted, respectively by μ^{si} and μ^{sc} [2, 9].

2. s-Lower β -continuous functions

Definition 2.1. A function $f: (X, \tau) \to (\mathbb{R}, \sigma)$ from a topological space (X, τ) to usual topology (\mathbb{R}, σ) is said to be *s*-lower β -continuous (resp. *s*-upper β -continuous) at $x_0 \in X$ iff for each $\epsilon > 0$, there exists a β -open neighbourhood $N(x_0)$ such that $x \in N(x_0)$ implies $f(x) > f(x_0) - \epsilon$ (resp. $f(x) < f(x_0) + \epsilon$)

The following results can easily be proved analogous to the Theorem 2 in [3].

Result 2.2. The necessary and sufficient condition for a real-valued function f to be s-lower β -continuous is that for all $r \in \mathbb{R}$, the set $\{x \in X : f(x) > r\}$ is β -open (or equivalently $\{x \in X : f(x) \le r\}$ is β -closed).

Result 2.3. The characteristic function of a β -open subset is s-lower β -continuous.

Result 2.4. The sum and product of two s-lower β -continuous functions are not necessarily s-lower β -continuous functions.

Result 2.5. If $\{f_i : j \in J\}$ is an arbitrary family of s-lower β -continuous functions, then the function g, defined by $g(x) = \sup_j f_j(x)$ is s-lower β -continuous.

Remark 2.6. If $f_1, f_2, f_3, ..., f_n$ are s-lower β -continuous functions, then the function h, defined by $h(x) = inf_i(f_i(x))$, where i = 1, 2, ..., n is not s-lower β -continuous.

Result 2.7. A function f from a topological space (X, τ) into a space (\mathbb{R}, σ_1) , where $\sigma_1 = \{(r, \infty) : r \in \mathbb{R}\}$ is s-lower β -continuous iff the inverse image of any open subset of (\mathbb{R}, σ_1) is β -open in (X, τ) .

Definition 2.8 ([7]). Recall that a function $f : (X, \tau) \longrightarrow [0, 1]$ is called Scott continuous or (lower β -continuous) at $a \in X$ iff for every $\alpha \in [0, 1)$ with $\alpha < f(a)$ there is a neighborhood U of a such that $\alpha < f(x)$ for every $x \in U$. f is called Scott continuous (or lower semi continuous) on X iff f is Scott continuous (or lower semi continuous) at every point of X.

Since every open subset is β -open, we have the following result.

Result 2.9. Every lower β -continuous function is s-lower β -continuous.

The converse of the Result 2.9 is not true which can be seen from the following example.

Example 2.10. Let $X = \{a, b, c, d\}$ and $Y = \{0, 1, 2\}$. Let

 $\tau = \{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\} \text{ and } \tau_1 = \{Y, \emptyset, \{2\}\}$

be the topologies on X and Y, respectively. A function $g: X \to Y$ is defined by g(a) = g(d) = 2, g(b) = 1 and g(c) = 0. Now $g^{-1}(0) = \{c\}, g^{-1}(1) = \{b\}$ and $g^{-1}(2) = \{a, d\}$. We observe that $\{a, d\}$ is β -open in (X, τ) , since $\{d\} \subseteq \{a, d\} \subseteq \{a, b, d\} = C_1\{d\}$. For all $r \in Y$, by Result 2.2, g is s-lower β -continuous. Since inverse image of the open subset $\{2\}$ of Y is β -open, g is not lower β -continuous.

282

2.1. Initial supra-topology. Finally we shall define an initial supra-topology on X.

Definition 2.11. Let $(X, \wp(\tau))$ be an induced fuzzy supra-topological space. The family $\{\sigma_r(\alpha) : \alpha \in \wp(\tau), r \in I\}$ of all β -open subsets of X form a supra-topology on X, called the initial supra-topology on X and is denoted by $i(\wp)$. $(X, i(\wp))$ is called the initial supra-topological space. Thus the relation between the initial supra-topology and the corresponding topology τ of $\wp(\tau)$ is $\tau \subseteq i(\wp)$.

Example 2.12. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\}$ be a topology on X. Besides the members of $\tau, \{a, d\}, \{b, d\}$ and $\{b, c, d\}$ are also β -open subsets in (X, τ) .

Now 1_{\varnothing} , 1_X , $1_{\{c\}}$, $1_{\{d\}}$, $1_{\{c,d\}}$, $1_{\{a,c,d\}}$, $1_{\{a,d\}}$, $1_{\{b,d\}}$ and $1_{\{b,c,d\}}$ are s-lower β continuous, since the characteristic function of a β -open subset is s-lower β -continuous. Thus the collection of all these functions forms an induced fuzzy supra-topology on X. Here $i(\wp) = \{\varnothing, X, \{c\}, \{d\}, \{c,d\}, \{a,d\}, \{b,d\}, \{b,c,d\}, \{a,c,d\}$. Thus $\tau \subseteq i(\wp)$.

Note. If we take $\beta O(X)$, the family of all β -open subsets of X, then $\beta O(X) = i(\wp)$.

3. INDUCED FUZZY SUPRA-TOPOLOGICAL SPACE

The notion of supra-topology or pre-topology was due to Garg and Naimpally [8] and that of induced fuzzy topology was due to Weiss [13]. Abd E1-Monsef and Ramadan [2] introduced the concept of fuzzy supra-topology as follows: A family $\mathcal{F}' \subseteq 1^X$ is called a fuzzy supra-topology on X if $0, 1 \in \mathcal{F}'$ and \mathcal{F}' is closed under arbitrary union. In this section the notion of induced fuzzy supra-topology is introduced as a generalization of induced fuzzy topology. Its properties and the concepts of fuzzy supra-continuity in induced supra-topological spaces and initial supra-topology are also studied.

3.1. Induced fuzzy supra-topology and its properties.

Theorem 3.1. Let (X, τ) be a topological space. The family of all s-lower β continuous functions from the topological space (X, τ) to the closed unit interval I forms a fuzzy supra-topology on X.

Proof. Let \wp be the collection of all s-lower β -continuous functions from the topological space (X, τ) to I. We will now prove that \wp is a fuzzy supra-topology on X.

- (i) Since X is open, it is β -open and by Result 2.3, 1_x is s-lower β -continuous. Thus $1_x \in \wp$.
- (ii) \emptyset is β -open since it is open in X. Thus 1_{\emptyset} is s-lower β -continuous, i.e. $1_{\emptyset} \in \emptyset$.
- (iii) Let $\{n_j\}$ be an arbitrary family of s-lower β -continuous functions. By Result 2.5, $Sup\{n_j\}$ is also s-lower β -continuous. Hence $\bigvee n_j \in \wp$.

Thus \wp satisfies conditions (i) - (iii) of supra-topology.Hence \wp forms a fuzzy supra-topology.

Definition 3.2. The fuzzy supra-topology, obtained as above, is called induced fuzzy supra-topology and the space $(X, \wp(\tau))$ is called the induced fuzzy supra-topological space. The members of $\wp(\tau)$ are called fuzzy supra-open subsets.

Theorem 3.3. A fuzzy subset α in an induced fuzzy supra-topological space $(X, \wp(\tau))$ is fuzzy supra-open iff for each $r \in I$, the strong r-cut $\sigma_r(\alpha)$ is β -open in the topological space (X, τ) .

Proof. A fuzzy subset α is fuzzy supra-open in $(X, \wp(\tau))$ if $\alpha \in \wp(\tau)$ iff α is s-lower β -continuous (by Theorem 3.1). Thus for each $r \in I$, $\{x \in X : \alpha(X) > r\}$ is β -open in (X, τ) (by Result 2.2). That is, $\sigma_r(\alpha)$ is β -open in (X, τ) .

Corollary 3.4. A fuzzy subset α in an induced fuzzy supra-topological space $(X, \wp(\tau))$ is fuzzy supra-closed iff for each $r \in I$, the weak r-out $W_r(\alpha)$ is β -closed in the topological space (X, τ) .

Theorem 3.5. If A is β -open in (X, τ) , then 1_A is fuzzy supra β -open in $(X, \wp(\tau))$.

Proof. Let A be β -open in (X, τ) , then $A \subseteq cl(int(cl(A)))$, i.e. $1_A \subseteq 1_{clintclA} = cl1_{intclA} = clintcl_A = clintcl_A$. Then 1_A is fuzzy supra β -open in $(X, \wp(\tau))$. \Box

The following theorem follows immediately from Result 2.9.

Theorem 3.6. If \mathcal{F} is an induced fuzzy topology and \wp is an induced supratopology on X, then $\mathcal{F} \subseteq \wp$.

In [4] the completely induced fuzzy topology was introduced and by Lemma 2.4 of [5] we have the following corollary.

Corollary 3.7. $\Im \subseteq \mathcal{F} \subseteq \wp$, where \Im is a completely induced fuzzy topology.

Let (X, \mathcal{F}) be a fuzzy topological space and \mathcal{F}' be a fuzzy supra-topology on X. We call \mathcal{F}' a fuzzy supra-topology associated with \mathcal{F} if $\mathcal{F} \subseteq \mathcal{F}'$. The family $F\beta O(X)$ of all fuzzy β -open subsets in (X, \mathcal{F}) is fuzzy supra-topology associated with \mathcal{F} .

Theorem 3.8. Let (X, \mathcal{F}') be a fuzzy supra-topological space where \mathcal{F}' is associated with the fuzzy topology \mathcal{F} on X and $\tau = \mathcal{F} \cap 2^X$. Then the induced fuzzy supra-topology $\wp(\tau)$ on X is equivalent to the fuzzy supra-topology \mathcal{F}' if for any fuzzy subset μ and $r \in I$, $W_r(\mu^{sc}) = \bigcap \{Cl_\tau(W_t(\mu)) : t < r\}$ (resp. $\sigma_r(\mu^{si}) = \bigcup \{Int_\tau(\sigma_t(\mu)) : t > r\}$) is β -closed (resp. β -open) in (X, τ) .

Proof. Let μ be \mathcal{F}' -closed subset of X and $r \in I$, then by the given condition, $W_r(\mu)W_r(\mu^{sc}) = \bigcap \{ Cl_\tau(W_t(\mu)) : t < r \}$ is β -closed in (X, τ) . By Theorem 3.3, μ is $\wp(\tau)$ -closed. Now if α is $\wp(\tau)$ -closed and $r \in I$, then

$$W_r(\alpha^{sc}) = \bigcap \{ Cl_\tau(W_t(\alpha)) : t < r \} = \bigcap \{ W_t(\alpha) : t < r \} = W_r(\alpha).$$

Thus $\alpha^{Sc} = \alpha$, i.e. α is \mathcal{F}' -closed. This completes the proof.

Analogous to Theorem 3.18 of [12], we have the following theorem.

Theorem 3.9. If $\wp(\tau)$ is induced fuzzy supra-topology on X, then

$$F_{\wp(\tau)} = \{ \alpha \subseteq X : \mu \in \wp(\tau) \Rightarrow \alpha \cap \mu \in \wp(\tau) \}$$

is a fuzzy topology on X and $\mathcal{F}_{\wp(\tau)} \subseteq \wp(\tau)$.

3.2. Fuzzy supra-continuity in induced fuzzy supra-topological spaces.

Definition 3.10. Let (X, \mathcal{F}) and (Y, \mathcal{F}_1) be fuzzy topological spaces and \mathcal{F}' be an associated fuzzy supra-topology with \mathcal{F} . A function $f: X \to Y$ is a fuzzy *S*-continuous if the inverse image of each fuzzy open subset in *Y* is \mathcal{F}' -supra-open in *X*.

Theorem 3.11. Let $f : (X, \wp(\tau)) \to (Y, \mathcal{F})$ be a function from an induced fuzzy supra-topological space $(X, \wp(\tau))$ into a fuzzy topological space (Y, \mathcal{F}) . Then the following statements are equivalent:

- (i) f is fuzzy S-continuous..
- (ii) The inverse image of each fuzzy closed subset in Y is $\wp(\tau)$ -closed.
- (iii) $(f^{-1}(\gamma))^{Sc} \subseteq f^{-1}(Cl\gamma)$ for any fuzzy subset γ in Y.
- (iv) $f(\alpha^{Sc}) \subseteq Cl(f(\alpha))$ for any fuzzy subset α in X,
- (v) For any fuzzy point x_p in X and fuzzy open subset γ in Y containing $f(x_p)$, there exists $\alpha \in \wp(\tau)$ such that $x_p \in \alpha$ and $f(\alpha) \subseteq \gamma$.

Proof. It is straightforward and hence omitted.

In [2] fuzzy supra-continuity was defined as follows: Let (X, \mathcal{F}_1) and (Y, \mathcal{F}_2) be two fuzzy topological spaces, (X, \mathcal{F}_1) and (X, \mathcal{F}_2) be two associated fuzzy supra-topological spaces with \mathcal{F}_1 and \mathcal{F}_2 , respectively. A function $f: X \to Y$ is a fuzzy supra-continuous if the inverse image of \mathcal{F}_2 -supra-open subset is \mathcal{F}_1 -supra-open. Also we know that a function $f: (X, \tau) \to (Y, \tau_1)$ is β -irresolute if the inverse of β -open subset is β -open.

Theorem 3.12. Let $\wp(\tau)$ and $\wp(\tau_1)$ be two induced fuzzy supra-topological associated with \mathcal{F} and \mathcal{F}_1 . Then a function $f:(X, \mathcal{F}) \to (Y, \mathcal{F}_1)$ is fuzzy supracontinuous iff $f:(X,\tau) \to (Y,\tau_1)$ is β -irresolute function.

Proof. Let f be a fuzzy supra-continuous function and A be a β -open subset in (Y, τ_1) . Then $1_A \in \wp(\tau)$ and

$$f^{-1}(A) = \{x \in X : 1_A(f(X)) = 1\}$$

= $\{x \in X : f^{-1}(1_A(x)) > r \text{ and } 0 < r < 1\}$
= $\sigma_r(f^{-1}(1_A)).$
285

Thus $f^{-1}(1_A)$ is fuzzy supra-open. Since f is fuzzy supra-continuous. By Theorem 3.3, $\sigma_r(f^{-1}(1_A))$ is β -open in the topological space (X, τ) . Thus f is β -irresolute function.

Conversely, let $f : (X, \tau) \to (Y, \tau_1)$ be β -irresolute function and α is a fuzzy supra-open subset in $(Y, \wp(\tau_1))$. Now for r > 0,

$$\sigma_r(f^{-1}(\alpha)) = \{ x \in X : f^{-1}(\alpha(x)) > r \} = (\alpha f)^{-1}(r, \infty) = f^{-1}(\alpha^{-1}(r, \infty)).$$

Since $\alpha \in \wp(\tau_1)$, α is s-lower β -continuous and then $(\alpha)^{-1}(r, \infty)$ is β -open in (Y, τ_1) . Also by hypothesis, $f^{-1}(\alpha^{-1}(r, \infty))$ is β -open in (X, τ) , i.e. $\sigma_r(f^{-1}(\alpha))$ is β -open in (X, τ) which implies $f^{-1}(\alpha) \in \wp(\tau)$. Hence the theorem. \Box

Fuzzy supra-open function is defined in [2] as follows:

A function f from a fuzzy supra-topological space (X, \mathcal{F}_{1}) into a fuzzy supra-topological space (Y, \mathcal{F}_{2}) is called fuzzy supra-open if $f(\alpha) \in \mathcal{F}_{2}$ for each $\alpha \in \mathcal{F}_{1}$. We have the following theorem.

Theorem 3.13. Let $(X, \wp(\tau_1))$ and $(Y, \wp(\tau_2))$ be two induced fuzzy supra-topological spaces. If $f : (X, \wp(\tau_1)) \to (Y, \wp(\tau_2))$ is an injective fuzzy supra-continuous and fuzzy supra-open, then $f : \left(X, \mathcal{F}'_{\wp(\tau_1)}\right) \to \left(Y, \mathcal{F}'_{\wp(\tau_2)}\right)$ is fuzzy continuous.

Proof. Let $f: (X, \wp(\tau_1)) \to (Y, \wp(\tau_2))$ be an injective fuzzy supra-continuous supraopen function. If $\mu \in \wp(\tau_1)$ then $f(\mu) \in \wp(\tau_2)$ by supra-open function. Now for each $\alpha \in \mathcal{F}_{\wp}(\tau_2), \ \alpha \cap f(\mu) \in \wp(\tau_2)$ by Theorem 3.9. Then $f^{-1}(\alpha \cap f(\mu)) =$ $f^{-1}(\alpha) \cap \mu \in \wp(\tau_1)$ by injective supra-continuity of f. Thus $f^{-1}(\alpha) \in \mathcal{F}_{\wp(\tau_1)}$ for each $\alpha \in \mathcal{F}_{\wp(\tau_2)}$ which proves that $f: (X, \mathcal{F}_{\wp(\tau_1)}) \to (Y, \mathcal{F}_{\wp(\tau_2)})$ is fuzzy continuous.

4. Conclusion

In this paper We studied the concepts of induced fuzzy supra-topological spaces and s-lower β -continuous functions. We deduced the properties of induced fuzzy supra-topological spaces. Fuzzy supra-continuity in induced fuzzy supra-topological spaces are defined. Finally, we defined the Initial supra-topology.

References

- M. E. Abd. E1-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983) 77–90.
- [2] M. E. Abd. E1-Monsef and A. E. Ramadan, On fuzzy supra-topological spaces, Indian J. Pure Appl. Math. 18 (1987) 322–329.
- [3] R. N. Bhaumik and A. Mukherjee, On completely lower semi-continuous function, Math. Ed. XXVI, (1992) 66–69.
- [4] R. N. Bhaumik and A. Mukherjee, Completely induced fuzzy topological spaces, Fuzzy Sets and Systems 47 (1992) 387–390.

- [5] R. N. Bhaumik and A. Mukherjee, On c-initial spaces, Fuzzy Sets and Systems 56 (1993), 209–213.
- [6] R. N. Bhaumik and Anjan Mukherjee, Induced fuzzy supra-topological space, Fuzzy Sets and Systems 91 (1997) 123–126.
- [7] N. Bourbaki, Elemnts of Mathematics, General Topology, Part I, Addison wesley reading MA, 1966.
- [8] K. M. Garg and S. A. Naimpally, On some pretopologies associated with a top., in: General Topology and Its Relations to Modern Analysis and Algebra III, ed. J Novak (Academic Press, New York, (1971) 145–146.
- [9] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra-topological spaces, Indian J. Pure Appl. Math. 14 (1983) 502–510.
- [10] Anjan Mukherjee, Some more results on induced fuzzy topological spaces, Fuzzy Sets and Systems 96 (1998) 225–258.
- [11] Anjan Mukherjee, S-induced L-fuzzy supra topological spaces, Indian J. Pure Appl. Math. 34(2) (2003) 229–235.
- [12] N. Turanli and D. Coker, On fuzzy supra-topological spaces and fuzzy supraconnected spaces, J. Fuzzy Math. 1(4) (1993) 811–821.
- [13] M. D. Weiss, Fixed points, separation and induced topologies for fuzzy sets, J. Math. Anal. Appl. 50 (1975) 142–150.

ARAFA A. NASEF (nasefa50@yahoo.com)

Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

$\underline{R. MAREAY} (\texttt{roshdeymareay@yahoo.com})$

Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt