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Abstract. In this paper, the fuzzy detour g-distance between two
nodes, u and v of a fuzzy graph, is defined. The concepts of fuzzy detour g-
eccentricity, fuzzy detour g-radius, fuzzy detour g-center, and fuzzy detour
g-diameter are introduced. We demonstrate that for each pair a, b of
positive real numbers with a ≤ b ≤ 2a, there exists a connected fuzzy
graph G with radDg (G) = a and diamDg (G) = b. Construction of a fuzzy
graph whose fuzzy detour g-center is the given fuzzy graph is discussed.
Two characterisations of fuzzy detour g−self-centered fuzzy graphs are
obtained. We establish that fuzzy trees are the only fuzzy g-detour graphs.
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1. Introduction

One of the remarkable mathematical inventions of the 20th century is that of
fuzzy sets by Zadeh in 1965[22]. The distinction between sets and fuzzy sets is
that the sets divide the universal set into two subsets, namely members and non-
members (dichotomy law), while the fuzzy set assigns a sequence of membership
values to elements of the universal set ranging from zero to one. In 1975, Zadeh [23]
introduced the notion of an interval-valued fuzzy subset as an extension of the fuzzy
set, in which the values of the membership degrees are interval of numbers instead
of numbers. Hongmei and Lianhua defined an interval-valued fuzzy graph in [9].
Several important works on interval-valued fuzzy graphs can be found in [20]. The
idea of fuzzy set theory was introduced into fuzzy graph theory by Rosenfeld in 1975
[14]. During this same period, Yeh and Bang also introduced various concepts of
fuzzy graphs [21]. Fuzzy graph theory has numerous applications in various fields,
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especially in the field of clustering analysis, neural networks, pattern recognition,
decision making, and expert systems. The fuzzy analogs of several graph theoretical
concepts, including sub-graphs, paths and connectedness, cliques, bridges and cut
nodes, and forest and trees are defined by Rosenfeld. Bhutani and Rosenfeld [2]
defined fuzzy end nodes in fuzzy graphs, and studied several properties of fuzzy end
nodes in fuzzy trees. They introduced the concept of strong arcs and strong paths [1]
and g−distance in fuzzy graphs [3]. The standard g−distance between two vertices,
u and v in a connected fuzzy graph, is the length of the shortest strong u− v path
in G [3]. The standard g−distance has also been studied in [15], [16], and [17]. The
detour distance between two vertices u and v in a connected graph G is the length
of the longest u−v path in G [7]. The detour distance, similar to standard distance,
is a metric on the vertex set of G [8], [6], and [5]. The concept of µ−distance was
introduced by Rosenfeld [14], and further studied by Sunitha and Vijayakumar [18].
In 2010, Nagoorgani and Umamaheswari [13] introduced the concept of fuzzy detour
µ−distance. Based on this µ−distance, they defined the fuzzy detour µ−center and
its properties. We extend these ideas using the fuzzy detour g− distance in fuzzy
graphs.

2. Preliminaries

This section includes a quick review of the basic definitions in fuzzy graph theory
which is referred in this paper. Rosenfeld defined a fuzzy graph as follows.

Definition 2.1 ([11]). A fuzzy graph is denoted by G : (V, σ, µ) where V is a
vertex set, σ is a fuzzy subset of V and µ is a fuzzy relation on σ. i.e., µ(x, y) ≤
σ(x) ∧ σ(y) ∀ x, y ∈ V . It is assume that V is finite and nonempty, µ is reflexive
(i.e.,µ(x, x) = σ(x), ∀x) and symmetric(i.e., µ(x, y) = µ(y, x), ∀(x, y)). In all the
examples σ is chosen suitably.

Also, we denote the underlying crisp graph by G∗ : (σ∗, µ∗) where

σ∗ = {u ∈ V : σ(u) > 0} and µ∗ = {(u, v) ∈ V × V : µ(u, v) > 0}.
We assume σ∗ = V .

Definition 2.2 ([11]). The fuzzy graph H : (τ, ν) is said to be a partial fuzzy
subgraph of G : (σ, µ) if τ ⊆ σ and ν ⊆ µ . In particular H is called a fuzzy
subgraph of G if τ(x) = σ(x) ∀ x ∈ τ∗, ν(x, y) = µ(x, y) ∀(x, y)εν∗. Let P ⊆ V , the
fuzzy graph H : (P, τ, ν) is called a fuzzy subgraph of G : (V, σ, µ) induced by P if
τ(x) = σ(x) ∀ x ∈ P and ν(x, y) = µ(x, y) ∀ x, y ∈ P. The fuzzy graph H : (τ, ν)
is said to be a spanning fuzzy subgraph of G : (V, σ, µ) if τ(x) = σ(x) ∀ x and
ν(x, y) = µ(x, y) for every (x, y) ∈ ν∗. G : (V, σ, µ) is called trivial if |σ∗| = 1.

Definition 2.3 ([11]). In a fuzzy graph G : (V, σ, µ), a path P of length n is a
sequence of distinct nodes u0, u1, ..., un such that µ(ui−1, ui) > 0, i = 1, 2, ..., n and
the degree of membership of a weakest arc is defined as its strength. If u0 = un and
n ≥ 3 then P is called a cycle and P is called a fuzzy cycle, if it contains more than
one weakest arc. The strength of a cycle is the strength of the weakest arc in it.
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Definition 2.4 ([11]). Let G : (V, σ, µ) be a fuzzy graph. The strength of connect-
edness between two nodes x and y is defined as the maximum of the strength of all
paths between x and y and is denoted by CONNG(x, y). A fuzzy graph G : (V, σ, µ)
is connected if for every x, y in σ∗, CONNG(x, y) > 0.

Definition 2.5 ([11]). A fuzzy graph G : (V, σ, µ) is said to be complete if µ(x, y) =
σ(x) ∧ σ(y),∀x, y ∈ σ∗.

Definition 2.6 ([1]). An arc of a fuzzy graph G : (V, σ, µ) is called strong if its
weight is at least as great as the strength of connectedness of its end nodes when it
is deleted.

Depending on CONNG(x, y) of an arc (x, y) in a fuzzy graph G : (V, σ, µ),
Sunil Mathew and M.S.Sunitha [10] defined three different types of arcs. Note that
CONNG−(x,y)(x, y) is the the strength of connectedness between x and y in the
fuzzy subgraph obtained from G by deleting the arc (x, y).

Definition 2.7 ([10]). An arc (x, y) in G is α-strong if µ(x, y) > CONNG−(x,y)(x, y).
An arc (x, y) in G is β− strong if µ(x, y) = CONNG−(x,y)(x, y). An arc (x, y) in
G is δ− arc if µ(x, y) < CONNG−(x,y)(x, y). Thus an arc (x,y) is strong arc if it is
either α− strong or β− strong. An x− y path P is called strong path if P contains
only strong arcs.

Definition 2.8 ([11]). A fuzzy cutnode w is a node in G whose removal from G
reduces the strength of connectedness between some pair of nodes other than w.

Definition 2.9. A fuzzy graph G is said to be a block if it is connected and has no
cutnodes.

Throughout we assume that G is connected.

Definition 2.10 ([3]). Let G : (V, σ, µ) be a fuzzy graph. A strong path P from x
to y in G is an x− y geodesic if there is no shorter strong path from x to y and the
length of an x− y geodesic is the geodesic distance from x to y denoted by dg(x, y).
We refer dg(x, y) as the standard g−distance from x to y.

3. Fuzzy detour g−distance

In this section the fuzzy detour g-distance is defined and depending on fuzzy
detour g-distance we define fuzzy detour g-eccentricity, fuzzy detour g-radius and
fuzzy detour g-diameter.

Definition 3.1. The length of a longest strong u − v path between two nodes u
and v in a connected fuzzy graph G is called fuzzy detour g-distance from u to v,
denoted by Dg(u, v) .

Example 3.2. Consider the fuzzy graph given in Fig. 1.
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For the fuzzy graph of Fig. 1, note that all arcs except (u1, u2) are strong and the
standard g−distance and fuzzy detour g-distance between two nodes are as follows.

dg(u1, u2) = 2, dg(u1, u3) = 2, dg(u1, u4) = 1, dg(u2, u3) = 1, dg(u2, u4) = 1,
dg(u3, u4) = 1 while Dg(u1, u2) = 3, Dg(u1, u3) = 3, Dg(u1, u4) = 1, Dg(u2, u3) = 2,
Dg(u2, u4) = 2, Dg(u3, u4) = 2.

Definition 3.3. Any u − v strong path of length Dg(u, v) is called a u − v fuzzy
g-detour. A fuzzy graph G is called fuzzy g-detour graph if Dg(u, v) = dg(u, v) for
every pair u and v of nodes of G.

Example 3.4. Consider the fuzzy graph given in Fig. 2.
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Fig. 2

For the fuzzy graph of Fig. 2, note that all arcs except (u1, u2) are strong and the
standard g−distance and fuzzy detour g-distance between two nodes are as follows.

dg(u1, u2) = 2=Dg(u1, u2), dg(u1, u3) = 1=Dg(u1, u3), dg(u2, u3) = 1=Dg(u2, u3).
Here Dg(u, v) = dg(u, v) for every pair u and v of nodes of G. Hence G is a fuzzy
g-detour graph.

In section 6 we prove that fuzzy trees are the only fuzzy g-detour graphs.

Proposition 3.5. If u and v are any two nodes in a connected fuzzy graph G :
(V, σ, µ), then 0 ≤ dg(u, v) ≤ Dg(u, v) < ∞.

Proposition 3.6. If u and v are any two nodes in a connected fuzzy graph G :
(V, σ, µ), then Dg(u, v) = 0 if and only if dg(u, v) = 0 if and only if u = v.

Theorem 3.7. Fuzzy detour g-distance is a metric on the node set of every con-
nected fuzzy graph.

Proof. Let G : (V, σ, µ) be a connected fuzzy graph. Note that (1) Dg(u, v) ≥ 0, (2)
Dg(u, v) = 0 if and only if u = v and (3) Dg(u, v) = Dg(v, u) for every pair u, v
of nodes of G. It remains only to show that fuzzy detour g-distance satisfies the
triangle inequality. Let u, v and w be any three nodes of G. Since the inequality
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Dg(u,w) ≤ Dg(u, v) + Dg(v, w) holds if any two of these three nodes are the same
node, we assume that u, v and w are distinct. Let P be a u−w fuzzy g− detour in
G of length Dg(u,w) = k. Then there exists two cases.

Case 1. v lies on P .
Let P1 be the u− v sub path of P and P2 be the v−w sub path of P . Suppose that
the length of P1 is s and the length of P2 is t. Then s + t = k.
Therefore Dg(u,w) = k = s + t ≤ Dg(u, v) + Dg(v, w).

Case 2. v does not lie on P .
Since there exists a strong path between every pair of nodes, there is a shortest
strong path Q from v to a node of P . Let x be any node on P and Q be the v − x
geodesic such that no other node of Q lies on P . Let r be the length of Q. Thus
r > 0 . Let the u−x sub path P

′
of P has length a and the x−w sub path P

′′
of P

has length b. Then a ≥ 0 and b ≥ 0. Therefore Dg(u, v) ≥ a+r and Dg(v, w) ≥ b+r.
So Dg(u,w) = k = a + b < (a + r) + (b + r) ≤ Dg(u, v) + Dg(v, w). So the triangle
inequality holds. ¤

The fuzzy detour g-eccentricity, eDg
(u) of a node u is the fuzzy detour g-distance

from u to a node farthest from u. Let u∗Dg
denote set of all fuzzy detour g-eccentric

nodes of u. The fuzzy detour g-radius of G, radDg (G) is the minimum fuzzy detour
g-eccentricity among the nodes of G. A node u in G is a fuzzy detour g-central
node if, eDg (u) = radDg (G). The fuzzy detour g-diameter of G, diamDg (G) is the
maximum fuzzy detour g-eccentricity among the nodes of G. A node u in a connected
fuzzy graph G is called fuzzy detour g-peripheral node if eDg (u) = diamDg (G).

Example 3.8. Consider the fuzzy graph given in Fig. 1. Here eDg (u1) = 3,
eDg (u2) = 3, eDg (u3) = 3, eDg (u4) = 2 and radDg (G) = 2, diamDg (G) = 3.

Definition 3.9. The fuzzy subgraph of G induced by the fuzzy detour g−central
nodes is called fuzzy detour g−centre of G, denoted by CDg (G). If every node
of G is fuzzy detour g−central node, then CDg (G) = G, and G is called fuzzy
detour g−self centered. Note that for fuzzy detour g−self centered fuzzy graph
radDg (G) = diamDg (G).

Example 3.10. Consider the fuzzy graph given in Fig. 3.
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For the fuzzy graph of Fig. 3, note that all arcs are strong and the fuzzy detour
g-distance between two nodes are as follows.

Dg(u1, u2) = 3, Dg(u1, u3) = 3, Dg(u1, u4) = 3, Dg(u2, u3) = 3,
Dg(u2, u4) = 2, Dg(u3, u4) = 3.

eDg (u1) = 3, eDg (u2) = 3, eDg (u3) = 3, eDg (u4) = 3
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and radDg
(G) = diamDg

(G) = 3. Therefore CDg
(G) = G, and G is a fuzzy

detour g−self centered fuzzy graph.

Theorem 3.11. For every non-trivial connected fuzzy graph G : (V, σ, µ), radDg (G)
≤ diamDg

(G) ≤ 2 radDg
(G).

Proof. The inequality radDg (G) ≤ diamDg (G) follows from definition. Let u, v be
two nodes such that Dg(u, v) = diamDg

(G). Let w be a fuzzy detour g−central
node of G. Hence the fuzzy detour g−distance between w and any other node of G
is atmost fuzzy detour g−radius of G.
By triangle inequality,
diamDg (G) = Dg(u, v) ≤ Dg(u,w) + Dg(w, v)
≤ radDg

(G) + radDg
(G) = 2 radDg

(G). ¤

4. Fuzzy detour g−centre

In crisp graph center lies in a block of G (see [4]). In this section we extend this
idea to fuzzy detour g−centre.

Theorem 4.1. The fuzzy detour g−centre, CDg (G) of every connected fuzzy graph
G : (V, σ, µ) lie in a single block of G.

Proof. Assume, to the contrary, that G : (V, σ, µ) is a connected fuzzy graph whose
fuzzy detour g−centre CDg (G), is not a subgraph of a single block of G. Then there
is a cut node v of G such that G − v contains two components G1 and G2 each of
which contain nodes of CDg (G). Let u be a node of G such that Dg(u, v) = eDg (v),
and let P1 be a u − v fuzzy g−detour in G. At least one of G1 or G2 contains no
node of P1. Let w be a fuzzy detour g−central node of G that belong to G2 and let
P2 be a u − w fuzzy g−detour . Then P1 followed by P2 produces a u − w fuzzy
g−detour whose length is greater than that of P1. Hence eDg (w) > eDg (v). Which
contradicts the fact that w is a fuzzy detour g−central node of G. ¤

Corollary 4.2. Let G : (V, σ, µ) be a fuzzy graph with atleast one fuzzy cut node
which is not a cut node of G∗ and let v be a node of G. If eDg (v) = radDg (G), then
v is not a fuzzy cut node of G.

Proof. eDg (v) = radDg (G), implies that v is a fuzzy detour g−central node of G,
that is vεCDg (G). Since the fuzzy detour g−centre node of G, CDg (G), of every
connected fuzzy graph G is a fuzzy subgraph of some block of G and this block
contain no fuzzy cut node of G, v cannot be a fuzzy cut node of G. ¤

Embedding problem

Theorem 4.3. Every fuzzy graph is the fuzzy detour g−centre of some fuzzy graph.

Proof. Let G : (V, σ, µ) be a fuzzy graph with n nodes where V = { u1, u2,..., un},
and let H : (V |, σ|, µ|) be the fuzzy graph obtained by adding n + 1 nodes { w1,...,
wn, wn+1 } to G as follows.
V | = V ∪ { w1,..., wn, wn+1 }.
σ| = σ, for all uiεG, i = 1,..., n.
µ| = µ, for all (ui, uj) ∈ G.
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Let c =
∧

σ(ui), i = 1,..., n.
σ|(wj) = t, 0 < t ≤ c, j = 1,..., n+1.
µ|(wj , ui) = t, for all ui and wj , i = 1,..., n, j = 1,..., n+1. Thus all arcs (wj , ui) are
strong.
Here ∀ui ∈ G, eDg (ui) = 2n− 1 and ∀wj , eDg (wj) = 2n. Hence radDg (G) = 2n− 1.
Thus H : (V |, σ|, µ|) is a fuzzy graph with G : (V, σ, µ) as its fuzzy detour g−centre.

¤
Theorem 4.4. For each pair a, b of positive real numbers with a ≤ b ≤ 2a there
exists a connected fuzzy graph G with radDg

(G) = a and diamDg
(G) = b.

Proof. For a = b = k ≥ 1 the complete fuzzy graph on k+1 nodes has the desired
property. For a < b ≤ 2a, let H1 and H2 be any two fuzzy graphs such that H1

is of order a + 1 and H2 is of order b − a + 1 and also such that H∗
1 and H∗

2 are
complete and all arcs in H1 and H2 are strong. Now G be a fuzzy graph of order
b + 1 obtained by identifying a node v of H1 and a node of H2. Since b ≤ 2a it
follows that b− a + 1 ≤ a + 1. Then eDg

(v) = a. Since there is a strong path in G
which passes through every other nodes of G with initial node x, where xεG− v, it
follows that eDg (x) = b. Hence radDg (G) = a and diamDg (G) = b. ¤
Example 4.5. Consider the fuzzy graph given in Fig. 4.
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In Fig. 4, fuzzy graph G is constructed from H1 and H2 by identifying a node v of
H1 and a node of H2 for a =3 and b =5. Hence radDg (G) = 3 and diamDg (G) = 5.

5. Fuzzy detour g−self centered fuzzy graph

With respect to standard g−distance note that a necessary condition for a g−self
centered fuzzy graph is that each node is g−eccentric, which is not sufficient. But
we observed that in fuzzy detour g−distance it is sufficient also, which is discussed
as follows.

Theorem 5.1. A fuzzy graph G : (V, σ, µ) is fuzzy detour g−self centered fuzzy
graph if and only if each node of G is fuzzy detour g− eccentric.

Proof. Assume G : (V, σ, µ) is fuzzy detour g−self centered fuzzy graph and let v be
any node of G. Let uεv∗Dg

. Then eDg (v) = Dg(u, v) and G being fuzzy detour g−self
centered fuzzy graph eDg (u) = eDg (v) = Dg(u, v), which shows that vεu∗Dg

, and v

is fuzzy detour g− eccentric.
Conversely assume that each node of G is fuzzy detour g− eccentric. To prove

that G is fuzzy detour g−self centered fuzzy graph. Assume to the contrary, that G is
225
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not fuzzy detour g−self centered, ie, radDg
(G) 6= diamDg

(G). Let y be a node in G
such that eDg (y) = diamDg (G), and let zεy∗Dg

. Let P be a y−z fuzzy g−detour in G.
Then there must exists a node w on P such that w is not fuzzy detour g− eccentric
node of any node of P . Also w is not a fuzzy detour g− eccentric node of any other
node. Otherwise if w is a fuzzy detour g− eccentric node of any other node u (say),
i.e., wεu∗Dg

, then we can extend u − w fuzzy g−detour to longer path( to y or to z

or to both), which is a contradiction to wεu∗Dg
. Therefore radDg (G) = diamDg (G)

and G is fuzzy detour g−self centered fuzzy graph. ¤
Theorem 5.2. For a fuzzy detour g−self centered fuzzy graph G : (V, σ, µ)
radD(G) = diamD(G) = n− 1, where n = |V |.
Proof. Assume G : (V, σ, µ) is fuzzy detour g−self centered. To prove diamD(G) =
n− 1. Assume to the contrary that diamD(G) = k < n− 1.

Claim: There exists a node x in G which is common to all fuzzy detour peripheral
paths.
If not let P1 and P2 be two fuzzy detour peripheral paths such that P1 and P2 share
no common node. Let yεP1 and zεP2. Since G is connected there exists a strong
path from z to y. Then, there exist nodes on P1 and P2 with eccentricity greater
than k, which is not possible. Hence the claim.
Since x is on every fuzzy detour peripheral path, eDg (x) < k, which is a contradiction
to our assumption that G is fuzzy detour g−self centered. ¤
Theorem 5.3. A connected fuzzy graph G : (V, σ, µ) on n nodes such that G∗ is
complete is fuzzy detour g−self centered if each arc is strong, further radDg (G) =
n− 1.

Proof. Let σ∗ = {v1, v2, v3, ..., vn}. Since G∗ is complete each node vi is incident
with exactly n−1 arcs, and all arcs are strong. Hence eDg (vi) = n−1, ∀i = 1, 2, ..., n
and G is a fuzzy detour g−self centered fuzzy graph with radDg (G) = n− 1. ¤
Remark 5.4. The condition in Theorem 5.3 is not necessary.

Example 5.5. Consider the fuzzy graph given in Fig. 5.
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Here eDg (u1) = 3, eDg (u2) = 3, eDg (u3) = 3, eDg (u4) = 3 and G is a fuzzy detour
g−self centered fuzzy graph with G∗ complete, but the arc (u1, u3) is not strong.

Corollary 5.6. A complete fuzzy graph on n nodes is fuzzy detour g−self centered
and radDg (G) = n− 1.

A characterization of fuzzy detour g−self centered fuzzy graph.
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Theorem 5.7. Let G : (V, σ, µ) be a fuzzy graph and let uεv∗Dg
. Then G is fuzzy

detour g−self centered if and only if vεu∗Dg
.

Proof. Let G : (V, σ, µ) be a fuzzy graph and u and v be two nodes of G. Let uεv∗Dg
.

Assume G is fuzzy detour g−self centered. Required to prove that vεu∗Dg
. Now

eDg
(u) = eDg

(v), u 6= v. ..........(1) and Dg(v, u) = eDg
(v). ...............(2)

From (1) and (2) eDg (u) = Dg(v, u) and thus vεu∗Dg
.

Conversely let G be a fuzzy graph and u, v be any two nodes of G such that
uεv∗Dg

and by assumption vεu∗Dg
. Then eDg

(u) = eDg
(v), u 6= v. Therefore G is

fuzzy detour g−self centered. ¤

6. Fuzzy detour g−distance in fuzzy trees

A connected fuzzy graph G : (V, σ, µ) is a fuzzy tree if it has a fuzzy spanning
subgraph F : (V, σ, ν), which is a tree where for all arcs (x, y) not in F there exists
a path from x to y in F whose strength is more than µ(x, y) [11]. Note that here F
is a tree which contain all nodes of G and hence is a spanning tree of G. Also note
that F is the unique maximum spanning tree of G [19].

Based on standard g−distance, Sameena.K and M.S.Sunitha [16] have studied
some properties of fuzzy tree G and its associated maximum spanning tree F . Since
there exists unique strong path between every pair of nodes in G [1], we establish
that g−distance and fuzzy detour g−distance coincide in case of fuzzy trees in the
following theorem. Thus the result in [16] hold good for fuzzy detour g−distance in
fuzzy trees.

Theorem 6.1. A connected fuzzy graph G : (V, σ, µ) is a fuzzy g-detour graph if and
only if G is a fuzzy tree.

Proof. Assume G is a fuzzy tree. Then there exists unique strong path between
every pair of nodes in G [1]. Hence Dg(u, v) = dg(u, v) for every pair u and v of
nodes of G. Therefore G is a fuzzy g-detour graph.

Conversely, assume G is a fuzzy g-detour graph on n nodes. That is Dg(u, v) =
dg(u, v) for every pair u and v of nodes of G. When n = 2, the result is trivial and
G is a fuzzy tree. So let n ≥ 3. Assume on the contrary that G is not a fuzzy tree.
Then there exists atleast one pair of nodes u1, v1 and more than one strong path
from u1 to v1. Let P1 and P2 be two u1-v1 strong paths. Then union of P1 and P2

contains atleast one cycle (say) C in G. Let u and v be two adjacent nodes in C.
Then dg(u, v) = 1 and Dg(u, v) > 1, which is a contradiction to the assumption that
Dg(u, v) = dg(u, v), and hence G is a fuzzy tree. ¤

7. Conclusions

In this paper, we introduced the fuzzy detour g-distance, fuzzy detour g-eccentricity,
and fuzzy detour g-center of fuzzy graphs. We established that every fuzzy graph
is the fuzzy detour g−center of some fuzzy graph. Also, for each pair a, b of pos-
itive real numbers with a ≤ b ≤ 2a, there exists a connected fuzzy graph H with
radDg (H) = a and diamDg (H) = b. We observed that fuzzy trees are the only fuzzy
g-detour graphs.
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