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Abstract. In this paper the Felbin’s type fuzzy 2-norm on a vector
space is introduced, when L = min and R = max and then one of its fuzzy
I-topologies is constructed. After making our elementary observations on
this fuzzy I-topology, continuity of the vector space operations is discussed
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an open set is open although the scalar multiplication is not continuous.
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1. Introduction

In 1999, Das and Das [3] constructed a fuzzy topology on the fuzzy normed linear
space of Felbin-type [10]. According to the standardized terminology in [12], more
precisely, such fuzzy topology should be called I-topology now. Fang [6] pointed out
that the Das’s I-topological structure on the fuzzy normed linear space is incom-
patible with the linear structure, that is, the fuzzy normed linear space is not an
I-topological vector space with respect to the Das’s I-topology. In order to overcome
this incompatibility, Fang [6] constructed another I-topology on the fuzzy normed
linear space by changing the definition of open fuzzy subset given by Das [3], and
proved that the fuzzy normed linear space is a Hausdorff locally convex I-topological
vector space with respect to this I-topology under certain conditions. In [5], by using
an approach different from [6], a new I-vector topology is constructed on the fuzzy
normed linear space. Some other works on this area can be seen in [7], [5].

In [11], S. Gähler introduced a crisp 2-normed spaces. Using this concept in [13],
some locally convex topologies were constructed on the underlying linear space.
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For more and some recent works on this area one can see [1], [2], [4], [9], [16].
In this paper we introduce fuzzy 2-norm on a vector space and one of its related

I-topologies is studied. Compatibility of this I-topology with the linear structure,
fuzzy convergence of sequences and fuzzy continuity of function under this I-topology
are also discussed.

2. Preliminaries

Let X and Y be any two sets, f : X → Y be a mapping and µ be a fuzzy subset
of X. Then f(µ) is a fuzzy subset of Y defined by

f(µ)(y) =
{

supx∈f−1(y) µ(x), f−1(y) 6= ∅;
0, otherwise,

for all y ∈ Y , where f−1(y) = {x : f(x) = y}.
If η is a fuzzy subset of Y , then the fuzzy subset f−1(η) of X is defined by
f−1(η)(x) = η(f(x)), for any x ∈ X.
A fuzzy point xα, 0 < α ≤ 1, x ∈ X, is a fuzzy set defined by

xα(t) =
{

α, t = x;
0, otherwise.

The set of all fuzzy points on X is denoted by Pt(IX). A fuzzy point xα is said to
be contained in a fuzzy set µ if α ≤ µ(x). For x ∈ X, we apply x for the fuzzy point
x1. Also for every r ∈ (0, 1], let r∗ be the fuzzy set on X, which takes constant value
r on X.
A fuzzy subset µ of a vector space X is said to be convex if

µ(kx + (1− k)y) ≥ min(µ(x), µ(y)),

for all x, y ∈ X and k ∈ [0, 1]. Equivalently, for each α ∈ (0, 1], the α-level set
[µ]α = {x ∈ X : µ(x) ≥ α} is convex.

A stratified fuzzy I-topology on a set X is a family τ of fuzzy subsets of X
satisfying the following conditions:
(1) The fuzzy subsets r∗, r ∈ (0, 1], and 0 are in τ .
(2) τ is closed under finite intersection and arbitrary union of fuzzy subsets. In this
case the pair (X, τ) is called a stratified fuzzy topological space.

A fuzzy topological space (X, τ) is said to be fuzzy Hausdorff if for every x, y ∈ X,
x 6= y, there exist η, β ∈ τ with η(x) = β(y) = 1 and η ∩ β = 0, where 0 is the fuzzy
set which takes 1 at 0 and zero otherwise.
A fuzzy subset µ in a fuzzy topological space (X, τ) is called a neighborhood of a
point x ∈ X, if µ(x) > 0 and there is a ρ in τ such that ρ ⊆ µ and µ(x) = ρ(x).

For fuzzy I-topological spaces (X, τ1) and (Y, τ2), a mapping f : (X, τ1) → (Y, τ2)
is called fuzzy continuous at some point x ∈ X, if f−1(µ) is a neighborhood of x for
each neighborhood µ of f(x). f is called fuzzy continuous if f is fuzzy continuous
at every point x ∈ X. This means that the inverse of every fuzzy open subset of Y
is a fuzzy open set in X.

If µ1 and µ2 are two fuzzy subsets of a vector space X, then the sum µ1 + µ2 is
defined by

(µ1 + µ2)(x) = sup
x=x1+x2

(µ1(x1) ∧ µ2(x2)).
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For a fuzzy point xα in X, it can be easily seen that (xα + µ1)(y) = α ∧ µ1(y − x)
and in particular, (x+µ1)(y) = µ1(y−x). Let µ be a fuzzy subset of a vector space
X and t be a scalar. Then the fuzzy set tµ is defined as follows,

(a) for t 6= 0, (tµ)(x) = µ(t−1x), for all x ∈ X.
(b) for t = 0,

(tµ)(x) =
{

0, x 6= 0;
supy µ(y), x = 0.

According to Mizumoto and Tanaka [14], a fuzzy number is a mapping x : R→ [0, 1]
over the set R of all reals, so x is a fuzzy set in R.
If there exists a t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 <
α ≤ 1, α-level set of an upper semi-continuous convex normal fuzzy set x of R (i.e.
[x]α := {t : x(t) ≥ α}) is a closed interval [aα, bα], where aα = −∞ and bα = +∞ are
admissible. When aα = −∞, for instance, then [aα, bα] means the interval (−∞, bα].
Similar is the case when bα = +∞.

In this paper, we consider the concept of fuzzy real numbers (fuzzy intervals) in
the sense of Xiao and Zhu [15], which is defined below:
A mapping η : R→ [0, 1], with the α-level sets [η]α, α ∈ (0, 1], is called a fuzzy real
number (or fuzzy interval) if it satisfies two axioms:

(N1) There exists t0 ∈ R such that η(t0) = 1.
(N2) For each α ∈ (0, 1]; [η]α = [η1

α, η2
α], where −∞ < η1

α ≤ η2
α < +∞.

The set of all fuzzy real numbers (fuzzy intervals) is denoted by F . For each r ∈ R,
let r ∈ F be defined by r(t) = 1, if t = r and r(t) = 0, if t 6= r, so r is a fuzzy
interval and R can be embedded in F .

Let η ∈ F . η is called positive fuzzy real number if for all t < 0, η(t) = 0. The
set of all positive fuzzy real numbers is denoted by F+.

A partial order ¹ in F is defined as follows, η ¹ δ if and only if for all α ∈ (0, 1],
η1

α ≤ δ1
α and η2

α ≤ δ2
α where, [η]α = [η1

α, η2
α] and [δ]α = [δ1

α, δ2
α]. The strict inequality

in F is defined by η ≺ δ if and only if for all α ∈ (0, 1], η1
α < δ1

α and η2
α < δ2

α.
According to Mizamoto and Tanaka [14], the arithmetic operations ⊕, ª, ¯ on

F × F are defined by
(x⊕ y)(t) = sups∈R min{x(s), y(t− s)}, t ∈ R,
(xª y)(t) = sups∈R min{x(s), y(s− t)}, t ∈ R,
(x¯ y)(t) = sup0 6=s∈R min{x(s), y( t

s )}, t ∈ R.
We also consider an operation ® on η ∈ F and δ(Â 0) ∈ F+ as follows

(η ® δ)(t) = sups∈R min{η(st), δ(s)}, t ∈ R.
It is well known that(see [10]) for η, δ ∈ F , if [η]α = [η1

α, η2
α], [δ]α = [δ1

α, δ2
α], α ∈

(0, 1], then [η ⊕ δ]α = [η1
α + δ1

α, η2
α + δ2

α], [η ª δ]α = [η1
α − δ2

α, η2
α − δ1

α]. Furthermore
if η , δ ∈ F+, then [η ¯ δ]α = [η1

α.δ1
α, η2

α.δ2
α], and when δ Â 0, [1® δ]α = [ 1

δ2
α
, 1

δ1
α
].

3. Felbin’s type fuzzy 2-norm and I-topology

In this section, first we introduce a fuzzy 2-norm which is similar to Felbin-type
fuzzy norm, when L = min and R = max and then we generate a fuzzy I-topology
with this 2-norm.

79



Mohammad Janfada et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 1, 77–87

Definition 3.1. Let X be a vector space over R. Consider a mapping ‖., .‖ :
X ×X → F+. For x, y in X and α ∈ (0, 1] let

[‖x, y‖]α = [‖x, y‖1α, ‖x, y‖2α].

Suppose that there exists α0 ∈ (0, 1], independent of linearly independent vectors
x, y ∈ X, such that for all α ≤ α0,

(1) ‖x, y‖2α < ∞,
(2) infα ‖x, y‖2α > 0.

Now the mapping ‖., .‖ is called a fuzzy 2-norm, if for any x, y, z ∈ X,
(1) ‖x, y‖ = 0 if and only if x, y are linearly dependent,
(2) ‖x, y‖ = ‖y, x‖,
(3) ‖αx, y‖ = |α|‖x, y‖,
(4) ‖x + y, z‖ ¹ ‖x, z‖ ⊕ ‖y, z‖.

In this case (X, ‖., .‖) is called a fuzzy 2-normed space.

One can easily see that with a fuzzy 2-norm ‖., .‖, for all α ∈ (0, 1], ‖., .‖1α and
‖., .‖2α are two crisp 2-norm on X.

Example 3.2. Suppose that ‖., .‖ is a crisp 2-norm on a real vector space X. Define
‖|., .‖| on X ×X into F+ as follows

‖|x, y‖|(t) =
{ ‖x,y‖

t , t ≥ ‖x, y‖,
0, otherwise.

So for every α ∈ (0, 1], [‖|x, y‖|]α = [‖x, y‖, ‖x,y‖
α ]. One can easily see that ‖|., .‖| is

a fuzzy 2-norm on X.

Now we are going to define an I-topology corresponding to a fuzzy 2-norm.

Definition 3.3. Suppose that ‖., .‖ is a 2-norm on a real vector space X. For
α ∈ (0, 1], ε > 0 and x, y ∈ X, a fuzzy set µα(x, y, ε) in X which is defined by

µα(x, y, ε)(z) =
{

α, ‖x− z, y‖2α < ε;
0, otherwise,

is called an α-open sphere in a fuzzy 2-normed space.
A fuzzy set µ ∈ IX is said to be ‖., .‖-open if for every x ∈ X with µ(x) > 0, there
exist n ∈ N, ε1, ε2, ..., εn > 0 , α1, α2, ...αn ∈ (0, 1] and y1, y2, ...yn ∈ X, such that
∩n

i=1µαi(x, yi, εi) ⊆ µ.

Theorem 3.4. Every α-open sphere is a ‖., .‖-open and convex fuzzy set.

Proof. For fixed α ∈ (0, 1], ε > 0 and x, y ∈ X, we are going to show that µα(x, y, ε)
is ‖., .‖-open.
Let µα(x, y, ε)(z) > 0, which means that ‖x− z, y‖2α < ε. Put ε1 = ε− ‖x− z, y‖2α.
If for k ∈ X, ‖z − k, y‖2α < ε1, then

‖x− k, y‖2α ≤ ‖z − k, y‖2α + ‖x− z, y‖2α < ε1 + ‖x− z, y‖2α = ε

i.e. µα(x, y, ε)(k) = α. So µα(z, y, ε1)(k) = α = µα(x, y, ε)(k).
Also if ‖z − k, y‖2α ≥ ε1, then

µα(z, y, ε1)(k) = 0 ≤ µα(x, y, ε)(k).
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Therefore µα(z, y, ε1) ⊆ µα(x, y, ε).
To prove its convexity, it is enough to show that for any β ∈ (0, 1], (β ≤ α), the β-
level set of µα(x, y, ε) is convex. For the points z1, z2 of the β-level set [µα(x, y, ε)]β =
{z ∈ X : µα(x, y, ε)(z) ≥ β > 0} = {z ∈ X : ‖x − z, y‖2α < ε}, and k ∈ [0, 1], we
have

‖x− kz1 − (1− k)z2, y‖2α = ‖kz1 + (1− k)z2 − kx− (1− k)x, y‖2α
≤ ‖k(z1 − x), y‖2α + ‖(1− k)(z2 − x), y‖2α
= | k | ‖(z1 − x), y‖2α+ | 1− k | ‖z2 − x, y‖2α
< kε + (1− k)ε = ε.

Therefore,

kz1 + (1− k)z2 ∈ [µα(x, y, ε)]β = {z ∈ X : ‖x− z, y‖2α < ε},
which completes the proof. ¤

Theorem 3.5. In a fuzzy 2-normed space (X, ‖., .‖), the collection

τ‖.,.‖ = {µ : µ is ‖., .‖ -open },
is a fuzzy I-topology on X.

Proof. For any r ∈ (0, 1], if α ≤ r, then trivially µα(x, y, ε) ⊆ r∗, for every ε > 0
and y ∈ X. So r∗ ∈ τ‖.,.‖. Also for each x ∈ X, 0(x) = 0 which is not positive, so 0
belongs to τ‖.,.‖.
Now let µ1, µ2 ∈ τ‖.,.‖. For x ∈ X, if (µ1 ∧ µ2)(x) > 0, then we have µ1(x) > 0
and µ2(x) > 0. Hence there exist ε1, ...εn > 0, α1, ..., αn ∈ (0, 1] and y1, ...yn ∈ X,
such that ∩n

i=1µαi(x, yi, εi) ⊂ µ1 and there is η1, ...ηm > 0, β1, ...βm ∈ (0, 1] and
z1, ...zm ∈ X for which ∩m

j=1µβj (x, zj , ηj) ⊂ µ2. So

(∩m
j=1µβj (x, zj , ηj)) ∩ (∩n

i=1µαi(x, yi, εi)) ⊆ µ1 ∩ µ2.

Finally if {µj}j∈J ∈ τ‖.,.‖ and for x ∈ X, ∪jµj(x) > 0, then there exists j0 ∈ J such
that µj0(x) > 0. So for some ε1, ..., εn > 0, α1, ..., αn ∈ (0, 1], and y1, ..., yn ∈ X, we
have ∩n

i=1µαi(x, yi, εi) ⊂ µj0 . Therefore ∩n
i=1µαi(x, yi, εi) ⊂ ∪j∈Jµj . ¤

Theorem 3.6. The fuzzy I-topological space (X, τ‖.,.‖) is fuzzy Hausdorff.

Proof. Let a, b ∈ X and a 6= b. So for any y ∈ X which is linearly independent of
a−b, we have infα ‖a−b, y‖1α > 0. Let infα ‖a−b, y‖1α = δ. Consider the fuzzy open
spheres µ1(a, y, δ/2) and µ1(b, y, δ/2) in (X, τ‖.,.‖). Trivially µ1(a, y, δ/2)(a) = 1 and
µ1(b, y, δ/2)(b) = 1. We claim that µ1(a, y, δ/2) ∩ µ1(b, y, δ/2) = 0.
Suppose not, so there exists x0 ∈ X such that,

µ1(a, y, δ/2)(x0) > 0 and µ1(b, y, δ/2)(x0) > 0.

This implies that ‖x0 − a, y‖21 < δ/2 and ‖x0 − b, y‖21 < δ/2. Hence,

δ ≤ ‖a− b, y‖11 ≤ ‖a− b, y‖21 ≤ ‖x0 − a, y‖21 + ‖x0 − b, y‖21
< δ/2 + δ/2 = δ,

which is a contradiction. Therefore (X, τ‖.,.‖) is fuzzy Hausdorff. ¤
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In the sequel we study the relations of this fuzzy topology with the operations of
the vector space X

Theorem 3.7. If µ is open in (X, τ‖.,.‖), then for any xα ∈ Pt(IX), xα + µ is also
open.

Proof. Let (xα + µ)(y) > 0. So µ(y − x) ∧ α > 0, and µ(y − x) > 0. But µ is
‖., .‖-open, so there exist αi ∈ (0, 1], εi > 0, and zi ∈ X, i = 1, ..., n, such that
∩n

i=1µαi
(y − x, zi, εi) ⊆ µ. For i = 1, ..., n, let ηi = min{α, αi}. We have

∩n
i=1µηi

(y − x, zi, εi) ⊆ ∩n
i=1µαi

(y − x, zi, εi) ⊆ µ.

If for k ∈ X, ‖y − k, zi‖2ηi
< εi, then

‖y − x− (k − x), zi‖2ηi
= ‖y − k, zi‖2ηi

< εi.

So
µηi

(y, zi, εi)(k) = ηi = µηi
(y − x, zi, εi)(k − x),

which implies that

∩n
i=1µηi(y, zi, εi)(k) = ∩n

i=1ηiµηi(y − x, zi, εi)(k − x) ≤ µ(k − x).

Also in this case, from ‖y − k, zi‖2ηi
< εi, i = 1, 2, ..., n, we have µηi(y, zi, εi)(k) =

ηi ≤ α. Therefore

∩n
i=1µηi(y, zi, εi)(k) ≤ α ∧ µ(k − x) = (µ + xα)(k).

If ‖y − k, zi0‖2ηi0
≥ εi0 , for some i0, we have

0 = ∩n
i=1µηi(y, zi, εi)(k) ≤ α ∧ µ(k − x) = (µ + xα)(k).

Thus ∩n
i=1µηi(y, zi, εi) ⊆ µ + xα. ¤

Theorem 3.8. If a fuzzy subset µ of X is open in (X, τ‖.,.‖), then tµ is also open
for t 6= 0.

Proof. Let tµ(x) > 0. This implies that µ(x/t) > 0. Therefore there exists αi ∈
(0, 1], εi > 0 and yi ∈ X, i = 1, ..., n, such that

∩n
i=1µαi(x/t, yi, εi) ⊆ µ.

Now for i = 1, ..., n, put ηi =| t | εi. If for every i = 1, ..., n, ‖x−z, yi‖2αi
< ηi =| t | εi,

then ‖x/t− z/t, , yi‖2αi
< εi. Hence µαi(x/t, yi, εi)(z/t) = αi. This implies that

µαi(x, yi, ηi)(z) = µαi(x/t, yi, εi)(z/t),

and so

∩n
i=1µαi(x, yi, ηi)(z) = ∩n

i=1µαi(x/t, yi, εi)(z/t) ≤ µ(z/t) = tµ(z).

Now if there exists i0 such that ‖x− z, yi0‖2αi0
≥ ηi0 , then we have

0 = ∩n
i=1µαi(x, yi, ηi)(z) ≤ µ(z/t) = tµ(z).

So ∩n
i=1µβi(x, ti, ηi)(z) ⊆ tµ. ¤

In the sequel we are going to show that (X, +, ., τ‖.,.‖) is not a stratified I-
topological vector space. For this, we need some preliminaries from [5].
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Definition 3.9. Let µ ∈ IX and xα be a fuzzy point. We say xα quasi-coincides
with µ, denoted by xα∈̃µ, if µ(x) > 1− α.

Definition 3.10. A stratified I-topology τ on a real vector space X is said to be
an I-vector topology, if the following two mapping

f : X ×X → X, (x, y) 7→ x + y,

g : R×X →, (t, x) 7→ tx,

are fuzzy continuous, where R is equipped with the I-topology induced by its usual
topology, and X × X and R × X are equipped with the corresponding product I-
topologies.
A vector space X with an I-vector topology τ , is called an I-topological vector space.

Definition 3.11. Let (X, τ) be an I-topology space and xλ∈̃Pt(IX).
(a) A fuzzy set µ on X is called Q-neighborhood of xλ if there exists G ∈ τ such
that xλ∈̃G ⊂ µ.
(b). A family Uxλ

of Q-neighborhoods of xλ, is called Q-neighborhood base of xλ if
for every Q-neighborhood A of xλ, there exists µ ∈ Uxλ

such that µ ⊂ A.

Lemma 3.12. (Fang [8] ) Let τ be a stratified I-topology on a vector space X. Then
i) The mapping f (addition) is continuous if and only if for every fuzzy point (x+y)λ

in X × X and every Q-neighborhood w of (x + y)λ, there exist Q-neighborhoods u
and v of xλ, yλ, respectively, such that u + v ⊂ w;
ii) The mapping g (scalar multiplication) is continuous if and only if for every
fuzzy point (t, x)λ in R×X and every Q-neighborhood w of (tx)λ, there exists a Q-
neighborhood u of xλ and a δ > 0, such that su ⊂ w, for all s ∈ R with | s− t |< δ.

Theorem 3.13. Let (X, ‖., .‖) be a fuzzy 2-norm space. Then
i) The addition mapping f is continuous.
ii) The scalar multiplication g is not continuous.

Proof. Suppose that w is a Q-neighborhood of (x + y)λ, so by definition, there
exists a µ ∈ τ‖.,.‖, such that (x + y)λ∈̃µ ⊂ w. But µ is τ‖.,.‖-open, so there exist
αi ∈ (0, 1], εi > 0 and zi ∈ X, i = 1, ..., n, such that ∩iµαi(x + y, zi, εi) ⊂ µ. Let
ε = min{ε1, ..., εn}, α = min{α1, ..., αn} and

Uε,α,zi = {x ∈ X ; ‖x, zi‖2α < ε}.
By definition of fuzzy 2-norm, we have Uε/2,α,zi

+ Uε/2,α,zi
⊂ Uε,α,zi . Hence

(x + Uε/2,α,zi
) + (y + Uε/2,α,zi

) ⊂ [(x + y) + Uε,α,zi ],

which implies that,

(x + Uε/2,α,zi
) ∩ α∗ + (y + Uε/2,α,zi

) ∩ α∗ ⊂ [(x + y) + Uε,α,zi ] ∩ α∗.

It is easy to verify that (x + Uε,α,zi) ∩ α∗ = µα(x, zi, ε). From this we have,

µα(x, zi, ε/2) + µα(y, zi, ε/2) ⊂ µα(x + y, zi, ε).

Also for i = 1, ..., n,

∩iµα(x, zi, ε/2) + ∩iµα(y, zi, ε/2) ⊂ ∩iµα(x + y, zi, ε).
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If α > 1 − λ, then one may see that ∩iµαi
(x, zi, ε/2) and ∩iµα(y, zi, ε/2) are Q-

neighborhoods of xλ and yλ, respectively.
If α ≤ 1− λ, we define the fuzzy sets A and B on X as follows,

A(z) =
{

β, z = x;
∩iµα(x, zi, ε/2), otherwise,

and

B(z) =
{

β, z = y;
∩iµα(y, zi, ε/2), otherwise,

where β = µ(x + y) > 1− λ. We are going to show that A + B ⊂ w.
If z = x + y, then (A + B)(z) = β = µ(z) and if z 6= x + y, then

(A + B)(z) = [A(x) ∧B(z − x)] ∨ [A(z − y) ∧B(y)]
∨ sup

z=u+v,u 6=x,v 6=y
[A(u) ∧B(v)]

= ∩iµα(y, zi, ε/2)(z − x) ∨ ∩iµα(x, zi, ε/2)(z − y)
∨ sup

z=u+v,u 6=x,v 6=y
[A(u) ∧B(v)],

and so if for every i = 1, ..., n, ‖x + y − z, zi‖2α < ε then

(A + B)(z) ≤ ∩iµα(x + y, zi, εi)(z) ≤ µ(z).

Also if there exists i0 such that ‖x + y − z, zi0‖2α ≥ ε, then we have

‖u− x, zi0‖2α ≥ ε/2 or ‖v − y, zi0‖2α ≥ ε/2,

where z = u + v. Hence(A + B)(z) = 0 ≤ µ(z). This implies that A + B ⊂ µ ⊂ w.
It is easy to see that A and B are τ‖.,.‖-open Q-neighborhoods of xλ and yλ, respec-
tively. Therefore by Lemma 3.12, the addition mapping f is continuous.

To prove ii), let (t0, x) ∈ R ×X,x 6= 0 and λ ∈ (0, 1]. Let β, α ∈ (0, 1] be such
that α < 1− λ < β. Now define a fuzzy set µ of X by

µ(z) =
{

β, z = t0y;
α, otherwise.

Suppose that y is in supp µ. Then for every ε > 0 and z ∈ X, we have

µα(y, z, ε) ⊂ µ and µ(t0x) = β > 1− λ.

Hence µ is a τ‖.,.‖-open Q-neighborhood of t0xλ.
With z = (t0 + δ)x, for every Q-neighborhood u of xλ and every δ > 0, we have
[(t0 + δ)u](z) = u(x) > 1 − λ; but µ(z) = α < 1 − λ. This together with Lemma
3.12, imply that the scalar multiplication is not continuous. ¤

4. Sequences and continuity in fuzzy 2-normed space

Let (X, τ) be a fuzzy topological space. A sequence {xn} in X is said to be con-
verges to a point x and is denoted by limn→∞ xn = x if for every open neighborhood
µ of x (i. e. µ(x) > 0), there exists n0 ∈ N such that µ(xn) > 0 for all n ≥ n0.
In this section we introduce a more concrete convergence for a sequence in a fuzzy
2-nomed space and their relations will be studied. Also the fuzzy continuity of a
function on fuzzy 2-normed spaces will be discussed.
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Definition 4.1. Let (X, ‖., .‖) be a fuzzy 2-norm space. A sequence {xn} in X is
said to be weakly α-convergent to x, if for any y ∈ X, ε > 0, and α ∈ (0, 1], there
exists n0 ∈ N such that ‖xn − x, y‖2α < ε for all n > n0.

Our next result shows the relationship between weakly α-convergence and con-
vergence of a sequence in (X, τ‖.,.‖).

Theorem 4.2. In a fuzzy 2-norm space (X, ‖., ‖), a sequence {xn} in X is weakly
α-convergent, if and only if xn → x with respect to the fuzzy topology τ‖.,.‖.

Proof. Let {xn} weakly α-converges to x, µ be a fuzzy open subset of (X, τ‖.,.‖) and
µ(x) > 0. Then there exist εi > 0, αi ∈ (0, 1] and yi ∈ X, i = 1, ..., m, such that
∩m

i=1µαi(x, yi, εi) ⊆ µ. Now by the hypothesis, for any ε > 0, y ∈ X and α ∈ (0, 1],
there exists n0 ∈ N such that for n > n0, ‖xn − x, y‖2α < ε. So for εi > 0, αi ∈ (0, 1]
and yi ∈ X, there exists ni ∈ N such that ‖xn − x, yi‖2αi

< εi, for n ≥ ni and
i = 1, ..., m, i.e. µαi(x, yi, εi)(xn) = αi > 0. Let n∗ = max{n1, ..., nm}. Then

∩m
i=1µαi

(x, yi, εi)(xn) = min{α1..., αn} > α > 0

for all n ≥ n∗. Thus µ(xn) > 0, which implies that xn → x in τ‖.,.‖.
Conversely, suppose that xn → x in (X, τ‖.,.‖). So for any µ ∈ τ‖.,.‖, there exists
n0 ∈ N, such that µ(xn) > 0, for all n > n0. Let ε > 0, α0 ∈ (0, 1] and y0 ∈ X be
given. For the fuzzy open set µα0(x, y0, ε) the fact that µα0(x, y0, ε)(x) > 0, implies
that there exists n0 ∈ N, such that µα0(x, y0, ε)(xn) > 0, for all n > n0. This implies
that ‖xn − x, y‖2α < ε, for any n > n∗, and so {xn} converges to x, weakly for
α ∈ (0, 1]. ¤

Definition 4.3. Let (X, ‖., .‖) and (Y, ‖., .‖∗) be two fuzzy 2-norm spaces. A func-
tion f : X → Y is said to be weakly sequentially continuous if for any weakly
α-convergent sequence {xn} in X which weakly α-converges to x, we have f(xn)
weakly α-converges to f(x0) in Y .

Theorem 4.4. Let (X, τ‖.,.‖) and (Y, τ‖.,.‖∗) be the fuzzy topological spaces generated
by the fuzzy norms ‖., .‖ and ‖., .‖∗, respectively. Then f : (X, τ‖.,.‖) → (Y, τ‖.,.‖∗) is
weakly sequentially continuous at the point x ∈ X if and only if f is fuzzy continuous
at x.

Proof. First, let f : (X, τ‖.,.‖) → (Y, τ‖.,.‖∗) be fuzzy continuous at x ∈ X and
{xn} be a sequence in X such that xn → x with respect to τ‖.,.‖. To show that
f(xn) → f(x), let µ ∈ τ‖.,.‖, µ(f(x)) > 0 and ρ = f−1(µ). By continuity of f , ρ is
an open neighborhood of x, i.e. ρ ∈ τ‖.,.‖ and ρ(x) > 0. Now,

f(ρ)(y) = sup
x∈f−1(y)

ρ(x)

= sup
x∈f−1(y)

f−1(µ)(x)

= sup
x∈f−1(y)

µ(f(x)) =
{

µ(y), y = f(x);
0, otherwise.
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Therefore f(ρ)(y) ≤ µ(y), for all y ∈ Y , i.e. f(ρ) ⊆ µ. Also ρ(x) > 0 and xn → x
implies there exists n0 ∈ N such that ρ(xn) > 0, for all n > n0. Also we have

f(ρ)(y) = sup
x∈f−1(y)

ρ(x).

So f(ρ)(f(xn)) = supu∈f−1f(f(xn)) ρ(u).
This implies that f(ρ)(f(xn)) > 0, i.e. µ(f(xn)) > 0. Thus f(xn) ∈ µ, for all
n > n0. Therefore f(xn) → f(x) in (Y, τ‖.,.‖∗) which means that f is weakly
sequentially continuous.
Conversely, let f be sequentially continuous at x0 ∈ X, and in contrary suppose
that f is not fuzzy continuous at x0. So there exists an open neighborhood µ of
f(x0) in τ‖.,.‖∗ such that f−1(µ) is not an open neighborhood of x0 in τ‖.,.‖, i.e.
f−1(µ)(x0) > 0 and for every y ∈ X, ε > 0 and α ∈ (0, 1], µα(x0, y, ε) is not
subset of f−1(µ). So for every α ∈ (0, 1] and n ∈ N , there exists xn such that
‖xn−x, y‖2α < 1/n, but xn is not in f−1(µ). Thus µ(f(x0)) > 0 but µ(f(xn)) is not
positive, i.e. xn → x in τ‖.,.‖, but f(xn) is not convergent to f(x0) in τ‖.,.‖∗ , which
is a contradiction. ¤

References

[1] T. Beaula and R. A. Sarguna Gifta, Some aspects of 2-fuzzy inner product space, Ann. Fuzzy
Math. Inform. 4(2) (2012) 335–342.

[2] B. Chen, Semi-precompactness in Šostak’s L-fuzzy, Ann. Fuzzy Math. Inform. 2(1) (2011)
49–56.

[3] N. F. Das and P. Das, Fuzzy topology generated by fuzzy norm, Fuzzy Sets and Systems 107
(1999) 349–354.

[4] J. X. Fang and H. Zhang, On local boundedness if I-topological vector spaces, Iran. J. Fuzzy
Syst. 9(5) (2012) 93–104.

[5] G.-H. Xu and J.-X. Fang, A new I-vector topology generated by a fuzzy norm, Fuzzy Sets and
Systems 158 (2007) 2375–2385.

[6] J.-X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets and Systems 157 (2006) 2739–
2750.

[7] J.-X. Fang and C.-H. Yan, Induced I(L)-fuzzy topological vector spaces, Fuzzy Sets and Sys-
tems 121 (2001) 293–299.

[8] J.-X. Fang, On local bases of fuzzy topological vector spaces, Fuzzy Sets and Systems 87
(1997) 341–347.

[9] Z. Fang, Semicompactness degree in L-topological spaces, Ann. Fuzzy Math. Inform. 2(1)
(2011) 91–98.

[10] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems 48 (1992)
239–248.

[11] S. Gähler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964) 1–43.
[12] U. Hhle and S. E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and

Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers,
Dordrecht, 1999.

[13] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math.
Roumanie 42(4) (1999) 353–368.

[14] M. Mizumoto and J. Tanaka, Some properties of fuzzy numbers, in: M. M. Gupta et al. (Eds.),
Advances in Fuzzy Set Theory and Applications, North-Holland, New York, 1979, pp. 153–164.

[15] J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear
space, Fuzzy Sets and Systems 125 (2002) 153–161.

[16] H.-P. Zhang and J.-X. Fang, Generalized locally bounded L-topological vector spaces, Fuzzy
Sets and Systems 162(1) (2011) 53–63.

86



Mohammad Janfada et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 1, 77–87

Mohammad Janfada (mjanfada@gmail.com)
Department of pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-
91775 Mashhad, Iran

Abolfazl Nezhadali Baghan (nejadali.2000@yahoo.com)
Faculty of Science, Islamic Azad University-Nikshahr Branch, Iran, and a Ph. D.
student in Department of pure Mathematics, Ferdowsi University of Mashhad, P.O.
Box 1159-91775 Mashhad, Iran

87


