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1. Introduction

The concept of statistical convergence is a generalization of the usual notion of
convergence of real-valued sequences, that parallels the usual theory of convergence.
For a subset E of N the asymptotic density of E, denoted by δ(E), is given by

δ(E) = lim
n→∞

1
n
|{k ≤ n : k ∈ E}|,

if this limit exists, where |{k ≤ n : k ∈ E}| denotes the cardinality of the set
{k ≤ n : k ∈ E}. A sequence (xk) is statistically convergent to ` (see [17]) if

δ({k ∈ N : |xk − `| ≥ ε}) = 0,

for every ε > 0. In this case ` is called the statistical limit of the sequence (xk).
Schoenberg [51] studied some basic properties of statistical convergence and also
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studied the statistical convergence as a summability method. Fridy [18] gave char-
acterizations of statistical convergence. Caserta et al.,[7] studied statistical conver-
gence in function spaces while Caserta and Kočinac [8] investigated statistical ex-
haustivness. For more details on statistical convergence we refer to ([4, 43, 47, 52])
and references therein.

Kostyrko et. al [33] introduced the notion of I-convergence with the help of an
admissible ideal I denotes the ideal of subsets of N, which is a generalization of
statistical convergence. Later on it was further investigated by S̆alát et al. ([48,
49]), Tripathy and Hazarika ([55, 56, 57, 58]), Tripathy et al [59], Esi and Hazarika
[12], Gowrisankar and Rajesh [19], Hatir and Rajesh [21], Hazarika ([23, 24, 25,
27]), Hazarika and Savas [22], Hazarika et al., [30], Kumar and Kumar [36], Kumar
[37, 38], Savaş [50], Subramanian et al [53] and references therein. Hazarika [26]
introduced the concept of generalized difference ideal convergent sequence in random
2-normed space and studied some interesting properties. Çakalli and Hazarika [6]
introduced the new concept ideal quasi Cauchy sequences and studied some results
in real analysis.

The concepts of fuzzy set and fuzzy set operations were first introduced by Zadeh
[61] and subsequently several authors have discussed various aspects of the theory
and applications of fuzzy sets such as fuzzy topological spaces, similarly relations
and fuzzy orderings, fuzzy measures of fuzzy events. In fact the fuzzy set theory has
become an area of active research for the last 45 years. To overcome the limitations
induced by vagueness and uncertainty of real life data, neoclassical analysis [5] has
been developed. It extends the scope and results of classical mathematical analysis
objects; such as functions, sequences and series. On the other hand the concept
of ordinary convergence of sequences of fuzzy numbers was firstly introduced by
Matloka [42], where he proved some basic theorems for sequences of fuzzy numbers.
Nanda [45] studied the sequences of fuzzy numbers and showed that the set of all
convergent sequences of fuzzy numbers from a complete metric space. Kumar et
al [39] introduced the notion limit points and cluster points of sequences of fuzzy
numbers. Kumar and Kumar [35] introduced the ideal convergence of sequences of
fuzzy numbers.

Throughout the article wF , `F
∞, cF , cF

0 denote the classes of all, bounded, conver-
gent and null sequence spaces of fuzzy real numbers, respectively.

We denote w, the set of all real sequences x = (xk). The difference sequence space
is introduced by Kizmaz [32] as follows:

Z(∆) = {(xk) ∈ w : ∆xk ∈ Z},

for Z = `∞, c, c0 and ∆xk = xk − xk+1 for all k ∈ N.
The idea of difference sequence was generalized by Colak and Et [9], Colak et al.

[10], Et and Basarir [14], Et and Colak [15], Et et al. [16]. The operator ∆n : w → w
is defined by

(∆0xk) = xk, (∆1xk) = ∆1xk = xk − xk+1,

(∆nxk) = ∆1(∆n−1xk), n ≥ 2 for all k ∈ N,
156



Bipan Hazarika/Ann. Fuzzy Math. Inform. 7 (2014), No. 1, 155–172

which is equivalent to the following binomial representation

∆nxk =
n∑

ν=0

(−1)ν

(
n

ν

)
xk+ν for all k ∈ N.

Tripathy and Esi [54] introduced and studied the new type of generalized difference
sequence spaces

Z(∆m) = {(xk) ∈ w : ∆mxk ∈ Z},
for Z = `∞, c, c0 where ∆mx = (∆mxk) = (xk − xk+m) for all k, m ∈ N.

Tripathy, et al [60] was further generalized this notion and introduced the follow-
ing sequence spaces. For n ≥ 1 and m ≥ 1,

Z(∆n
m) = {(xk) ∈ w : ∆n

mxk ∈ Z},
for Z = `∞, c, c0. This generalized difference operator has the following binomial
representation

∆n
mxk =

n∑
ν=0

(−1)ν

(
n

ν

)
xk+mν for all k ∈ N.

Dutta [11] introduced the following difference sequence spaces

Z(∆n
(m)) = {(xk) ∈ w : ∆n

(m)xk ∈ Z} for all n,m ∈ N,

for Z = `∞, c, c0 where c, c0 are the sets of statistically convergent and statistically
null sequences, respectively, and ∆n

(m)x = (∆n
(m)xk) = (∆n−1

(m) xk −∆n−1
(m) xk−m) and

∆0
(m)xk = xk for all k ∈ N, which is equivalent to the following binomial represen-

tation

∆n
(m)xk =

n∑
ν=0

(−1)ν

(
n

ν

)
xk−mν .

Basar and Altay [1] introduced the generalized difference matrix B(r, s) = (bnk(r, s))
which is a generalization of ∆1

(1)-difference operator as follows

bnk(r, s) =





r, if k = n;
s, if k = n− 1;
0, if 0 ≤ k < n− 1 or k > n.

for all k, n ∈ N, r, s ∈ R− {0}.
Basarir and Kayikci [2] have defined the generalized difference matrix Bn of order n,
which reduced the difference operator ∆n

(1) in case r = 1, s = −1 and the binomial
representation of this operator is

Bnxk =
n∑

ν=0

(
n

ν

)
rn−νsνxk−ν ,

where r, s ∈ R− {0} and n ∈ N.
Recently Basarir et al [3] introduced the following generalized difference sequence
spaces

Z(Bn
(m)) = {(xk) ∈ w : Bn

(m)xk ∈ Z} for all n,m ∈ N,

for Z = `∞, c, c0 where c, c0 are the sets of statistically convergent and statistically
null sequences, respectively, and Bn

(m)x = (Bn
(m)xk) = (rBn−1

(m) xk + sBn−1
(m) xk−m)
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and B0
(m)xk = xk for all k ∈ N, which is equivalent to the following binomial

representation

Bn
(m)xk =

n∑
ν=0

(
n

ν

)
rn−νsνxk−mν .

Recall that [34] an Orlicz function is a function M : [0,∞) → [0,∞), which is
continuous, non-decreasing and convex with M(0) = 0,M(0) > 0 as x > 0 and
M(x) →∞ as x →∞.

Remark 1.1. It is well known if M is a convex function and M(0) = 0, then
M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

An Orlicz function M is said to be satisfy ∆2-condition for all values of u, if there
exists a constant K > 0 such that M(Lu) ≤ KLM(u) for all values of L > 1(see
Krasnoselskii and Rutitsky [34]).

Lindenstrauss and Tzafriri [41] used the idea of Orlicz function to construct the
sequence space

`M =

{
(xk) ∈ w :

∞∑

k=1

M

( |xk|
ρ

)
< ∞, for some ρ > 0

}
.

The space `M with the norm

||x|| = inf

{
ρ > 0 :

∞∑

k=1

M

( |xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. The space `M is
closely related to the space `p which is an Orlicz sequence space with M(t) = |t|p
for 1 ≤ p < ∞.

At the initial stage Lindberg [40] was studied Orlicz space in connection with
Banach space with symmetric. Nung and Lee [46] were studied different classes
of sequence spaces defined by Orlicz function. Later on the notion was studied
by Mursaleen et al. [44], Hazarika [28, 29], Savas [50], Esi and Hazarika [13] and
references therein.

2. Preliminaries

In this section we recall some definitions related to ideal convergence and fuzzy
real numbers.

Definition 2.1 ([33]). Let S be a non-empty set. Then a non empty class I ⊆ P (S)
is said to be an ideal on S if and only if

(i) φ ∈ I.
(ii) I is additive (i.e. A,B ∈ I ⇒ A ∪B ∈ I)
(iii) hereditary (i.e.A ∈ I,B ⊆ A ⇒ B ∈ I).

Definition 2.2 ([33]). An ideal I ⊆ P (S) is said to be non trivial if I 6= φ and
S /∈ I.

Definition 2.3 ([33]). A non-empty family of sets F ⊆ P (S) is said to be a filter
on S if and only if
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(i) φ /∈ F,
(ii) for each A,B ∈ F we have A ∩B ∈ F
(iii) for each A ∈ F and B ⊃ A, implies B ∈ F.

For each ideal I, there is a filter F (I) corresponding to I i.e. F (I) = {K ⊆ S :
Kc ∈ I}, where Kc = S −K.

Definition 2.4 ([33]). A non-trivial ideal I ⊆ P (S) is said to be
(i) an admissible ideal on S if and only if it contains all singletons, i.e., if it

contains {{x} : x ∈ S}.
(ii) maximal, if there cannot exists any non-trivial ideal J 6= I containing I as

a subset.

Definition 2.5 ([33]). A sequence x = (xk ) of points in R is said to be I-convergent
to the number ` if for every ε > 0, the set {k ∈ N : |xk − `| ≥ ε} ∈ I. In this case we
write I-limxk = `.

Definition 2.6 ([20]). Let I be an ideal in N. If {k + 1 : k ∈ A} ∈ I, for any A ∈ I,
then I is said to be a translation invariant ideal.

Definition 2.7. A sequence space E is said to be
(i) normal (or solid) if (αkxk) ∈ E whenever (xk) ∈ E and for all sequence (αk)

of scalars with |αk| ≤ 1 for all k ∈ N.
(ii) symmetric if (xπ(k)) ∈ E, whenever (xk) ∈ E, where π is a permutation of

N.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is
a sequence space

λE
K = {(xkn) ∈ w : (kn) ∈ E}.

A canonical preimage of a sequence {(xkn)} ∈ λE
K is a sequence {yk} ∈ w defined

as

yk =
{

xk, if k ∈ K
0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages of all

elements in λE
K , i.e. y is in canonical preimage of λE

K if and only if y is canonical
preimage of some x ∈ λE

K .

Definition 2.8. A sequence space E is said to be monotone if E contains the
cannical pre-image of all its step spaces.

A fuzzy number X is a fuzzy subset of the real line R i.e. a mapping X : R →
J(= [0, 1]) associating each real number t with its grade of membership X(t).

Definition 2.9. A fuzzy number X is said to be
(i) convex if X(t) ≥ X(s) ∧X(r) = min{X(s), X(r)}, where s < t < r.
(ii) normal if there exists t0 ∈ R such that X(t0) = 1.
(iii) upper-semi continuous if for each ε > 0, X−1([0, a + ε)) for all a ∈ [0, 1] is

open in the usual topology of R.
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The α -level set of a fuzzy real number X, 0 < α ≤ 1 denoted by Xα is defined
as Xα = {t ∈ R : X(t) ≥ α}.

The set of all upper semi-continuous, normal, convex fuzzy number is denoted by
R(J).

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R. For X = [x1, x2] and Y = [y1, y2] in D, we define

X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2.

Define a metric d on D by

d(X,Y ) = max{|x1 − y1|, |x2 − y2|}.
It can be easily proved that d is a metric on D and (D, d) is a complete metric space.
Also the relation ≤ is a partial order on D.

The absolute value |X| of X ∈ R(J) is defined as

|X|(t) =
{

max{X(t), X(−t)}, if t > 0;
0, if t < 0.

Let d̄ : R(J)× R(J) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d(Xα, Y α).

Then (R(J), d) is a complete metric space.
We define X ≤ Y if and only if Xα ≤ Y α, for all α ∈ J. The additive identity

and multiplicative identity in R(J) are denoted by 0̄ and 1̄, respectively.

Definition 2.10 ([42]). A sequence u = (uk) of fuzzy numbers is said to
(i) bounded if the set {uk : k ∈ N} of fuzzy numbers is bounded.
(ii) convergent to a fuzzy real number u0 if for every ε > 0 , there exists k0 ∈ N

such that d̄(uk, u0) < ε, for all k ≥ n0.

Definition 2.11 ([35]). A sequence u = (uk) of fuzzy numbers is said to I-convergent
if there exists a fuzzy real number u0 such that for each ε > 0, the set

{k ∈ N : d̄(uk, u0) ≥ ε} ∈ I.

We write I-lim uk = u0.

The following well-known inequality will be used throughout the article. Let
p = (pk) be a sequence of positive real numbers with 0 < pk ≤ supk pk = H,D =
max{1, 2H−1} then

|ak + bk|pk ≤ D(|ak|pk + |bk|pk) for all k ∈ N and ak, bk ∈ C.

Also |a|pk ≤ max{1, |a|H} for all a ∈ C.

The following result will be used for establishing some results in this article.

Lemma 2.12. Every normal space is monotone.(please refer to Kamthan and Gupta
[31], page 53).
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3. Bn
(m)-ideal convergence

In this section we intorduce the following definitions.

Definition 3.1. A sequence u = (uk) of fuzzy real numbers is said to be Bn
(m)-I-

convergent or Bn
(m)(I)-convergent to a fuzzy real numbers u0 if for every ε > 0

{k ∈ N : d̄(Bn
(m)xk, u0) ≥ ε} ∈ I for all m,n ∈ N.

or equivalently

{k ∈ N : d̄(Bn
(m)xk, u0) < ε} ∈ F for all m,n ∈ N.

In this case we write I − limk Bn
(m)uk = u0 or uk

Bn
(m)(I)→ u0.

Definition 3.2. Let I be an admissible ideal. A sequence u = (uk) of fuzzy real
numbers is said to be Bn

(m)-I-Cauchy if for every ε > 0 there exists a positive integer
s such that

{k ∈ N : d̄(Bn
(m)uk, Bn

(m)us) ≥ ε} ∈ I.

or equivalently
{k ∈ N : d̄(Bn

(m)uk, Bn
(m)us) < ε} ∈ F.

The proof of the following results are straightforward, so omitted.

Lemma 3.3. If I is a translation invariant ideal and I− limk→∞Bn
(m)uk = u0, then

I − limk→∞Bn
(m)uk+1 = u0.

Proposition 3.4. Let u = (uk) be a sequence of fuzzy real numbers. If I is
an admissible translation invariant ideal and I − limk→∞Bn−1

(m) uk = u0, then I −
limk→∞Bn

(m)uk = u0.

Theorem 3.5. Let u = (uk) be a sequence of fuzzy real numbers. If I−limk Bn
(m)uk =

u0 exists, then it is unique.

Theorem 3.6. If I is an admissible ideal and limk Bn
(m)uk = u0, then

I − limk Bn
(m)uk = u0.

Remark 3.7. If I is not an admissible ideal, then the Theorem 3.6 fails. It follows
from the following example.

Example 3.8. Let us consider (uk) = ( 1̄
2 ) for all k ∈ N. Let S = {0, 1, 2, 3} and I =

{φ, {0, 1}, {0, 1, 2}} be a non-admissible ideal of S. For r = 1, s = −1, n = 1,m = 1,
we have limk→∞Bn

(m)uk = 0̄ but I − limk→∞Bn
(m)uk 6= 0̄.

Theorem 3.9. If I is an admissible ideal. Then (uk) is a Bn
(m)(I)-convergent se-

quence if and only if for every ε > 0, there exists s ∈ N such that{
k ∈ N : d̄(Bn

(m)uk, Bn
(m)us) < ε

}
∈ F.

Theorem 3.10. Let u = (uk) be a sequence of fuzzy real numbers and let I be a
non-trivial admissible ideal in N. If there is a Bn

(m)(I)-convergent sequence v = (vk)
of fuzzy real numbers such that {k ∈ N : Bn

(m)vk 6= Bn
(m)uk} ∈ I, then u is also

Bn
(m)(I)-convergent.
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Proof. Suppose that
{

k ∈ N : Bn
(m)vk 6= Bn

(m)uk

}
∈ I and I−limk Bn

(m)vk = `. Then
for every ε > 0 we get {

k ∈ N : d̄(Bn
(m)vk, `) ≥ ε

}
∈ I.

For every ε > 0 we have{
k ∈ N : d̄(Bn

(m)uk, `) ≥ ε
}
⊆ {k ∈ N : Bn

(m)vk 6= Bn
(m)uk}∪

{
k ∈ N : d̄(Bn

(m)vk, `) ≥ ε
}

.
(3.1)

As I being an admissible ideal, so both the sets of right-hand side of (3.1) is in I,
therefore {

k ∈ N : d̄(Bn
(m)uk, `) ≥ ε

}
∈ I.

This completes the proof. ¤

4. Generalized difference ideal convergent sequence spaces

Throughout this section we assume that I is an admissible ideal of N. In this sec-
tion we introduce some new sequence spaces using the generalized difference matrix
Bn

(m) and Orlicz functions. Let M be an Orlicz function, and p = (pk) be a sequence
of strictly positive real numbers and m,n be nonnegative integers. For some ρ > 0,
we define the following new sequence spaces:

cIF
0 (M,Bn

(m), p) =
{

(uk) ∈ wF :
{

k ∈ N :
[
M

(
d(Bn

(m)uk,0)

ρ

)]pk

≥ ε

}
∈ I

}

cIF (M,Bn
(m), p) =

{
(uk) ∈ wF :

{
k ∈ N :

[
M

(
d(Bn

(m)uk,u0)

ρ

)]pk

≥ ε

}
∈ I,

for u0 ∈ R(J)
}

`F
∞(M, Bn

(m), p) =
{

(uk) ∈ wF : supk

[
M

(
d(Bn

(m)uk,0)

ρ

)]pk

< ∞
}

.

By using these spaces, we can construct the sequence spaces

mIF (M, Bn
(m), p) = cIF (M, Bn

(m), p) ∩ `F
∞(M, Bn

(m), p)

and
mIF

0 (M,Bn
(m), p) = cIF

0 (M, Bn
(m), p) ∩ `F

∞(M,Bn
(m), p).

Now we are ready to give our main results as follows.

Theorem 4.1. Let p = (pk) be a bounded sequence of strictly positive real numbers.
The spaces cIF

0 (M, Bn
(m), p), cIF (M,Bn

(m), p), `F
∞(M, Bn

(m), p), mIF (M, Bn
(m), p) and

mIF
0 (M,Bn

(m), p) are linear.

Proof. We prove the result only for the space cIF (M, Bn
(m), p). The others can be

treated similarly. Let u = (uk) and v = (vk) be two elements of cIF (M, Bn
(m), p) and

α1, α2 be scalars. Let ε > 0 be given. Then there exist some positive numbers ρ1, ρ2

such that

P =

{
k ∈ N :

[
M

(
d(Bn

(m)uk, u0)

ρ1

)]pk

≥ ε

2

}
∈ I

162



Bipan Hazarika/Ann. Fuzzy Math. Inform. 7 (2014), No. 1, 155–172

and

Q =

{
k ∈ N :

[
M

(
d(Bn

(m)vk, v0)

ρ2

)]pk

≥ ε

2

}
∈ I.

Let ρ3 = max(2|α1|ρ1, 2|α2|ρ2). Since M is non-decreasing and convex function,
we have

[
M

(
d(Bn

(m)(α1uk + α2vk), α1u0 + α2v0)

ρ3

)]pk

≤
[
M

(
α1d(Bn

(m)uk, u0)

ρ3

)]pk

+

[
M

(
α2d(Bn

(m)vk, v0)

ρ3

)]pk

≤
[
M

(
d(Bn

(m)uk, u0)

ρ1

)]pk

+

[
M

(
d(Bn

(m)vk, v0)

ρ2

)]pk

.

Now,
{

k ∈ N :

[
M

(
d(Bn

(m)(α1uk + α2vk), α1u0 + α2v0)

ρ3

)]pk

≥ ε

}
⊆ P ∪Q ∈ I.

Therefore (α1u + α2v) ∈ cIF (M, Bn
(m), p). This completes the proof. ¤

Theorem 4.2. For an Orlicz function M,

cIF
0 (M, Bn

(m), p), cIF (M, Bn
(m), p), mIF (M, Bn

(m), p), mIF
0 (M, Bn

(m), p) and
`F
∞(M,Bn

(m), p)

are complete metric spaces with the metric

gBn
(m)

(u, v) = inf

{
ρ

pk
G > 0 : sup

k
M

(
d(Bn

(m)uk, Bn
(m)vk)

ρ

)
≤ 1

}
,

where G = max{1, supk pk}.
Proof. We shall prove the result only for the space cIF (M, Bn

(m), p). The other can
be treated, similarly. It is easy to prove that g∆ is a metric on cIF (M,Bn

(m), p).
Let (uk) be a Cauchy sequence of cIF (M, Bn

(m), p). Let ε > 0 be given. For a fixed
u0 > 0 and choose t > 0 such that M

(
tu0
2

) ≥ 1. Then there exists n0 ∈ N such that

gBn
(m)

(ui, uj) <
ε

tu0
for all i, j ≥ n0.

(4.1) ⇒ inf

{
ρ

pk
G > 0 : sup

k
M

(
d(Bn

(m)u
i
k, Bn

(m)u
j
k)

ρ

)
≤ 1

}
< ε for all i, j ≥ n0.

Let

(4.2) lim
i→∞

ui
k = uk for k = 1, 2, 3, ..., mn.
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Also

(4.3) sup
k

M

(
d(Bn

(m)u
i
k, Bn

(m)u
j
k)

ρ

)
≤ 1 for all i, j ≥ n0 and k ∈ N.

M

(
d(Bn

(m)u
i
k, Bn

(m)u
j
k)

gBn
(m)

(ui, uj)

)
≤ 1 ≤ M

(
tu0

2

)
for all i, j ≥ n0 and k ∈ N.

d(Bn
(m)u

i
k, Bn

(m)u
j
k) <

ε

2
for all i, j ≥ n0 and k ∈ N.

Thus (Bn
(m)u

i
k) is Cauchy sequence of fuzzy numbers. Let limi→∞Bn

(m)u
i
k = uk for

each k ∈ N.
For k = 1 we have, from (4.2),

lim
i→∞

ui
1−mn = u1−mn for n ≥ 1,m ≥ 1.

Proceeding in this way inductively we conclude that

lim
i→∞

ui
k = uk for each k ∈ N.

Also
lim

i→∞
Bn

(m)u
i
k = uk for each k ∈ N.

By the continuity of M, from (4.3) we have

sup
k

M

(
d(Bn

(m)u
i
k, uk)

ρ

)
≤ 1 for all i ≥ n0, j →∞.

⇒ inf

{
ρ

pk
G > 0 : sup

k
M

(
d(Bn

(m)u
i
k, uk)

ρ

)
≤ 1

}
< ε for all i ≥ n0.

Hence from (4.1) on taking limit as j →∞, we get

inf

{
ρ

pk
G > 0 : sup

k
M

(
d(Bn

(m)u
i
k, uk)

ρ

)
≤ 1

}
< ε for all i ≥ n0.

i.e. gBn
(m)

(ui, u) < ε for all i ≥ n0.

Then the inequality

gBn
(m)

(u, 0) ≤ gBn
(m)

(u,Bn
(m)u

i) + gBn
(m)

(Bn
(m)u

i, 0) for all i ≥ n0

implies that (uk) ∈ cIF (M, Bn
(m), p). This completes the proof. ¤

Theorem 4.3. Let M1 and M2 be two Orlicz functions. Then

(i) Z(M2, B
n
(m), p) ⊆ Z(M1M2, B

n
(m), p).

(ii) Z(M1, B
n
(m), p) ∩ Z(M2, B

n
(m), p) ⊆ Z(M1 + M2, B

n
(m), p),

for Z = cIF
0 , cIF ,mIF

0 , mIF , `F
∞.
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Proof. (i) Let u = (uk) ∈ cIF (M2, B
n
(m), p). For some ρ > 0 we have

(4.4)

{
k ∈ N :

[
M2

(
d(Bn

(m)uk, u0)

ρ

)]pk

≥ ε

}
∈ I for every ε > 0.

Let ε > 0 and choose λ with 0 < λ < 1 such that M1(t) < ε for 0 ≤ t ≤ λ. We define

vk =
d(Bn

(m)uk, u0)

ρ

and consider

lim
k∈N;0≤vk≤λ

[M1(vk)]pk = lim
k∈N;vk≤λ

[M1(vk)]pk + lim
k∈N;vk>λ

[M1(vk)]pk .

We have

(4.5) lim
k∈N;vk≤λ

[M1(vk)]pk ≤ [M1(2)]H lim
k∈N;vk≤λ

[vk]pk ,H = sup
k

pk.

For the second summation (i.e.vk > λ), we go through the following procedure. We
have

vk <
vk

λ
< 1 +

vk

λ
.

Since M1 is non-decreasing and convex, it follows that

M1(vk) < M1

(
1 +

vk

λ

)
≤ 1

2
M1(2) +

1
2
M1

(
2vk

λ

)
.

Since M1 satisfies ∆2-condition, we can write

M1(vk) <
1
2
K

vk

λ
M1(2) +

1
2
K

vk

λ
M1(2) = K

vk

λ
M1(2).

We get the following estimates:

(4.6) lim
k∈N;vk>λ

[M1(vk)]pk ≤ max
{
1, (Kλ−1M1(2))H

}
lim

k∈N;vk>λ
[vk]pk .

From (4.4), (4.5) and (4.6), it follows that (uk) ∈ cIF (M1.M2, B
n
(m), p).

Hence cIF (M2, B
n
(m), p) ⊆ cIF (M1.M2, B

n
(m), p).

(ii) Let (uk) ∈ cIF (M1, B
n
(m), p) ∩ cIF (M2, B

n
(m), p). Let ε > 0 be given. Then

there exists ρ > 0 such that
{

k ∈ N :

[
M1

(
d(Bn

(m)uk, u0)

ρ

)]pk

≥ ε

}
∈ I

and {
k ∈ N :

[
M2

(
d(Bn

(m)uk, u0)

ρ

)]pk

≥ ε

}
∈ I

The rest of the proof follows from the following relation:{
k ∈ N :

[
(M1 + M2)

(
d(Bn

(m)uk,u0)

ρ

)]pk

≥ ε

}
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⊆
{

k ∈ N :
[
M1

(
d(Bn

(m)uk,u0)

ρ

)]pk

≥ ε

}
∪

{
k ∈ N :

[
M2

(
d(Bn

(m)uk,u0)

ρ

)]pk

≥ ε

}
.

¤

Taking M2(x) = x and M1(x) = M(x) for all x ∈ [0,∞), we have the following
result.

Corollary 4.4. Then Z(Bn
(m), p) ⊆ Z(M, Bn

(m), p) for Z = cIF
0 , cIF ,mIF

0 ,mIF , `F
∞.

Following standard techniques, one can easily prove the following result.

Theorem 4.5. (a) If M1(x) ≤ M2(x) for all x ∈ [0,∞), then Z(M1, B
n
(m), p) ⊆

Z(M2, B
n
(m), p) for Z = cIF

0 , cIF and `F
∞.

(b) If n1 < n2 then Z(Bn1
(m), p) ⊆ Z(Bn2

(m), p) for Z = cIF
0 , cIF and `F

∞.

Theorem 4.6. Let M be an Orlicz function. Then

cIF
0 (M, Bn

(m)) ⊂ cIF (M, Bn
(m)) ⊂ `F

∞(M, Bn
(m))

and the inclusions are proper.

Proof. Let (uk) ∈ cIF (M,Bn
(m)). Let ε > 0 be given. Then there exists ρ > 0 such

that {
k ∈ N :

[
M

(
d(Bn

(m)uk, u0)

ρ

)]
≥ ε

}
∈ I.

Since

M

(
d(Bn

(m)uk, 0)

ρ

)
≤ 1

2
M

(
d(Bn

(m)uk, u0)

ρ

)
+

1
2
M

(
d(u0, 0)

ρ

)
.

Taking supremum over k on both sides implies that (uk) ∈ `F
∞(M, Bn

(m)).

The inclusion cIF
0 (M,Bn

(m)) ⊂ cIF (M, Bn
(m)) is obvious. The inclusion is strict,

follows from the following example.

Example 4.7. Let M(x) = x for all x ∈ [0,∞) and r = 1, s = −1, n = 1,m = 2.
Consider the sequence (uk) of fuzzy numbers be defined as follows:
For k = 2i, i = 1, 2, 3, ...

uk(t) =





4
k t + 1 , if − k

4 ≤ t ≤ 0;
− 4

k t + 1 , if 0 < t ≤ k
4 ;

0 , otherwise.

otherwise, uk(t) = 0.

For α ∈ (0, 1], the α-level sets of uk and B1
(m)uk are

[uk]α =
{

[k
4 (α− 1), k

4 (1− α)] , if k = 2i, i = 1, 2, 3, ...
[0, 0] , otherwise .
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and

[B1
(2)uk]

α
=





[k
4 (α− 1), k

4 (1− α)] , for k = 2i

[k
4 (α− 1), k

4 (1− α)] , for k + 1 = 2i(i > 1)
[0, 0] , otherwise .

It is easy to prove that the sequences (uk) and (B1
(2)uk) are bounded but these are

not I-convergent. ¤

Theorem 4.8. The spaces mIF
0 (M, Bn−1

(m) , p) and mIF (M, Bn−1
(m) , p) are nowhere

dense subsets of `F
∞(M, Bn−1

(m) , p).

Proof. From Theorem 4.1, it follows that mIF
0 (M, Bn−1

(m) , p) and mIF (M, Bn−1
(m) , p) are

closed subspaces of `F
∞(M, Bn−1

(m) , p). Since the inclusion relations mIF
0 (M, Bn−1

(m) , p) ⊂
`F
∞(M, Bn−1

(m) , p) and mIF (M,Bn−1
(m) , p) ⊂ `F

∞(M, Bn−1
(m) , p) are strict, then the spaces

mIF
0 (M,Bn−1

(m) , p) and mIF (M,Bn−1
(m) , p) are nowhere dense subsets of `F

∞(M, Bn−1
(m) , p).

¤

Theorem 4.9. The inclusions Z(M,Bn−1
(m) , p) ⊆ Z(M, Bn

(m), p) are strict for n ≥ 1.
In general Z(M, Bi

(m), p) ⊆ Z(M, Bn
(m), p) for i = 1, 2, ..., n− 1 and the inclusion is

strict, for Z = cIF
0 , cIF ,mIF

0 ,mIF , `F
∞.

Proof. Let u = (uk) ∈ cIF
0 (M, Bn−1

(m) , p). Let ε > 0 be given. Then there exists ρ > 0
such that {

k ∈ N :

[
M

(
d(Bn−1

(m) uk, 0)

ρ

)]pk

≥ ε

}
∈ I.

Since M is non-decreasing and convex it follows that
[
M

(
d(Bn

(m)uk, 0)

2ρ

)]pk

≤
[
M

(
d(Bn−1

(m) uk, Bn−1
(m) uk+1, 0)

2ρ

)]pk

≤ D

[
1
2
M

(
d(Bn−1

(m) uk, 0)

ρ

)]pk

+ D

[
1
2
M

(
d(Bn−1

(m) uk+1, 0)

ρ

)]pk

≤ DK

[
M

(
d(Bn−1

(m) uk, 0)

ρ

)]pk

+ DK

[
M

(
d(Bn−1

(m) uk+1, 0)

ρ

)]pk

,

where K = max{1,
(

1
2

)H}.
Therefore we have {

k ∈ N :

[
M

(
d(Bn

(m)uk, 0)

2ρ

)]pk

≥ ε

}

⊆
{

k ∈ N : DK

[
M

(
d(Bn−1

(m) uk, 0)

ρ

)]pk

≥ ε

}

∪
{

k ∈ N : DK

[
M

(
d(Bn−1

(m) uk+1, 0)

ρ

)]pk

≥ ε

}
.
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i.e.

{
k ∈ N :

[
M

(
d(Bn

(m)uk, 0)

2ρ

)]pk

≥ ε

}
∈ I.

Hence (uk) ∈ cIF
0 (M,Bn

(m), p).

The inclusion is strict follows from the following example.

Example 4.10. Let M(x) = x for all x ∈ [0,∞), r = 1, s = −1, n = 3,m = 2 and
pk = 1 for all k ∈ N. Consider the sequence (uk) of fuzzy numbers as follows:

uk(t) =




− t

k3−1 + 1 , if k3 − 1 ≤ t ≤ 0;
− t

k3+1 + 1 , if 0 < t ≤ k3 + 1;
0 , otherwise.

For α ∈ (0, 1], the α-level sets of uk, B1
(2)uk, B2

(2)uk and B3
(2)uk are

[uk]α = [(1− α)(k3 − 1), (1− α)(k3 + 1)]
[B1

(2)uk]α = [(1− α)(−3k2 − 3k − 3), (1− α)(−3k2 − 3k + 1)]
[B2

(2)uk]α = [(1− α)(6k + 2), (1− α)(6k + 10)]
[B3

(2)uk]α = [−14(1− α), 2(1− α)],
respectively. It is easy to check that the sequence [B2

(2)uk]α is not I-bounded but
[B3

(2)uk]α is I-bounded. ¤

Theorem 4.11. Let 0 < pk ≤ qk < ∞ for each k. Then
Z(M, Bn

(m), p) ⊆ Z(M, Bn
(m), q)

for Z = cIF
0 and cIF .

Proof. Let (uk) ∈ cIF
0 (M,Bn

(m), p). Then there exists a number ρ > 0 such that
{

k ∈ N :

[
M

(
d(Bn

(m)uk, 0)

ρ

)]pk

≥ ε

}
∈ I.

For sufficiently large k. Since pk ≤ qk for each k, therefore we get{
k ∈ N :

[
M

(
d(Bn

(m)uk,0)

ρ

)]qk

≥ ε

}

⊆
{

k ∈ N :
[
M

(
d(Bn

(m)uk,0)

ρ

)]pk

≥ ε

}
∈ I.

i.e. (uk) ∈ cIF
0 (M, Bn

(m), q). This completes the proof.
Similarly, it can be shown that cIF (M,Bn

(m), p) ⊆ cIF (M, Bn
(m), q). ¤

Corollary 4.12. (a) Let 0 < infk pk ≤ pk ≤ 1. Then
Z(M, Bn

(m), p) ⊆ Z(M,Bn
(m))

for Z = cIF
0 and cIF .

(b) Let 1 ≤ pk ≤ supk pk < ∞. Then Z(M, Bn
(m)) ⊆ Z(M,Bn

(m), p) for Z = cIF
0

and cIF .

Theorem 4.13. If I is an admissible ideal and I 6= If , then the sequence spaces
cIF
0 (M, Bn

(m), p), cIF (M,Bn
(m), p), mIF (M,Bn

(m), p) and mIF
0 (M, Bn

(m), p) are neither
normal nor monotone.
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Proof. We prove this result with the help of following example.

Example 4.14. Let M(x) = x for all x ∈ [0,∞) and r = 1, s = −1, n = 1,m = 1.
For I = Iδ and pk = 1 for all k ∈ N. Consider the sequence (uk) of fuzzy numbers
as follows:

uk(t) =





t− 3k + 1 , if t ∈ [3k − 1, 3k];
−t + 3k + 1 , if t ∈ [3k, 3k + 1];
0 , otherwise.

Let

αk =
{

1 , if k is odd;
0 , if k is even.

Thus (αkuk) /∈ Z(M,Bn
(m)) for Z = cIF

0 , cIF , mIF
0 ,mIF . Therefore cIF

0 (M,Bn
(m), p),

cIF (M, Bn
(m), p), mIF (M, Bn

(m), p) and mIF
0 (M, Bn

(m), p) are not normal. By Lemma
2.12, these spaces are not monotone. ¤

Theorem 4.15. If I is an admissible ideal and I 6= If , then the sequence space
Z(M, Bn

(m), p) is not symmetric, where Z = cIF
0 , cIF ,mIF

0 ,mIF .

Proof. We shall prove the result only for cIF (M, Bn
(m), p) with the help of the fol-

lowing example. The rest of the results follow similar way.

Example 4.16. Let M(x) = x for all x ∈ [0,∞) and r = 1, s = −1, n = 1,m = 1.
For I = Iδ and pk = 1 for all k ∈ N. Consider the sequence (uk) of fuzzy numbers
as follows:

uk(t) =





t− 2k + 1 , if t ∈ [2k − 1, 2k];
−t + 2k + 1 , if t ∈ [2k, 2k + 1];
0 , otherwise.

Thus we have (uk) ∈ cIF (M, Bn
(m), p). But the rearrangement (vk) of (uk) defined

as
vk = {u1, u4, u2, u9, u3, u16, u5, u25, u6, ...}.

This implies that (vk) /∈ cIF (M, Bn
(m), p).

Hence cIF (M,Bn
(m), p) is not symmetric. ¤

5. Conclusions

In this article we have investigated the notion of ideal convergence of sequences
point of view of fuzzy real numbers using a new generalized difference matrix Bn

(m)

and Orlicz functions. Still there are a lot to be investigated on sequence spaces
applying the notion of ideal convergence. The workers will apply the techniques
used in this article for further investigations on ideal convergence for different types
of sequence spaces.

Acknowledgements. The author would like to thank the referees for a careful
reading and several constructive comments that have improved the presentation of
the results.
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