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1. Introduction

The study of fuzzy differential equations (FDEs) is rapidly growing as a new area
in fuzzy analysis. Due to the applicability of the FDEs for the analysis of phenomena
which imprecision is inherent, this class of differential equations is a field of increasing
interest (see [12, 19, 24, 26, 31, 35, 39]). Toady, FDE plays a prominent role in a
range of application areas, including population models [21, 20], civil engineering
[33], particle systems [14, 15, 16, 37], medicine [1, 5, 22, 32], bioinformatics and
computational biology [4, 8, 11].

There are many approaches to define the concept of solution to a fuzzy differential
equation and to study the existence of such solutions. Historically, differentiability
in the sense of Hukuhara is one of the earliest. Under this setting, mainly the
existence and uniqueness of the solution of a fuzzy differential equation have been
studied (see for example[7, 24]). This approach produces the nondecreasing length
of the diameter of the level sets of the solution and therefore, the fuzzy solution
behaves quite differently from the crisp solution [6, 13, 27]. This drawback was
resolved by interpreting the FDE as a family of differential inclusions [23]. However,
this approach has a disadvantage, too: we do not have an adequate definition for
derivative of a fuzzy-valued function [2, 3]. Bede and Gal [6] have introduced a
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more general definition of derivative for fuzzy-valued functions called weakly and
strongly generalized differentials. The strongly generalized differentiability allows
us to resolve the above-mentioned shortcomings [9, 10].

In this paper, following the idea in [17] and using a homotopy principle as well as
the Leray-Schauder degrees, we establish some sufficient conditions for the existence
and uniqueness of solution to a fuzzy differential equation subject to boundary value
conditions under the generalized differentiability.

2. Preliminaries

2.1. Basic concepts.

Let RF be the set of all real fuzzy numbers which are normal, upper semicontin-
uous, convex and compactly supported fuzzy sets.
The parametric form of a fuzzy number is shown by v = (v(r), v(r)), where functions
v(r) and v(r); 0 ≤ r ≤ 1 satisfy the following requirements [29]:

(1) v(r) is monotonically increasing left continuous function.
(2) v(r) is monotonically decreasing left continuous function.
(3) v(r) ≤ v(r), 0 ≤ r ≤ 1.

For 0 ≤ r ≤ 1, denote [v]r = {x ∈ R; v(x) ≥ r} and [v]0 = {x ∈ R; v(x) > 0}. Then,
it is well-known that for any r ∈ [0, 1], [v]r = [vr, vr] is a bounded closed interval.
For u, v ∈ RF , and λ ∈ R, the sum u ⊕ v and the product λ ¯ u are defined by
[u⊕ v]r = [u]r + [v]r, [λ¯ v]r = λ.[v]r, ∀r ∈ [0, 1], where [u]r + [v]r means the usual
addition of two intervals of R and λ[u]r means the usual product between a scalar
and a subset of R.

Noting that a crisp number α is simply represented by v(r) = v(r) = α, 0 ≤ r ≤ 1.

Let A, B two nonempty bounded subsets of R. The Hausdorff distance between
A and B is

dH(A, B) = max

[
sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
]

.

The metric dH on RF is as follows,

d∞(u, v) = sup {dH([u]r, [v]r), r ∈ [0, 1]} , u, v ∈ RF .

Definition 2.1. Let I be a real interval. The mapping f : I → RF is called a fuzzy
function and its r−level set is denoted by

[f(t)]r =
[
fr(t), f

r
(t)

]
, t ∈ I, r ∈ [0, 1].

Definition 2.2. Let x, y ∈ RF . If there exists z ∈ RF such that x = y ⊕ z, then z
is called the Hukuhara difference of x and y and it is denoted by xª y.

Let us remark that xª y 6= x⊕ (−1)¯ y.

Definition 2.3 ([9]). Let be f : I → RF and t0 ∈ I. We say that f is generalized
differentiable at t0 if:
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(1) it exists an element f ′(t0) ∈ RF such that, for all h > 0 sufficiently near to
0, there are f(t0 + h)ª f(t0), f(t0)ª f(t0 − h) and the limits (in the metric
d∞)

(2.1) lim
h→0+

f(t0 + h)ª f(t0)
h

= lim
h→0+

f(t0)ª f(t0 − h)
h

= f ′(t0)

or
(2) it exists an element f ′(t0) ∈ RF such that, for all h > 0 sufficiently near to

0, there are f(t0 + h)ª f(t0), f(t0)ª f(t0 − h) and the limits

(2.2) lim
h→0−

f(t0 + h)ª f(t0)
h

= lim
h→0−

f(t0)ª f(t0 − h)
h

= f ′(t0).

We say a function is (1)-differentiable if it satisfies form (1) and call it (2)-
differentiable if it satisfies form (2).

Theorem 2.4 ([9]). Let f : I → RF be a function and denote [f(t)]r = [fr(t), f
r
(t)],

for each r ∈ [0, 1]. Then
(i) if f is differentiable in the first form (1), then fr(t) and f

r
(t) are differen-

tiable functions and

(2.3) [f ′(t)]r = [(fr)′(t), (f
r
)′(t)]

(ii) if f is differentiable in the second form (2), then fr(t) and f
r
(t) are differ-

entiable functions and

(2.4) [f ′(t)]r = [(f
r
)′(t), (fr)′(t)]

Let (fr)′(t) and (f
r
)′(t) also be continuous functions with respect to both t and r.

This property is called continuity condition (see also [36]). The continuity condition
is assumed to hold for all fuzzy functions in the rest of the paper.

Definition 2.5. Let f : [0, T ] → RF . The integral of f in [0, T ], (denoted by∫
[0,T ]

f(t)dt or
∫ T

0
f(t)dt) is defined levelwise as the set of integrals of the (real)

measurable selections for [f ]r, for each r ∈ (0, 1]. We say that f is integrable over
[0, T ] if

∫
[0,T ]

f(t)dt ∈ RF and we have
[∫ T

0

f(t)dt

]r

=

[∫ T

0

fr(t)dt,

∫ T

0

f
r
(t)dt

]
,

for each r ∈ (0, 1].

Remark 2.6. It is obviously satisfied that a continuous function is integrable.

Lemma 2.7 ([30]). The fuzzy differential equation x′(t) = f(t, x), x(0) = x0, where
f : I × RF → RF is supposed to be continuous, is equivalent to one of the integral
equations:

x(t) = x(0)⊕
∫ t

0

f(s, x(s))ds, ∀t ∈ I

or

x(0) = x(t)⊕ (−1)¯
∫ t

0

f(s, x(s))ds, ∀t ∈ I

17



Amin Esfahani et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 1, 15–29

depending on the generalized differentiability considered, (1)-differentiability or (2)-
differentiability, respectively.

2.2. Fuzzy boundary value problem.

Let us consider the following fuzzy differential equation subject to boundary con-
ditions

(2.5)
{

y′ = f(t, y), t ∈ I = [0, T ],
λy(0) = y(T ),

where T > 0, λ > 0, f : I × RF → RF , and the derivative of y is considered in the
sense of generalized differentiable.

Set
C(I,RF ) = {y : I → RF : y is continuous}

and
C1(I,RF ) = {y : I → RF : y, y′ are continuous},

equipped with usual supremum norms.

A solution to problem (2.5) is a continuously differentiable function y : I → RF
(i.e., y ∈ C1(I,RF )) for which conditions in (2.5) are fulfilled.

To study problem (2.5), we use a topological tool which is the Leray-Schauder
degrees are defined and a homotopy principle [28, 34].

3. Existence and Uniqueness

In this section, the solvability of problem (2.5) shall be investigated. We consider
the following three cases: λ > 1, λ = 1, and 0 < λ < 1.

3.1. Case λ > 1.

The following lemma gives us the integral form of (2.5).

Lemma 3.1. Suppose λ > 1. The boundary value problem (2.5) for (1)-differenti-
ability is equivalent to the integral equation

(3.1) y(t) =
1

λ− 1

∫ T

0

f(s, y(s))ds⊕
∫ t

0

f(s, y(s)) ds.

Proof. See [17]. ¤

Remark 3.2. For (2)-differentiability, from Lemma 2.7, we have

(3.2) y(0) = y(t)⊕ (−1)¯
∫ t

0

f(s, y(s)) ds,

for t ∈ [0, T ] satisfying λy(0) = y(T ). So, the boundary condition produces

y(0) = y(T )⊕ (−1)¯
∫ T

0

f(s, y(s)) ds
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or

(3.3) y(0) = λy(0)⊕ (−1)¯
∫ T

0

f(s, y(s)) ds.

Passing to the level sets, we get

[
yr(0), yr(0)

]
= λ.

[
yr(0), yr(0)

]
+ (−1).

[∫ T

0

f(s, y(s)) ds

]r

,

or
[
(1− λ).yr(0), (1− λ).yr(0)

]
= (−1).

[∫ T

0

f(s, y(s)) ds

]r

.

Consequently,

yr(0) =
−1

1− λ
.

(∫ T

0

f
r
(s, y(s)) ds

)

and

yr(0) =
−1

1− λ
.

(∫ T

0

fr(s, y(s)) ds

)
.

Since λ > 1, then −1
1−λ > 0 and therefore we have

(3.4) (λ− 1).[yr(0), yr(0)] =

[∫ T

0

f
r
(s, y(s)) ds,

∫ T

0

fr(s, y(s)) ds

]
, ∀ r ∈ [0, 1].

Generally, the right side of Eq. (3.4) is not a fuzzy number unless for all r ∈ [0, 1],
∫ T

0

f
r
(s, y(s)) ds =

∫ T

0

fr(s, y(s)) ds,

and this means
∫ T

0
f(s, y(s))ds or y(0) are crisp (real number). Hence, for (2)-

differentiability, the solution is crisp.

Theorem 3.3. (Existence)
Suppose λ > 1 holds and f ∈ C([0, T ] × RF ;RF ). If there exist functions p, r ∈
C([0, T ]; [0,∞)) such that

(3.5) d∞(f(t, y), 0̃) ≤ p(t)d∞(y, 0̃) + r(t), for all t ∈ [0, T ], y ∈ RF ,

and

(3.6)
λ

λ− 1
.

∫ T

0

p(s) ds < 1,

then the boundary value problem (2.5) in the sense of (1)-differentiability has at least
one solution in C([0, T ]× RF ).

Proof. In the view of Lemma 3.1, we are going to show that there exists at least one
solution to (3.1), which is equivalent to show that (2.5) has at least one solution. Let
us consider the operator A : C([0, T ];RF ) → C([0, T ];RF ) defined for all t ∈ [0, T ]
by

(3.7) Ay(t) =
1

λ− 1
¯

∫ T

0

f(s, y(s)) ds⊕
∫ t

0

f(s, y(s)) ds.
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Thus our problem is reduced to proving the existence of at least one ν such that

(3.8) ν = Aν.

Now consider the following family of problems associated with (3.8), namely

(3.9) y = γAy, γ ∈ [0, 1].

Let

H0 =
λ

λ− 1
.

From (3.9) see that for all t ∈ [0, T ],

d∞(y(t), 0̃) = d∞(γAy, 0̃) = d∞(
γ

λ− 1
¯

∫ T

0

f(s, y(s))ds⊕ γ ¯
∫ t

0

f(s, y(s))ds, 0̃)

≤ d∞(
γ

λ− 1
¯

∫ T

0

f(s, y(s))ds, 0̃) + d∞(γ ¯
∫ t

0

f(s, y(s))ds, 0̃)

≤ γ

λ− 1
.

∫ T

0

d∞(f(s, y(s)), 0̃)ds + γ.

∫ t

0

d∞(f(s, y(s)), 0̃)ds

≤ γ

λ− 1
.

∫ T

0

d∞(f(s, y(s)), 0̃)ds + γ.

∫ T

0

d∞(f(s, y(s)), 0̃)ds

≤ γH0.

∫ T

0

d∞(f(s, y(s)), 0̃)ds

< H0.

∫ T

0

d∞(f(s, y(s)), 0̃)ds

≤ H0.

∫ T

0

(
p(s)d∞(y(s), 0̃) + r(s)

)
ds

≤ H0.

(
max

s∈[0,T ]
d∞(y(s), 0̃)

∫ T

0

p(s)ds +
∫ T

0

r(s)ds

)
.

By rearranging and taking the maximum, we obtain

(3.10) max
s∈[0,T ]

d∞(y(s), 0̃) ≤ H0.
∫ T

0
r(s)ds

1−H0.
∫ T

0
p(s)ds

=: L.

Define the open ball with center 0̃ by

BL+1 =
{

y ∈ C([0, T ];RF ) : d∞(y(t), 0̃) < L + 1
}

.

We can see from (3.10) that all possible solutions to (3.9) satisfy d∞(y(t), 0̃) <
L+1 for all t ∈ [0, T ]. Thus, the following Leray-Schauder degrees are defined and a
homotopy principle is applicable (see [28, 34]); and therefore we have from 0̃ ∈ BL+1

that

degLS(I − A, BL+1, 0̃) = degLS(I − γA, BL+1, 0̃),

= degLS(I, BL+1, 0̃) = 1,
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where I is identity map. Thus the non-zero property of the Leray-Schauder degree
[28, 34] ensures the existence of at least one solution in BL+1 to (3.1) and hence to
(2.5). ¤

The following corollary is a direct consequence of Theorem 3.3.

Corollary 3.4. Suppose that λ > 1 and f ∈ C([0, T ]×RF ;RF ). If f(t, y) is bounded
on [0, T ]×RF , then the fuzzy BVP (2.5) has at least one solution in C([0, T ];RF ).

Theorem 3.5 (Uniqueness). Suppose λ > 1 and f ∈ C(I×RF ,RF ). If there exists
function p ∈ C(I; [0,∞)) such that

(3.11) d∞(f(t, y1), f(t, y2)) ≤ p(t) d∞(y1, y2), for all t ∈ [0, T ], y ∈ RF ,

and

(3.12)
λ

λ− 1
.

∫ T

0

p(s)ds < 1,

then, the boundary value problem (2.5) has a unique solution in C(I,RF) in the
sense of (1)-differentiability.

Proof. The proof is similar to the proof of Theorem 3.3 in [17]. Let C(J,RF ) denote
the set of all continuous functions from J ⊂ R to RF . Define the metric

D(u, v) = sup
J

d∞(u(t), v(t)),

for u, v ∈ C(J,RF ). Since (RF , d∞) is a complete metric space [24, 25], a standard
argument shows that space (C(J,RF ), D) is also complete.

Now suppose that there are two solutions y1, y2 to (2.5). Then
d∞(y1, y2) = d∞(Ay1,Ay2)

= d∞
(

1
λ−1 ¯

∫ T

0
f(s, y1(s))ds⊕ ∫ t

0
f(s, y1(s))ds,

1
λ−1 ¯

∫ T

0
f(s, y2(s))ds⊕ ∫ t

0
f(s, y2(s))ds

)

≤ 1
λ−1 .d∞

(∫ T

0
f(s, y1(s))ds,

∫ T

0
f(s, y2(s))ds

)

+d∞(
∫ t

0
f(s, y1(s))ds,

∫ t

0
f(s, y2(s))ds)

≤ 1
λ−1 .

(∫ T

0
d∞(f(s, y1(s)), f(s, y2(s)))ds

)

+
∫ t

0
d∞(f(s, y1(s)), f(s, y2(s)))ds

≤ 1
λ−1 .

(∫ T

0
p(s)d∞(y1(s), y2(s))ds

)
+

∫ t

0
p(s)d∞(y1(s), y2(s))ds

≤ 1
λ−1 .

(∫ T

0
p(s)d∞(y1(s), y2(s))ds

)
+

∫ T

0
p(s)d∞(y1(s), y2(s))ds

≤ 1
λ−1 .D(y1, y2)

∫ T

0
p(s)ds + D(y1, y2)

∫ T

0
p(s)ds

= λD(y1,y2)
λ−1 .

∫ T

0
p(s)ds.

Consequently it is deduced that

D(y1, y2)

(
1− λ

λ− 1
.

∫ T

0

p(s)ds

)
≤ 0.
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So, we have D(y1, y2) = 0, for all t ∈ [0, T ], since λ
λ−1 .

∫ T

0
p(s)ds < 1. Hence, the

solution is unique. ¤

3.2. Case 0 < λ < 1.

In this case, the following lemma gives us the integral form of (2.5) for (2)-
differentiability.

Lemma 3.6. Suppose 0 < λ < 1. The boundary value problem (2.5) for (2)-
differentiability is equivalent to the integral equation

(3.13) y(t) =
1

λ− 1
¯

∫ T

0

f(s, y(s))dsª (−1)¯
∫ t

0

f(s, y(s))ds.

Proof. Let y : I → RF satisfy (2.5). It is easy to see from Lemma 2.7 that

(3.14) y(t) = y(0)ª (−1)¯
∫ t

0

f(s, y(s))ds,

for t ∈ [0, T ], satisfying λy(0) = y(T ). The boundary condition produces

y(0) = y(T )ª (−1)¯
∫ T

0

f(s, y(s))ds;

or equivalently

(3.15) y(0) = λy(0)ª (−1)¯
∫ T

0

f(s, y(s))ds.

Passing to the level sets, we get

[
(1− λ).yr(0), (1− λ).yr(0)

]
= (−1).

[∫ T

0

fr(s, y(s))ds,

∫ T

0

f
r
(s, y(s))ds

]
.

Consequently,

yr(0) =
−1

1− λ
.

(∫ T

0

f
r
(s, y(s))ds

)

and

yr(0) =
−1

1− λ
.

(∫ T

0

fr(s, y(s))ds

)
.

Since 0 < λ < 1, then by producing the fuzzy number

(3.16) y(0) =
−1

1− λ
¯

∫ T

0

f(s, y(s))ds,

So substituting (3.16) into (3.14) we obtain, for t ∈ T ,

y(t) =
−1

1− λ
¯

∫ T

0

f(s, y(s))dsª (−1)¯
∫ t

0

f(s, y(s))ds.

¤
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Remark 3.7 ([17]). In the sense of (1)-differentiability, one can observe for any
solution y of (2.5) that diam ([y(t)]r) is nondecreasing in variable t, for any fixed
r ∈ [0, 1]. Therefore the boundary conditions

λyr(0) = yr(T ), λyr(0) = yr(T )

imply that

diam ([y(T )]r) = yr(T )− yr(T ) = λ
(
yr(0)− yr(0)

)

= λdiam ([y(0)]r) < yr(0)− yr(0) = diam ([y(0)]r) .

If y(0) is not crisp, then for some r,

diam ([y(T )]r) < diam ([y(0)]r) ,

so that we can not find a solution to (2.5). For the existence of solution, it is
necessary that

λy(0) = y(T ) = y(0) +
∫ T

0

f(s, y(s))ds;

hence

(λ− 1).yr(0) =
∫ T

0

fr(s, y(s))ds

and

(λ− 1).yr(0) =
∫ T

0

f
r
(s, y(s))ds.

Consequently,

(λ− 1). diam ([y(0)]r) =
∫ T

0

diam ([f(s, y(s)]r)) ds ≥ 0,

and diam ([y(0)]r) > 0 leads to contradiction. Therefore, the unique possibility is
diam ([y(0)]r) = 0. Summary, for (1)-differentiability, if λ ∈ (0, 1) and y(0) is crisp,
then the solution is crisp.

Theorem 3.8. (Existence)
Suppose 0 < λ < 1 holds and f ∈ C([0, T ] × RF ;RF ). If there exist functions
p, r ∈ C([0, T ]; [0,∞)) such that

(3.17) d∞(f(t, y), 0̃) ≤ p(t)d∞(y, 0̃) + r(t), for all t ∈ [0, T ], y ∈ RF ,

(3.18)
∫ T

0

p(s)ds <
1− λ

2− λ
,

then the boundary value problem (2.5) in the sense of (2)-differentiability has at least
one solution in C([0, T ]× RF ).

Proof. In the view of Lemma 3.6, we are going to show that there exists at least one
solution to (3.13), which is equivalent to show that (2.5) has at least one solution. Let
us consider the operator A : C([0, T ];RF ) → C([0, T ];RF ), defined for all t ∈ [0, T ]
by

(3.19) Ay(t) =
−1

1− λ
¯

∫ T

0

f(s, y(s))dsª (−1)¯
∫ t

0

f(s, y(s))ds.
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Thus our problem is reduced to proving the existence of a solution ν of

(3.20) ν = Aν.

Now, consider the following family of problems associated with (3.20), namely

(3.21) y = γAy, γ ∈ [0, 1].

Let

H1 =
2− λ

1− λ
.

It is seen from (3.21) that for all t ∈ [0, T ],

d∞(y(t), 0̃) = d∞
(
γAy, 0̃

)

= d∞

(
−γ

1− λ
¯

∫ T

0

f(s, y(s))dsª (−1).γ ¯
∫ t

0

f(s, y(s))ds, 0̃

)

≤ |γ|d∞
(

1
1− λ

¯
∫ T

0

f(s, y(s))ds,

∫ t

0

f(s, y(s))ds

)

≤ γ.d∞

(
2− λ

1− λ
¯

∫ T

0

f(s, y(s))ds, 0̃

)

≤ γH1.d∞

(∫ T

0

f(s, y(s))ds, 0̃

)

≤ H1.

∫ T

0

(
p(s)d∞(y(s), 0̃) + r(s)

)
ds

≤ H1

(
max

s∈[0,T ]
d∞(y(s), 0̃)

∫ T

0

p(s)ds +
∫ T

0

r(s)ds

)
.

So, by rearranging and taking the maximum, we obtain

(3.22) max
s∈[0,T ]

d∞(y(s), 0̃) ≤ H1.
∫ T

0
r(s)ds

1−H1.
∫ T

0
p(s)ds

=: L.

Again, define the open ball with center 0̃ by

BL+1 =
{

y ∈ C([0, T ];RF ) : d∞(y(t), 0̃) < L + 1
}

.

We can see from (3.22) that all possible solution to (3.21) satisfy d∞(y(t), 0̃) < L+1
for all t ∈ [0, T ]. Therefore, similar to the proof of Theorem 3.3, the non-zero
property of the Leray-Schauder degree ensures the existence of at least one solution
in BL+1 to (3.13) and hence to (2.5). ¤

Theorem 3.9. (Uniqueness)
Suppose 0 < λ < 1 and f ∈ C(I ×RF ,RF ). If there exists function p ∈ C(I; [0,∞))
such that

(3.23) d∞(f(t, y1), f(t, y2)) ≤ p(t) d∞(y1, y2), for all t ∈ [0, T ], y ∈ RF ,
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and

(3.24)
∫ T

0

p(s)ds <
1− λ

2− λ
,

then the boundary value problem (2.5) has a unique solution in C(I,RF ) for (2)-
differentiable.

Proof. Suppose that there are two solutions y1, y2 to (2.5) in the sense of (2)-
differentiability. Then

d∞(y1, y2) = d∞(Ay1,Ay2)

= d∞

(
−1

1− λ
¯

∫ T

0

f(s, y1(s))dsª (−1)¯
∫ t

0

f(s, y1(s))ds ,

−1
1− λ

¯
∫ T

0

f(s, y2(s))dsª (−1)¯
∫ t

0

f(s, y2(s))ds

)

≤ 1
1− λ

.d∞

(∫ T

0

f(s, y1(s))ds,

∫ T

0

f(s, y2(s))ds

)

+ d∞

(∫ t

0

f(s, y1(s))ds,

∫ t

0

f(s, y2(s))ds

)

≤ 1
1− λ

.

(∫ T

0

d∞(f(s, y1(s)), f(s, y2(s)))ds

)

+
∫ t

0

d∞(f(s, y1(s)), f(s, y2(s)))ds

≤ 1
1− λ

.

(∫ T

0

p(s)d∞(y1(s), y2(s))ds

)
+

∫ t

0

p(s)d∞(y1(s), y2(s))ds

≤ 1
1− λ

.

(∫ T

0

p(s)d∞(y1(s), y2(s))ds

)
+

∫ T

0

p(s)d∞(y1(s), y2(s))ds

≤ 1
1− λ

.D(y1, y2)
∫ T

0

p(s)ds + D(y1, y2)
∫ T

0

p(s)ds

=
(2− λ)
1− λ

.D(y1, y2)
∫ T

0

p(s)ds.

By rearranging, we obtain

D(y1, y2)

(
1− (2− λ)

1− λ
.

∫ T

0

p(s)ds

)
≤ 0.

So, by using (3.24), we have for all t ∈ [0, T ] that D(y1, y2) = 0, and hence the
solution is unique. ¤

3.3. Case λ = 1.
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Here, we consider the following fuzzy differential equation

(3.25) y′ = f(t, y), t ∈ I = [0, T ], y(0) = y(T ).

For (1)-differentiable, the equivalent integral expression and the boundary condition
imply that

y(0) = y(T ) = y(0)⊕
∫ T

0

f(s, y(s))ds,

that is

0̃ = y(0)ª y(0) =
∫ T

0

f(s, y(s))ds,

where

0̃(x) =





1 x = 0,

0 otherwise.

This expression is equivalent to

0 =
∫ T

0

fr(s, y(s))ds ≤
∫ T

0

f
r
(s, y(s))ds = 0, for every r ∈ [0, 1].

Also, for (2)-differentiable have the equivalent integral expression and the boundary
condition imply that

y(0) = y(T )⊕ (−1)¯
∫ T

0

f(s, y(s))ds,

y(0)ª y(0) = (−1)¯
∫ T

0

f(s, y(s))ds,

that is

0̃ = (−1)¯
∫ T

0

f(s, y(s))ds.

This expressing is equivalent to

0 = (−1).
∫ T

0

f
r
(s, y(s))ds ≤ (−1).

∫ T

0

fr(s, y(s)) = 0, for everyr ∈ [0, 1].

Hence, in both cases, we have
∫ T

0

(
fr(s, y(s))− f

r
(s, y(s))

)
ds = 0, for every r ∈ [0, 1],

and by continuity

(3.26) fr(s, y(s)) = f
r
(s, y(s)), for every r ∈ [0, 1], s ∈ [0, T ].

Therefore, (3.26) and 0 =
∫ T

0
fr(s, y(s))ds are two necessary conditions to obtain

(periodic) solutions to problem (3.25).
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Remark 3.10. [17] In the case (1)-differentiable, for each r ∈ [0, 1],

diam ([y(t)]r)

= diam
([

yr(0) +
∫ t

0
fr(s, y(s))ds, yr(0) +

∫ t

0
f

r
(s, y(s))ds

])

= diam ([y(0)]r) +
∫ t

0
diam ([f(s, y(s))]r) ds.

For the function y(t) to be constant in the variable t, for every r ∈ [0, 1] fixed, it
is necessary that diam ([f(s, y(s))]r) = 0, for all r ∈ [0, 1] and s ∈ [0, T ]. In other
words, assuming that f is continuous, the solution y has level sets with constant
diameter if, for every r ∈ [0, 1], and every s ∈ [0, T ], diam ([f(s, y(s))]r) = 0, that is
f(t, y(t)) is crisp, for every t ∈ [0, T ].

In particular, if f(t, x) is crisp, for every t ∈ [0, T ] and x ∈ RF , then the diameter
of each level set for the solutions to the initial value problem associated to equation
y′(t) = f(t, y(t)), t ∈ [0, T ], is constant. Note that this does not mean that the
solutions are crisp, but diam ([y(t)]r) = diam ([y(0)]r), for every t ∈ [0, T ] and
r ∈ [0, 1], that is, the diameter of each level set of the solution is diameter of the
corresponding level set of the initial condition. Under this assumption, there could
be fuzzy periodic solutions, too.

4. Summary and conclusions

In this work, we studied a class of fuzzy differential equations with boundary
value conditions. Indeed, using the approach of the generalized differentiability and
a homotopy principle as well as the Leray-Schauder degrees, we achieved to show
that problem (2.5) possesses at least one solution under some appropriate conditions.
Our results will be used in further works to verify numerical solutions of (2.5) which
their results will be appeared somewhere in our future studies.
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