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Abstract. We employ the variational iteration method (VIM) to
obtain approximate analytical solutions to three dimensional fuzzy heat-
like equations. We follow the same strategy as in Buckley-Feuring method
for solving three dimensional fuzzy heat-like equations. This method does
not always produce a solution, if the method fails to give a solution, then
we need to check if Seikkala procedure generates a solution. We get the
fuzzy solution for fuzzy heat-like equations which are obtained via the
variational iteration method and illustrate examples are presented to show
the Buckley-Feuring solution and Seikkala solution.
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1. Introduction

The study of fuzzy partial differential equation forms a suitable setting for math-
ematical modeling of real world problem in which uncertainties or vagueness. The
concept of fuzzy set was introduced by Zadeh[19] in 1965. It is describing vague-
ness in linguistic and also base on the fuzzy set theory. The term fuzzy differential
equation(FDE) was introduced in 1978 by Kaendal and Byatt[13]. There have been
many suggestions for fuzzy derivative to study fuzzy differential equation. Fuzzy
differential equation solution based on different notations of fuzzy derivative such as
Seikkala derivative, Buckley-Feuring derivative, Puri-Ralescu derivative, Kaendel-
Friedman-Ming derivative, Goetschel-Voxman derivative, or Dubois-Prade deriva-
tive. These derivatives are having some relationship. Some of these relationship
are presented by Buckley and Feuring in[1]. The fuzzy differential equations and
fuzzy initial value problem were regularly treated by O.Kaleva[12] and S.Seikkala[17].
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Buckley and Feuring introducing the concept of elementary fuzzy partial differential
equations(FPDE) and also discuss the existence of Buckley-Feuring solution(BF-
solution)[1]. When a physical problem is transformed into a deterministic heat-like
equation, we cannot usually be sure that this modeling is perfect. Also, the initial
and boundary value may not be known exactly. If the nature of errors is random,
then instead of a deterministic problem, we get a random heat-like equation with
random initial and boundary values. But if the underlying structure is not proba-
bilistic, e.g., because of subjective choice, then it may be appropriate to use fuzzy
numbers instead of real random variables. Hence, our idea is solving three dimen-
sional heat-like equation with fuzzy parameters via same startgy as Buckley-Feuring
using variational iteration method. The variational iteration method (VIM) plays
an important role in both mathematics and engineering. This method was proposed
by Ji-Huan He as a modification of a general Lagrange multiplier method [11]. It
has been shown that this procedure is a powerful tool for solving various kinds
of problems (see [2], [6]-[10], [18]). The VIM gives rapidly convergent successive
approximations of the exact solution.

The paper is structured as follows: In section 2, we define the problem, which
is a three dimensional fuzzy heat-like equation where a analytical solution is the
main interest of this work and the VIM are illustrated. Also the same strategy
as in Buckley-Feuring is presented for three dimensional fuzzy heat-like equation.
Next section, we give the two examples, in the first example BF-solution exists
and the second example if BF-solution does not exist but the S-solution can exist.
Conclusions are drown in Section 4.

2. Analysis of fuzzy heat-like equations

In this section, we demonstrate the main algorithm of Variational Iteration Method
on heat-like equation and fuzzify the equation. Finally, we will present a sufficient
condition for the BF-Solution exist.

2.1. Fuzzy heat-like equations. In here, we consider the heat-like equation with
variable coefficients described by three dimensions which can be written in the form
as follows

Ut + f1(x, y, z)Uxx + f2(x, y, z)Uyy + f3(x, y, z)Uzz = Q(x, y, z, t, k)(2.1)

subject to the certain initial and boundary conditions. These initial and boundary
conditions, in state three-dimensional, can come variety of forms such as U(x, y, z, 0) =
c1, Ut(x, y, z, 0) = φ1(x, y, z, c2), U(M1, x, y) = φ2(x, y, z, c3, c4), . . .. At this point
we will not give any explicit structure to the boundary conditions except to say they
depend on constants cl, . . . cm2 with the cr in intervals Lr, 1 < r < m1.

In this work the method is illustrated for heat-like Eq. (2.1). In the following
lines, the components of Eq. (2.1) are enumerated:

• I1 = [M1,M2], I2 = [M3,M4], I3 = [M5,M6] and I4 = [0,M7] are intervals,
which Mn1(n1 = 1, 2, 3, 4, 5, 6) is negative or positive and M7 > 0.

• Q(x, y, z, t, k), U(x, y, z, t), f1(x, y, z), f2(x, y, z) and f3(x, y, z) will be con-
tinuous functions for (x, y, z, t) ∈ ∏4

j=1 Ij .
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• f1(x, y, z), f2(x, y, z) and f3(x, y, z) have a finite number of roots for each
(x, y, z) ∈ ∏3

j=1 Ij .
• k = (k1, . . . , km1) and c = (c1, . . . , cm2) are vector of constants with kl in

interval Jl and cr in interval Lr.
Assume that Eq.(2.1) has a solution

U(x, y, z, t) = G(x, y, z, t, k, c),(2.2)

for continuous G with (x, y, z, t) ∈ ∏4
j=1 Ij , k ∈ J =

∏m1
l=1 Jl and c ∈ L =

∏m2
r=1 Lr.

Suppose the constants kl and cr are imprecise in their values. We will model this
uncertainty by substitute triangular fuzzy numbers for kl and cr. If we fuzzify Eq.
(2.1), then we obtain the fuzzy heat-like equation. Using the extension principle we
compute Q̄ from Q where Q̄(x, y, z, K̄) has K̄ = (K̄1, . . . , K̄m1), for a triangular fuzzy
number K̄l ∈ Jl, 1 ≤ l ≤ m1. The function U become Ū , where Ū :

∏4
j=1 Ij → RF .

That is Ū(x, y, z, t) is a fuzzy number. The fuzzy heat-like equation is

Ūt + f1(x, y, z)Ūxx + f2(x, y, z)Ūyy + f3(x, y, z)Ūzz = Q̄(x, y, z, t, k)(2.3)

subject to the certain initial and boundary conditions. The initial and bound-
ary conditions can be of the form Ū(x, y, z, 0) = C̄1, Ūt(x, y, z, 0) = φ̄1(x, y, z, C̄2),
Ū(M1, x, y, t) = φ̄2(x, y, z, C̄3, C̄4), . . .

The φ̄j is the extension principle of φj . We wish to solve the problem given in
Eq.(2.3). Finally, we fuzzify G in Eq.(2.2). Let Z̄(x, y, z, t) = Ḡ(x, y, z, K̄, C̄) where
Z̄ is computed using the extension principle and is a fuzzy solution. Next Section ,
we will discuss solution with the same strategy as Buckley-Feuring for fuzzy heat-like
equation. Let K̄[α] =

∏m1
l=1 K̄[α] and C̄[α] =

∏m2
r=1 C̄[α].

2.2. He’s variational iteration method. To illustrate the basic idea of the VIM,
we consider the following general partial differential equation:

LtU + LxU + LyU + LzU + NU = Q(x, y, z, t),(2.4)

where Lt, Lx, Ly and Lz are linear operators of x, y, z and t respectively, N is a
nonlinear operator and Q(x, y, z, t) is the source non-homogeneous term. According
to the VIM ([6]-[9]), we construct a correction functional for Eq.(2.1) in t-direction
as follows

Un+1(x, y, z, t) = Un(x, y, z, t) +

t∫

0

λ(s)
{

(Un)ss + f1(x, y, z)(Ũn)xx

+f2(x, y, z)(Ũn)yy + f3(x, y, z)(Ũn)zz −Q
}

ds,(2.5)

where n ≥ 0 and λ is a Lagrange multiplier[11]. We now determine the Lagrange
multiplier

δUn+1(x, y, z, t) = δUn(x, y, z, t) + δ

t∫

0

λ(s)
{

(Un)s + f1(x, y, z)(Ũn)xx

+f2(x, y, z)(Ũn)yy + f3(x, y, z)(Ũn)zz −Q
}

ds,
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δUn+1(x, y, z, t) = δUn(x, y, z, t) + λ(s)δ((Un)s)|s=t −
t∫

0

λ′(s)δUn ds,

δUn : λ′(s) = 0,
δUn : 1− λ(s)|s=t = 0.

So, the Lagrange multiplier is λ = −1. Submitting the result into Eq.(2.5) leads to
the following iteration formula

Un+1(x, y, z, t) = Un(x, y, z, t)−
t∫

0

{(Un)s + f1(x, y, z)(Un)xx

+f2(x, y, z)(Un)yy + f3(x, y, z)(Un)zz −Q}ds.(2.6)

Iteration formula start with an initial approximation, for example U0(x, y, z, t) =
U(x, y, z, 0). Note that the VIM also has been used for system of linear and nonlinear
partial differential equations([6]-[9]).

2.3. Solutions. We first present the Buckley and Feuring solution (BF-solution)[1].
Let

Z̄(x, y, z, t)[α] = [z1(x, y, z, t, α), z2(x, y, z, t, α)] ,
and
Q̄(x, y, z, t, K̄)[α] = [q1(x, y, z, t, α), q2(x, y, z, t, α)] ,

that by the definition

z1(x, y, z, t, α) = min{G(x, y, z, t, k, c)|k ∈ K̄[α], c ∈ C̄[α]},
z2(x, y, z, t, α) = max{G(x, y, z, t, k, c)|k ∈ K̄[α], c ∈ C̄[α]}
and
q1(x, y, z, t, α) = min{Q(x, y, z, t, k)|k ∈ K̄[α]},
q2(x, y, z, t, α) = max{Q(x, y, z, t, k)|k ∈ K̄[α]}

for all x, y, z, t and α.
Assume that the f1(x, y, z), f2(x, y, z), f3(x, y, z) and the zi(x, y, z, t, α) have a

continuous partials so that (zi)t+f1(x, y, z)(zi)xx+f2(x, y, z)+(zi)yy+f3(x, y, z)(zi)zz

is continuous for i = 1, 2 and all (x, y, z, t) ∈ ∏4
j=1 Ij and α ∈ [0, 1]. Define

Γ(x, y, z, α) = [(z1)t + f1(x, y, z)(z1)xx + f2(x, y, z) + (z1)yy + f3(x, y, z)(z1)zz,

(z2)t + f1(x, y, z)(z2)xx + f2(x, y, z) + (z2)yy + f3(x, y, z)(z2)zz]

for all (x, y, z, t) ∈ ∏4
j=1 Ij and all α. If, for each fixed (x, y, z, t) ∈ ∏4

j=1 Ij ,

Γ(x, y, z, t, α) defines α-cut of fuzzy number, then will say that Z̄(x, y, z, t) is differ-
entiable and is written

Γ(x, y, z, t, α) = Z̄t[α] + f1(x, y, z)Z̄xx[α]
+f2(x, y, z)Z̄yy[α] + f3(x, y, z)Z̄zz[α](2.7)

for all (x, y, z, t) ∈ ∏4
j=1 Ij and all α. Γ(x, y, z, t, α) defines an α-cut of a fuzzy

number if the following conditions hold:
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(i): (z1(x, y, z, t, α))t + f1(x, y, z)(z1(x, y, z, t, α))xx

+f2(x, y, z)(z1(x, y, z, t, α))yy + f3(x, y, z)(z1(x, y, z, t, α))zz

is an increasing function of α for each (x, y, z, t) ∈ ∏4
j=1 Ij :

(ii): (z2(x, y, z, t, α))t + f1(x, y, z)(z2(x, y, z, t, α))xx

+f2(x, y, z)(z2(x, y, z, t, α))yy + f3(x, y, z)(z2(x, y, z, t, α))zz

is an decreasing function of α for each (x, y, z, t) ∈ ∏4
j=1 Ij ; and

(iii): (z1(x, y, z, t, α))t + f1(x, y, z)(z1(x, y, z, t, α))xx

+f2(x, y, z)(z1(x, y, z, t, α))yy + f3(x, y, z)(z1(x, y, z, t, α))zz

≤ (z2(x, y, z, t, α))t + f1(x, y, z)(z2(x, y, z, t, α))xx

+f2(x, y, z)(z2(x, y, z, t, α))yy + f3(x, y, z)(z2(x, y, z, t, α))zz

for all (x, y, z, t) ∈ ∏4
j=1 Ij .

We had already assumed that zi(x, y, z, t, α) had continuous partials so

(zi)t + f1(x, y, z)(zi)xx + f2(x, y, z) + (zi)yy + f3(x, y, z)(zi)zz

is continuous on
∏4

j=1 Ij × [0, 1] for i = 1, 2. Hence, if the conditions (i)-(iii) hold,
Z̄(x, y, z, t) is differentiable. Z̄(x, y, z, t) will be a BF-solution of the fuzzy heat-
like equation if: (i) Z̄(x, y, z, t) be differential; (ii) Eq.(2.1) holds for Ū(x, y, z, t) =
Z̄(x, y, z, t); and (c) Z̄(x, y, z, t) satisfies the initial and boundary conditions. Since
there is not specified particular initial and boundary conditions then only is checked
if Eq.(2.1) holds. We will say that Z̄(x, y, z, t) is a BF-solution (without the initial
and boundary conditions) if Z̄(x, y, z, t) is differentiable and

Z̄t + f1(x, y, z)Z̄xx + f2(x, y, z)Z̄yy + f3(x, y, z)Z̄zz = Q̄(x, y, z, t, k)(2.8)

or the following equations must hold:

(z1)t + f1(x, y, z)(z1)xx + f2(x, y, z) + (z1)yy + f3(x, y, z)(z1)zz

= q1(x, y, z, t, α),(2.9)

(z2)t + f1(x, y, z)(z2)xx + f2(x, y, z) + (z2)yy + f3(x, y, z)(z2)zz

= q2(x, y, z, t, α),(2.10)

for all (x, y, z, t) ∈ ∏4
j=1 Ij and α.

If Z̄(x, y, z, t) is BF-solution and it satisfies the boundary conditions we will say
that Z̄(x, y, z, t) is a BF-solution satisfying the boundary conditions.

If Z̄(x, y, z, t) is not a BF-solution, then we will consider the Seikkala solution
(S-solution) [17].

Let us define the S-solution. Let Ū(x, y, z, t)[α] = [u1(x, y, z, t, α), u2(x, y, z, t, α)].
Consider the system of heat-like equations

(u1)t + f1(x, y, z)(u1)xx + f2(x, y, z)(u1)yy + f3(x, y, z)(u1)zz = q1(x, y, z, t, α),
(u2)t + f1(x, y, z)(u2)xx + f2(x, y, z)(u2)yy + f3(x, y, z)(u2)zz = q2(x, y, z, t, α),

for all (x, y, z, t) ∈ ∏4
j=1 Ij and α ∈ [0, 1]. We append to Eqs.(2.9) and (2.10) any

boundary conditions. For example, if they were Ū(x, y, z, 0) = C̄1 and Ū(x, y, z, M1)
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= C̄2 then we add

u1(x, y, z, 0, α) = c11(α)
u2(x, y, z, 0, α) = c12(α)
u1(x, y, z, M1, α) = c21(α)
u2(x, y, z, M1, α) = c22(α)





(2.11)

where C̄i[α] = [ci1(α), ci2], i = 1, 2. Let ui(x, y, z, t, α) solve Eqs. (2.9) and (2.10),
plus the boundary conditions. If

[u1(x, y, z, t, α), u2(x, y, z, t, α)](2.12)

defines the α-cut of fuzzy number, for all (x, y, z, t) ∈ ∏4
j=1 Ij and α, then

Ū(x, y, z, t, α) is the S-Solution. Clearly if the BF-solution satisfying the bound-
ary conditions is Z̄(x, y, z, t), then Z̄(x, y, z, t) is also the S-solution. As we shall see,
the S-solution can exist when the BF-solution fails to exist.

Now we will present a sufficient condition for the BF-solution to exist such as
Buckley and Feuring. Since there are such a variety of possible initial and boundary
conditions, so we will omit them from the following theorem. One must separately
check out the initial and boundary conditions. So, we will omit the constants cr, 1 ≤
r ≤ m2, from the problem. Hence, Eq.(2.2) becomes U(x, y, z, t) = G(x, y, z, t, k),
so Z̄(x, y, z, t) = Ḡ(x, y, z, t, K̄).

Theorem 2.1. Assume Z̄(x, y, z, t) is differentiable.
(a) If for all i ∈ {1, . . . , n}, G(x, y, z, t, k) and Q(x, y, z, t, k) are both increasing

(or both decreasing) in ki, for (x, y, z, t) ∈ ∏4
j=1 and k ∈ J , then Z̄(x, y, z, t) is a

BF-solution.
(b) If there is an i ∈ {1, . . . , n} so that for variable ki, G(x, y, z, t, k) is strictly

increasing and Q(x, y, z, t, k) is strictly decreasing (or G(x, y, z, t, k) is strictly de-
creasing Q(x, y, z, t, k) is strictly increasing), for (x, y, z, t) ∈ ∏4

j=1 and k ∈ J , then
Z̄(x, y, z, t) is not a BF-solution.

Proof. Proof is similar to proof of Theorem 1 in [1] ¤

Corollary 2.2. Assume Z̄(x, y, z, t) is differentiable.
(a) Z̄(x, y, z, t) is a BF-solution if

f1(x, y, z) > 0, f2(x, y, z) > 0, f3(x, y, z) > 0, (x, y, z) ∈
3∏

j=1

Ijand(2.13)

∂G

∂kl

∂Q

∂kl
> 0, for all l = 1, . . . , n, (x, y, z, t) ∈

4∏

j=1

Ijand k ∈ J.(2.14)

(b) If the (2.13) do not hold or the relation (2.14) does not hold for some l, then
Z̄(x, y, z, t) is not BF-solution.

We will say that derivative conditions holds for three dimensional fuzzy heat-like
equation with variable coefficients when Eqs. (2.13) and (2.14) are true.

Theorem 2.3. (1) If Z̄(x, y, z, t) is a BF-solution then Z̄(x, y, z, t) is a S-solution.
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(2) If Ū(x, y, z, t) and the derivative conditions holds, then Ū(x, y, z, t) is a BF-
solution.

Proof. Proof is similar to proof of Theorem 4.2 and Theorem 4.3 in [1]. ¤

3. Some examples

Example 3.1. We consider a fuzzy heat-like equation with variable coefficients
described by a three-dimensional of the form

ut +
1
36

(
x2Uxx + y2Uyy + z2Uzz

)
= kx2y2z2(3.1)

and the initial condition U(x, y, z, 0) = c1x
2 + c2y

2− c3z
2, where x ∈ [0, 1], t ∈ [0, 1]

and the value of parameters k ∈ [0, J1], and c1, c2, c3 ∈ [0, L].

By using the variational iteration method for three dimensional in equation (3.1),
the following solution can be obtained

U(x, y, z, t) = G(x, y, z, t, c1, c2, c3, k) =
1
36

(c1x
2 + c2y

2 − c3z
2)(e−t − 35)

−1
6
kx2y2z2(e−6t − 1).

Now, we fuzzify the function Q(x, y, z, k) and G(x, y, z, c1, c2, c3, k) producing their
α-cuts

z1(x, y, z, t, α) =
1
36

(c11(α)x2 + c21(α)y2 − c32(α)z2)(e−t − 35)

−1
6
k2(α)x2y2z2(e−6t − 1),

(3.2)

z2(x, y, z, t, α) =
1
36

(c12(α)x2 + c22(α)y2 − c31(α)z2)(e−t − 35)

−1
6
k1(α)x2y2z2(e−6t − 1),

(3.3)

and also obtain for Q(x, y, z, k)

Q1(x, y, z, t, α) = k1(α)x2y2z2,

Q2(x, y, z, t, α) = k2(α)x2y2z2,

where K̄(α) = [k1(α), k2(α)], and C̄j(α) = [cj1(α), cj2(α)] for j = 1, 2, 3.
we first need to check to see if Z̄(x, y, z, t) is differentiable. We compute

(zi)t +
1
36

x2(zi)xx +
1
36

y2(zi)yy +
1
36

z2(zi)zz = kix
2y2z2,

for i = 1, 2 which are α-cuts of K̄x2y2z2 that is α-cut of a fuzzy number. Hence,
Z̄(x, y, z, t) is differentiable. Due to the corollary Z̄(x, y, z, t) is BF-solution because
of

f1(x, y, z) > 0, f2(x, y, z) > 0, f3(x, y, z) > 0 and
∂Q

∂k
> 0,

∂G

∂k
> 0.

The initial conditions are

zi(x, y, 0, α) = c1i(α)x2 + c2i(α)y2 − c3i(α)z2
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for all i = 1, 2. Also satisfies the initial condition. Therefore, BF-solution holds the
initial condition may written as

Z̄(x, y, t, α) =
1
36

(C̄1x
2 + C̄2y

2 − C̄3z
2)(e−t − 35)− 1

6
K̄x2y2z2(e−6t − 1).

α-Cuts of above equation produces Eqs.(3.2) and (3.3) for all x, y, z ∈ [0, 1] and
t ∈ [0, 1].

Example 3.2. Consider the three dimensional fuzzy heat like equation as

Ut − 1
2

(Uxx + Uyy + Uzz) = k1x
2 + k2y

2 + k3z
2,(3.4)

subject to the initial condition U(x, y, z, 0) = 0, where x, y, z ∈ [0, 1], t > 0 and the
value of parameters k1, k2 and k3 are in intervals [0, J ].

Now, we apply the variational iteration scheme of Eq. (3.4) has the form

Un+1(x, y, z, t) = Un(x, y, z, t) +
∫ t

0

λ(s)
{

(Un(X))s − 1
2

[
(Ũn(X))xx

+(Ũn(X))yy + (Ũn(X))zz

]
− k1x

2 − k2y
2 − k3z

2
}

ds
(3.5)

where X = (x, y, z, s) n ≥ 0 and U(x, y, z, 0) = 0. This implies that, the stationary
conditions are

1 + λ|s=t = 0, λ′(s) = 0

Hence, the Lagrange multiplier is λ = −1. Substituting this value of the Lagrange
multiplier into the functional (3.5) yields the iteration formula

Un+1(x, y, z, t) = Un(x, y, z, t)−
∫ t

0

{
(Un(X))s − 1

2

[
(Ũn(X))xx

+(Ũn(X))yy + (Ũn(X))zz

]
− k1x

2 − k2y
2 − k3z

2
}

ds

(3.6)

We begin with an initial approximation: U0(x, y, z, t) = U(x, y, z, 0) = 0, and using
the iteration formula (3.6), we obtain the closed form of the exact solution after the
fourth iteration
U(x, y, z, t) = G(x, y, z, t, k1, k2, k3)

= k1

(
x2t + x

t2

2
+

t3

12

)
+ k2

(
y2t + y

t2

2
+

t3

12

)
+k3

(
z2t + z

t2

2
+

t3

12

)

There is no BF-solution because f1(x, y, z) = −1 < 0, f2(x, y, z) = −1 < 0 and
f3(x, y, z) = −1 < 0 by the corollary (2.3.1). We proceed to look for a S-solution.
We have to solve the following equations.

(u1(x, y, z, t, α))t− 1
2 (u2(x, y, z, t, α))xx− 1

2 (u2(x, y, z, t, α))yy− 1
2 (u2(x, y, z, t, α))zz

= k11(α)x2 + k21(α)y2 + k31(α)z2, (u1(x, y, z, t, α))t − 1
2 (u1(x, y, z, t, α))xx

− 1
2 (u1(x, y, z, t, α))yy − 1

2 (u1(x, y, z, t, α))zz

= k12(α)x2 + k22(α)y2 + k32(α)z2,
subject to initial condition

uj(x, y, z, 0, α) = 0
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for j = 1, 2, where K̄i = [ki1(α), ki2(α)] for i = 1, 2, 3. By VIM, The solution is

u1(x, y, z, t, α) = k11(α)
(

x2t +
t3

12

)
+ k21(α)

(
y2t +

t3

12

)
+ k31(α)

(
z2t +

t3

12

)

+ k12(α)x + k22(α)y + k32(α)z, u2(x, y, z, t, α)

= k12(α)
(

x2t +
t3

12

)
+ k22(α)

(
y2t +

t3

12

)
+ k32(α)

(
z2t +

t3

12

)

+ k11(α)x + k21(α)y + k31(α)z.

Now we need to check if [u1(x, t, α), u2(x, t, α)] defines α-cuts of a fuzzy num-
ber for x ∈ [0, π/2], t ∈ [0, π/2] . Since the ui(x, y, z, t, α) are continuous and

u1(x, y, z, t, 1) = u2(x, y, z, t, 1), Now we only to check is
∂u1

∂α
> 0 and

∂u2

∂α
< 0.

There is a region R contained in [0, 1]× [0, 1] for which the S-solution exists and in
[0, 1]× [0, 1]−R There may be no S-solution. Since K̄i, ∀ i = 1, 2, 3 are triangular
fuzzy numbers we know that k′i1(α), ∀ i = 1, 2, 3 are all positive numbers while
k′i2(α), ∀ i = 1, 2, 3 therefore, we pick simple fuzzy parameter so that k′i1(α) = b > 0
and k′i2(α) = −b. The “prime” denotes differentiation with respect to α. Hence, for
a S-solution we require

∂u1

∂α
= b

(
(x2 + y2 + z2)t− (x + y + z)

t2

2
+

t3

4

)
> 0,

∂u2

∂α
= −b

(
(x2 + y2 + z2)t− (x + y + z)

t2

2
+

t3

4

)
< 0.

(3.7)

The inequality (3.7) holds if each

1
2t

(
t2

2
+

√
t4

4
− 4(y2 + z2)t− (y + z)

t2

2
+

t3

4

)
< x ≤ 1, y, z ∈ [0, 1],

and t > 0, therefore Z̄(x, y, z, t) is S-solution and

Z̄(x, y, z, t) = K̄1(α)
(

x2t +
t3

12

)
+ K̄2(α)

(
y2t +

t3

12

)
+ K̄3(α)

(
z2t +

t3

12

)

+K̄1(α)x + K̄2(α)y + K̄3(α)z,

for all ki ∈ [0, J ], ∀ i = 1, 2, 3 and

1
2t

(
t2

2
+

√
t4

4
− 4(y2 + z2)t− (y + z)

t2

2
+

t3

4

)
< x ≤ 1, y, z ∈ [0, 1] and t > 0.

4. Conclusion

The VIM has been successfully applied to find exact solution of time dependent
fuzzy heat-like equations three dimensions with variable co-efficients. This method
solve the problem without any need for discretization of variables. The results
shows that the VIM is a simple and reliable method for finding exact solution to
fuzzy heat-like equations. Our strategy based on Buckley-Feuring[1] consist of two
type of solutions (1) BF-solution, (2) S-solution. We presented examples showing
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the situation where BF-solution exists and does not exist. If the BF-solution fails
to exist we check if the S-solution exists and when the S-solution fails to exist, we
offer no solution to the fuzzy heat-like equations.
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