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Abstract. This paper presents a fuzzy goal programming (FGP) tech-
nique for solving Quadratic Bi-Level Fractional Multi-Objective Program-
ming (QBL-FMOP) Problems. The present approach is an extension work
of B. B Pal and B. N. Moitra in [10] and I. A. Baky in [2]. In a bi-level
programming problem (BLPP), two decision makers (DMs) are located
at two different hierarchical levels, each independently controlling one set
of decision variables with different and perhaps conflicting objectives. In
the present article both the lower level decision maker (LLDM) and upper
level decision maker (ULDM) solve the problem for the decision variables
and if the obtained result is not satisfactory from the DMs point of view,
then both the DMs make a balance of decision powers i.e. the leader and
follower would have to give possible relaxations of their decisions which
depends on the decision-making context. At the first phase of the solution
process, we transform the fractional quadratic programming model into an
equivalent nonlinear quadratic problem. In this stage the above obtained
quadratic problem is again transformed into an equivalent linear member-
ship function by using first order Taylor series expansion. An illustrative
numerical example is given in the end to demonstrate the procedure.
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1. Introduction

A bi-level programming problem is formulated for a problem in which two de-
cision makers make decisions successively. For example, in a decentralized firm, top
management, an executive or headquarters makes a decision such as a budget of the
firm, and then each division determines a production plan in the full knowledge of
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the budget. We can find many instances of decision problem, which are formulated
as bi-level programming problem, and concerning the above mentioned hierarchical
decision problem in decentralized firm, it is natural that the decision makers behave
cooperatively rather than noncooperatively.

Edmund and Bard [6] dealt with nonlinear bi-level mathematical problems in
1991. Savard and Gauvin [13] proposed steepest decent direction for the nonlinear
bi-level programming. Vicente et. al. [15] discussed descent approach for quadratic
bi-level programming problem (QBLPP) in 1994. Pal and Moitra [10] proposed FGP
procedure to QBLPP.

During the mid-1960s and early 1970s of the last century, fractional programming
(FP) was studied extensively [4, 3] in the literature. A usual linear fractional pro-
gramming problem is a special case of a nonlinear programming problem, but it can
be transformed into a linear programming problem by using the variable transfor-
mation method by Charnes and Cooper (1962). It can also transform the quadratic
fractional programming problem into a quadratic programming problem by using
the proper transformation.

In a BLPP, if the objective functions are linear fractional forms, then the problems
are termed as linear fractional bi-level programming problem (LFBLPPs) and if they
are of nonlinear fractional forms, they are termed as nonlinear fractional bi-level
programming problems (NLFBLPPs). Quadratic fractional bi-level programming
problem (QFBLPP) is one type of NLFBLPP.

The use of the fuzzy set theory [16] for decision problems with several conficting
objectives was first introduced by Zimmermann [19]. Thereafter, various versions of
fuzzy programming (FP) have been investigated and widely circulated in literature[5,
18].

Abo-Sinha [1] discussed multi-objective optimization for solving non-linear multi-
objective bi-level programming problem in fuzzy environment. Baky [2] studied FGP
algorithm for solving decentralized bi-level multi-objective programming problems.
Zhang et al. [17] presented an algorithm to fuzzy linear multi objective bi-level
programming problems by using λ-cut method. Gao et al [7] studied fuzzy linear
BLMOPP based on λ-cut and goal programming.

In the present study, the FGP method is used to solve QBL-FMOP. In the model
formulation process, the membership functions defined for the fuzzy goal of the
problem are transformed into flexible forms by assigning the highest degree (unity)
of the membership functions as their aspiration level. A linearization technique
is adopted to linearize the quadratic fractional goals and to arrive at the most
satisfactory solution in the decision making context.

The model formulation of the problem is presented in the next section.

2. Problem formulation

Complete residuated lattices, first introduced in the 1930sAssume that there
are two levels in a hierarchy structure with upper-level decision maker (ULDM)
and lower-level decision maker (LLDM). Let the vector of decision variables X =
(X1, X2) ∈ Rn be partitioned between the two planners. The upper-level decision
maker has control over the vector X1 ∈ Rn1 and the lower-level decision maker has
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control over the vector X2 ∈ Rn2 , where n = n1 + n2. We also assume that

Fi(X1, X2) : Rn1 ×Rn2 −→ Rmi i = 1, 2,

are the upper-level and lower-level vector objective functions, respectively. So the
QBL-FMOP problem of minimization type may be formulated as follows [2]:

(Upper Level)

min
X1

F1(X1, X2) = min
X1

(
f11(X1, X2), f12(X1, X2), . . . , f1m1(X1, X2)

)
,

where X2 solves

(Lower Level)

min
X2

F2(X1, X2) = min
X2

(
f21(X1, X2), f22(X1, X2), . . . , f2m2(X1, X2)

)
,

subject to

(2.1) X ∈ S = {X = (X1, X2) ∈ Rn|A1X1 + A2X2




6
=
>


 b,X ≥ 0, b ∈ Rm}.

Where

(2.2) fij(X1, X2) =
Pij(X1, X2)
Qij(X1, X2)

,

here

Pij(X1, X2) = CijX +
1
2
XT DijX and Qij(X1, X2) = C̄ijX +

1
2
XT D̄ijX

j = 1, 2, . . . ,m1, i = 1 for ULDM objective functions,

j = 1, 2, . . . , m2, i = 2 for LLDM objective functions,

and where

1. X1 = (x1
1, x

2
1, . . . , x

n1
1 ), X2 = (x1

2, x
2
2, . . . , x

n2
2 ).

2. Feasible region S( 6= ∅) is convex.
3. m1is the number of upper-level objective functions.
4. m2is the number of lower-level objective functions.
5. m is the number of the constraints.
6. Ai : m× ni matrix i = 1, 2.
7. Cij , C̄ij and b are constant vectors.
8. Dij and D̄ij are constant symmetric matrices.
9. Qij(X1, X2) > 0 for all X ∈ S.
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3. Fuzzy programming formulation of QBL-FMOP

In QBL-FMOP problems, if an imprecise aspiration level is assigned to each of
the objectives (fij(X), i = 1, 2, j = 1, 2, . . . ,mi), then these fuzzy objectives are
termed as fuzzy goals. They are to be characterized by their associated membership
functions by defining the tolerance limits for achievement of their aspired levels.

Let (X1j
1 , X1j

2 ; fmin
1j , j = 1, 2, . . . ,m1) and (X2j

1 , X2j
2 ; fmin

2j , j = 1, 2, . . . , m2) be
the optimal solutions of ULDM and LLDM objective functions, respectively, when
calculated in isolation over the feasible solution space S. Let lij ≥ fmin

ij be the
aspiration level assigned to the ijth objective fij(X1, X2) (the subscript ij means
that j = 1, 2, . . . , m1 when i = 1 for ULDM problem and j = 1, 2, . . . ,m2 when
i = 2 for LLDM problem). Then, the fuzzy goals appear as

fij(X1, X2) . lij ,

where ” . ” indicate the fuzziness of the aspiration levels and is to be understood
as ”essentially less than” [19, 12].

Now, using the individual optimal solutions we find the values of all the objec-
tive functions at each individual optimal solution and formulate a payoff matrix as
follows:

(3.1)




f11(X11) · · · f1m1(X
11) f21(X11) · · · f2m2(X

11)
...

...
...

...
...

...
f11(X1m1) · · · f1m1(X

1m1) f21(X1m1) · · · f2m2(X
1m1)

f11(X21) · · · f1m1(X
21) f21(X21) · · · f2m2(X

21)
...

...
...

...
...

...
f11(X2m2) · · · f1m1(X

2m2) f21(X2m2) · · · f2m2(X
2m2)




where

Xij = (Xij
1 , Xij

2 ) i = 1, 2, j = 1, 2, . . . , mi.

The maximum value of each column can be considered as the upper tolerance
limit uij , i = 1, 2, j = 1, 2, . . . , mi of the fuzzy goal to the objective functions
(fij(X1, X2), i = 1, 2, j = 1, 2, . . . , mi).
The solution usually are different because the objectives of ULDM and the objectives
of LLDM are conflicting in natural, therefore, it can easily be assumed that all values
larger than or equal to uij( i = 1, 2, j = 1, 2, . . . ,mi, ) are absolutely unacceptable
to ULDM and LLDM. So the membership functions µfij (fij(X1, X2)) for the ijth
fuzzy goal can be expressed algebraically as:

(3.2) µfij (fij(X1, X2) =





1 fij 6 lij
uij − fij(X1, X2)

uij − lij
lij 6 fij 6 uij

0 fij > uij

Let

XL
1 = min{X2j

1 |j = 1, 2, . . . , m2}, XL
2 = min{X1j

2 |j = 1, 2, . . . , m1},
XU

1 ≤ max{X1j
1 |j = 1, 2, . . . , m1}, XU

2 ≤ max{X2j
2 |j = 1, 2, . . . , m2}.
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Now, it is mentioned that the decisions lower than XL
1 and XL

2 are absolutely
acceptable to the respective DMs. But, to make a balance of decision powers, the
leader and follower would have to give possible relaxations of their decisions XL

1 and
XL

2 , respectively, and that depends on the decision-making context.
Let XU

1 and XU
2 be the upper tolerance limits of the respective decisions. Then,

XL
1 ≤ X1 ≤ XU

1

(3.3) XL
2 ≤ X2 ≤ XU

2

appear as constraints in making decisions.

4. FGP model of QBL-FMOP

In decision making situation, the aim of each DM is to achieve highest membership
value (unity) of the associated fuzzy goal in order to obtain the absolute satisfac-
tory solution. However, in real practice, achievement of all membership values to
the highest degree (unity) is not possible due to conficting objectives. Therefore,
decision policy for minimizing the regrets of the DMs for all the levels should be
taken into consideration. Therefore, each DM should try to maximize his or her
membership function by making them as close as possible to unity by minimizing its
negative-deviational variables. In FP approaches, the highest degree of membership
function is one. So, as in Mohamed [9], for the defined membership functions in
(3.2), the flexible membership goals for both the levels can be presented as

µfij (fij(X1, X2)) + d−ij − d+
ij = 1, i = 1, 2, j = 1, 2, . . . ,mi,

or equivalently as

(4.1)
uij − fij(X1, X2)

uij − lij
+ d−ij − d+

ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

where d−ij ,d
+
ij ≥ 0 with d−ij × d+

ij = 0 represent the under-and over-deviational,
respectively, from the aspired levels. In this paper GP approach to fuzzy multi-
objective decision making problems introduced by Mohamed [9] is extended to solve
QBL-FMOP problems. Therefore, considering the goal achievement problem of the
goals at the same priority level, the equivalent fuzzy quadratic bi-level fractional
multi-objective goal programming model of the problem can be presented as

MinZ =
m1∑

j=1

w−1jd
−
1j +

m2∑

j=1

w−2jd
−
2j

subject to

u1j − f1j(X1, X2)
u1j − l1j

+ d−1j − d+
1j = 1 j = 1, 2, . . . ,m1,
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u2j − f2j(X1, X2)
u2j − l2j

+ d−2j − d+
2j = 1 j = 1, 2, . . . ,m2,

XL
1 ≤ X1 ≤ XU

1

XL
2 ≤ X2 ≤ XU

2

(4.2) (X1, X2) ∈ S

d−ij , d
+
ij ≥ 0 with d−ij × d+

ij = 0 i = 1, 2, j = 1, 2, . . . , mi,

where the numerical weights w−ij represent the relative importance of achieving the
aspired levels of the respective fuzzy goals subject to the constraints set in the
decision situation. In the present formulation, these values are determined as [9]

(4.3) w−ij =
1

uij − lij
i = 1, 2, j = 1, 2, . . . , mi.

It can be easily realized that the membership goals in (4.2) are in the form of
quadratic fractional. So, the existing FGP procedure cannot be used directly to
solve the problem. To avoid such problems, a linearization procedure is presented
in the following section.

5. Linearization of membership goals

In this section a linearization process for the quadratic fractional objectives on
using the method of changing variable the under- and over-deviational variables of
the membership goals associated with the fuzzy goals of the model is introduced to
solve the problem. Considering the ijth membership goal in (4.2) can be presented
as

hijuij−hijfij(X1, X2)+d−ij−d+
ij = 1 where hij =

1
uij − lij

i = 1, 2, j = 1, 2, . . . , mi.

Introducing the expression of fij(X1, X2) from (2.2). The above goal can be pre-
sented as

hijuij − hij
Pij(X1, X2)
Qij(X1, X2)

+ d−ij − d+
ij = 1,

or equivalently as

(hijuij − 1)Qij(X1, X2)− hijPij(X1, X2) + d−ijQij(X1, X2)− d+
ijQij(X1, X2) = 0.

Hence we have

(5.1) Gij + d−ijQij(X1, X2)− d+
ijQij(X1, X2) = 1,

where

(5.2) Gij = (hijuij − 1)Qij(X1, X2)− hijPij(X1, X2) + 1.

6
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Now, using the method of variable change as presented by Kornbluth and Steuer
[8] Pal et al. [11], and Steuer [14], the goal expression in (5.1) can be linearized as
follows.

Let D−
ij = d−ijQij(X1, X2) and D+

ij = d+
ijQij(X1, X2); the quadratic form of the

expression in (9) is obtained as

(5.3) Gij + D−
ij −D+

ij = 1,

with D−
ij , D

+
ij ≥ 0 and D−

ijD
+
ij = 0 since d−ij , d

+
ij ≥ 0 and Qij(x1, x2) > 0.

Here, clearly the equation (5.3) contains only quadratic forms without any frac-
tional part. Next, we transform the quadratic membership functions in (5.3), into
equivalent linear membership functions, by first order Taylor series as follows.

Let, X◦ = (X◦
1 , X◦

2 ) determined by maximize the each of the objectives in upper
level and lower level membership functions µfij (X) associated to upper level and
lower level fij(X1, X2)(i = 1, 2, j = 1, 2, . . . , mi). Then linear approximation to
the ijth membership goal in (5.3), by using first-order Taylor polynomial series can
be obtained as

1−D−
ij + D+

ij = Gij(X) ∼= Gij(X◦)

+
(
(x1 − x◦1)

∂

∂x1
+ (x2 − x◦2)

∂

∂x2
+ · · ·+ (xn − x◦n)

∂

∂xn

)
Gij(X◦),

or equivalently as

(5.4) 1−D−
ij + D+

ij = Gij(X) ∼= Gij(X◦) +
n∑

k=1

(xk − x◦k)
∂Gij(X◦)

∂xk
,

where n is the number of decision variables, x◦k is the kth component of X◦ =
(X◦

1 , X◦
2 ) and xkis the kth component of the new solution X = (X1, X2).

In vector notation, the linear approximation of the ijth membership goal can be
rewritten as

(5.5) Gij(X◦) + [∇Gij(X◦)]T (X −X◦) + D−
ij −D+

ij = 1,

where ∇Gij(X◦) is the gradient of Gij(X◦) and the superscript T denotes transpose
of ∇Gij(X◦).

By following the linearization process, the extenuated proposed FGP model of
the QBL-FMOP problem can be presented as

MinZ =
m1∑

j=1

w−1jd
−
1j +

m2∑

j=1

w−2jd
−
2j

subject to

G1j(X◦) + [∇G1j(X◦)]T (X −X◦) + D−
1j −D+

1j = 1 j = 1, 2, . . . ,m1

G2j(X◦) + [∇G2j(X◦)]T (X −X◦) + D−
2j −D+

2j = 1 j = 1, 2, . . . ,m2

XL
1 ≤ X1 ≤ XU

1

XL
2 ≤ X2 ≤ XU

2

7
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(5.6) (X1, X2) ∈ S

D−
ij , D

+
ij ≥ 0 with D−

ij ×D+
ij = 0 i = 1, 2, j = 1, 2, . . . ,mi,

where Z represents the fuzzy achievement function consisting of the weighted under-
deviational variables, where the numerical weights w−ij i = 1, 2, j = 1, 2, . . . , mi,

that defined in(5.6), represent the relative importance of achieving the aspired levels
of the respective fuzzy goals subject to the constraints set in the decision situation.

The FGP model (5.6) provides the most satisfactory decision for both the ULDM
and the LLDM by achieving the aspired levels of the membership goals to the extent
possible in the decision environment. The solution procedure is straightforward and
illustrated via the following example.

6. The FGP Algorithm for QBL-FMOP Problems

Following the above discussion, we can now construct the proposed FGP algo-
rithm for solving the QBL-FMOP problems.

Step1. Calculate the individual minimum of each objective function in the two levels
under the given constraints.

Step2. Formulate the payoff matrix as given by (3.1). Then set the goals and the
upper tolerance limits for all the objective functions in the two levels.

Step3. Elicit the quadratic fractional membership functions for each of the objective
functions in the two levels.

Step4. Determine X◦ = (X◦
1 , X◦

2 ) which is the value(s) that is used to maximize
the ijth membership function µfij (fij(X1, X2) associated with ijth (i =
1, 2, j = 1, 2, . . . ,mi) objective.

Step5. Linearize the reduced quadratic programming from quadratic fractional mem-
bership functions by using (5.3) and (5.5).

Step6. Determine the preference bounds on the decision variables provide by the
DMs in (3.3)

Step7. Formulate the Model (5.6) for the QBL-FMOP problem.
Step8. Solve Model (5.6) to get a candidate solution to the QBL-FMOP problem.
Step9. If the DM is satisfied with the candidate solution in Step 8, go to Step 10,

else go to Step 11.
Step10. Stop with a satisfactory solution to the QBL-FMOP problem.
Step11. Modify the upper tolerance limits all the decision variables to reach a com-

promise optimal solutions i.e. go to Step 6.

7. Numerical examples

To demonstrate proposed FGP procedure, consider the following quadratic bi-
level fractional multi-objective programming problem:
(Upper Level)

min
X1

(
f11 =

x2
1 − x2

2

x2
1 + x2

2 + 2
, f12 =

(x1 − 2)2 − x2

(x2 − 1)2 + 5
)

8
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where X2 solves
(Lower Level)

min
X2

(
f21 =

(x1 − 1)2 + (x2 + 3)2

x2
1 + x2 + 10

, f22 =
8x2

1 − 9x2
2 − 4

x2
1 + x2

2 + 8
, f23 = 8x2

1 + x1 − (x2 − 2)2
)

subject to

x1 + x2 6 10
−5x1 + 3x2 6 15

x1, x2 > 0.

The individual optimal solution of the leader and follower are (x11
1 , x11

2 ) = (0.32, 5.53)
with fmin

11 = −0.93, (x12
1 , x12

2 ) = (2, 2.44) with fmin
12 = −0.34, (x21

1 , x21
2 ) = (3.16, 0)

with fmin
21 = 0.683, (x22

1 , x22
2 ) = (1.19, 6.19) with fmin

22 = −7.41 and (x23
1 , x23

2 ) =
(0.86, 6.43) with fmin

23 = −12.84, respectively, then the fuzzy objectives goals ap-
pear as

f11 . −0.93, f12 . −0.34, f21 . 0.68, f22 . −7.41, f23 . −12.84.

Now, using the individual optimal solution, we formulate a payoff matrix as fol-
lows:

Xij f11 f12 f21 f22 f23

(0.32,5.53) -0.93 -10 4.68 -7.19 -11.32
(2,2.44) -0.16 -0.34 1.86 -1.42 33.8
(3.16,0) 0.83 0.22 0.68 4.21 79.04
(1.19,6.19) -0.88 -0.17 4.79 -7.41 -5.03
(0.86,6.43) -0.92 -0.148 5.18 -7.39 -12.84

The following table summarizes the aspiration levels and upper tolerance limits,
of all objective functions for the two levels of the QBL-FMOP problem.

f11 f12 f21 f22 f23

uij 0.83 0.22 5.18 4.21 79.04
lij -0.93 -0.34 0.68 -7.41 -12.84

Now, by using the above tolerance ranges the quadratic fractional membership
functions of ULDM are:

µf11(f11(x1, x2)) =
0.83− x2

1 − x2
2

x2
1 + x2

2 + 2
0.83 + 0.93

+ d−11 − d+
11 = 1,

µf12(f12(x1, x2)) =
0.22− (x1 − 2)2 − x2

(x2 − 1)2 + 5
0.22 + 0.34

+ d−12 − d+
12 = 1,

d−1j , d
+
1j ≥ 0 with d−1j × d+

1j = 0 j = 1, 2.

The quadratic fractional membership functions of LLDM are:
9
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µf21(f21(x1, x2)) =
5.18− (x1 − 1)2 + (x2 + 3)2

x2
1 + x2 + 10

5.18− 0.68
+ d−21 − d+

21 = 1,

µf22(f22(x1, x2)) =
4.21− 8x2

1 − 9x2
2 − 4

x2
1 + x2

2 + 8
4.21 + 7.41

+ d−22 − d+
22 = 1,

µf23(f23(x1, x2)) =
79.04− (8x2

1 + x1 − (x2 − 2)2)
79.04 + 12.84

+ d−23 − d+
23 = 1,

d−2j , d
+
2j ≥ 0 with d−2j × d+

2j = 0 j = 1, 2, 3.

After transforming the quadratic fractional membership functions of ULDM into
quadratic forms, in (5.3) the model takes the form as

−1.09x2
1 + 0.03x2

2 − 0.06 + D−
11 −D+

11 = 1,

−1.78(x1 − 2)2 − 0.6(x2 − 1)2 + 1.78x2 − 2.04 + D−
12 −D+

12 = 1,

where

D−
11 = d−11(x

2
1 + x2

2 + 2), D+
11 = d+

11(x
2
1 + x2

2 + 2) and D−
12 = d−12((x2 − 1)2 + 5),

D+
12 = d+

12((x2 − 1)2 + 5), D−
1j , D

+
1j ≥ 0 with D−

1j ×D+
1j = 0 j = 1, 2.

The transformed quadratic fractional membership functions of LLDM are:

−0.22(x1 − 1)2 + 0.13x2
1 − 0.22(x2 + 3)2 + 0.13x2 + 2.3 + D−

21 −D+
21 = 1,

−1.3x2
1 + 0.06x2

2 − 3.96 + D−
22 −D+

22 = 1,

−0.08x2
1 − 0.01x1 + 0.01(x2 − 2)2 + 0.86 + D−

23 −D+
23 = 1,

where

D−
21 = d−21(x

2
1 + x2 + 10), D+

21 = d+
21(x

2
1 + x2 + 10), D−

22 = d−22(x
2
1 + x2

2 + 8),

D+
22 = d+

22(x
2
1 + x2

2 + 8), D−
2j , D

+
2j ≥ 0 with D−

2j ×D+
2j = 0 j = 1, 2, 3.

10
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The membership functions for ULDM and LLDM are maximal at the points
µ∗11(0.32, 5.53), µ∗12(2, 2.44), µ∗21(3.16, 0), µ∗22(1.19, 6.99) and µ∗23(0.86, 6.43), respec-
tively. Then membership functions are transformed using first-order Taylor polyno-
mial series in (5.5) of ULDM and LLDM as

1−D−
11 + D+

11
∼= G11(0.32, 5.53) +

(
(x1 − 0.32)

∂

∂x1
+ (x2 − 5.53)

∂

∂x2

)
G11(0.32, 5.53)

= −1.86x1 + 0.32x2 − 0.26.

1−D−
12 + D+

12
∼= G12(2, 2.44) +

(
(x1 − 2)

∂

∂x1
+ (x2 − 2.44)

∂

∂x2

)
G12(2, 2.44)

= 0.052x1 + 0.93.

1−D−
21 + D+

21
∼= G21(3.16, 0) +

(
(x1 − 3.16)

∂

∂x1
+ (x2 − 0)

∂

∂x2

)
G21(3.16, 0)

= 1.77x1 + 1.45x2 − 2.96.

1−D−
22 + D+

22
∼= G22(1.19, 6.99) +

(
(x1 − 1.19)

∂

∂x1
+ (x2 − 6.99)

∂

∂x2

)
G22(1.19, 6.99)

= −3.09x1 + 0.83x2 − 5.02.

1−D−
23 + D+

23
∼= G23(0.86, 6.43) +

(
(x1 − 0.86)

∂

∂x1
+ (x2 − 6.43)

∂

∂x2

)
G23(0.86, 6.43)

= 0.1476x1 − 0.88x2 + 0.66.

Introducing the upper tolerance limits for x1 and x2, their tolerance ranges are
obtained as

0.86 ≤ x1 ≤ 2
2.44 ≤ x2 ≤ 6.43.

Then, the proposed FGP model for solving QBL-FMOP is formulated as follows:

MinZ = 0.56D−
11 + 1.78D−

12 + 0.22D−
21 + 0.08D−

22 + 0.01D−
23

subject to

−1.86x1 + 0.33x2 + D−
11 −D+

11 = 1.26

0.052x2 + D−
12 −D+

12 = 0.07

1.77x− 1 + 1.45x2 + D−
21 −D+

21 = 3.96

−3.09x1 + 0.83x2 + D−
22 −D+

22 = 6.02

−0.147x1 + 0.88x2 + D−
23 −D+

23 = 0.33
x1 + x2 6 10

−5x1 + 3x2 6 15
0.86 ≤ x1 ≤ 2
2.44 ≤ x2 ≤ 4

x1, x2 > 0

D−
ij , D

+
ij ≥ 0, D−

ij ×D+
ij = 0 i = 1, 2, j = 1, 2, and i = 1, 2, j = 1, 2, 3.
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The software LINGO (ver. 11.0) is used to solve the problem. Optimal com-
promise solution of the problem is given by x∗1 = 0.86 and x∗2 = 4 with objective
functions values f11 = −0.81, f12 = −0.19, f21 = 3.32, f22 = −5.74 and f23 = 2.77,
with membership functions values µ11 = 0.93, µ12 = 0.73, µ21 = 0.41, µ22 = 0.85
and µ23 = 0.83, respectively.

8. Conclusion

In this paper, a FGP algorithm is proposed to solve QBL-FMOP problems. This
technique can be easily extended for other QBL-FMOP problems where the decision
variables are integers. In the same fashion the present problem can be also considered
and extended for the case of decentralized and QML-FMOP problems.
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