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1. Introduction

The concept of fuzzy topological space was first introduced by Chang in [9].
Later, fuzzy topological space is generalized in different ways, one of which is de-
veloped by Šostak [45]. Höhle and Šostak [22], Kubiak and Šostak [25] introduced
the concept of an L-fuzzy topological space even further to situations, where L is
more general than [0, 1], in 1995 and 1997, respectively. The respective categories of
L-fuzzy topological spaces and L-fuzzy continuous maps are studied by Roadabaugh
in [21, 36, 37]. Ramadan [33] renamed Šostak’s I fuzzy topological space “smooth
fuzzy topological space”. Then plenty of works on Šostak’s fuzzy topological spaces
have been done in order to extend various concepts in classical topology. To mention
a few, we refer to [1, 2, 4, 10, 16, 20, 24, 26, 34, 35, 41, 42, 43, 44, 46, 47].

The net convergence of fuzzy points in Chang fuzzy topology was first introduced
by Pu and Liu [27, 28]. In [40], Ranta and Ajmal introduced the notion of conver-
gence of a fuzzy net of fuzzy sets, which generalizes the notion of fuzzy net of fuzzy
points defined in [27, 28]. Geogiou and Papadopoulos [18] defined fuzzy upper limit,
fuzzy lower limit and fuzzy convergence of a fuzzy net of fuzzy sets and discussed
their properties. In [19], the authors introduced and studied the notion of fuzzy
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θ-convergence and weakly fuzzy θ-convergence in a fuzzy topological space. Sheikh
[15] introduced another notion of fuzzy convergence in terms of fuzzy upper (lower)
δ-limit, which generalizes the convergence discussed in [18]. Further, there are many
more works on convergence in L-fuzzy topological spaces in various contexts. See
[3, 5, 6, 7, 13, 23, 29, 30, 31, 32].

Fuzzy proper function from a fuzzy set into a fuzzy set was first introduced by
Chakraborty and Ahsanulla [8]. Chaudhuri and Das [11] proved some characteriza-
tions of continuity of fuzzy proper function between Chang fuzzy topological spaces.
In [17], the authors introduced the fuzzy graph, strong fuzzy graph of a fuzzy proper
function on Chang fuzzy topological space. They proved the closed graph theorem
under some sufficient conditions and also established various results relating sepa-
ration axioms. The notions of smooth fuzzy continuity, weakly smooth fuzzy conti-
nuity and qn-weakly smooth fuzzy continuity of a fuzzy proper function on smooth
fuzzy topological spaces and their properties are discussed in [33, 38]. In [39], the
results combining various types of smooth fuzzy continuities including the one, “If
F : (µ, τ) → (ν, σ) is weakly smooth fuzzy continuous, then F←(V ◦) ≤ (F←(V ))◦ for
every V ≤ ν.” are established and smooth connectedness of smooth fuzzy topological
space is also discussed.

In [11, Remark 3.4], it was pointed out that the conditions,
(1) F−1(V ) ∈ c(T ),∀V ∈ c(T ′), where c(T ) is the family of all fuzzy closed sets

in a Chang fuzzy topological space (A, T )
(2) F (H) ≤ F (H), ∀ maximal fuzzy subsets H of µ,

are neither necessary nor sufficient for F is fuzzy continuous. The same drawback
holds for continuous fuzzy proper function on smooth fuzzy topological spaces. How-
ever, by assuming that a fuzzy proper function F : (µ, τ) → (ν, σ) between smooth
fuzzy topological spaces satisfies ν = F (µ) with some more conditions, we are able
to get these results successfully.

In Section 4, we establish that net 1 continuity on a fuzzy set implies qn-weak
smooth fuzzy continuity on a fuzzy set. We also obtain the converse of this result,
under some additional conditions. Further, we show that net 1 continuity implies
weak continuity if F is one-to-one and the domain of F is a positive minimum smooth
fuzzy topological space and we point out that net 1 continuity does not imply smooth
fuzzy continuity. The same results are obtained for net 2 continuity in Section 5, by
a similar set of arguments employed in the previous section.

2. Preliminaries

Throughout this paper X, S denote fixed non-empty sets, µ, ν denote fuzzy
subsets of X, S, respectively, I denotes the unit interval [0, 1], and IX denotes the set

of all fuzzy subsets of X. A fuzzy point [27] in X is defined by Pλ
x (t) =

{
λ if t = x

0 if t 6= x
,

∀t ∈ X, where 0 < λ ≤ 1. By Pλ
x ∈ µ, we mean that λ ≤ µ(x).

Definition 2.1 ([33]). A smooth fuzzy topology on a fuzzy set µ ∈ IX is a map
τ : Iµ → I, where Iµ =

{
U ∈ IX : U ≤ µ

}
, satisfying the following axioms:

(1) τ(0X) = τ(µ) = 1,
706
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(2) τ(A1 ∧A2) ≥ τ(A1) ∧ τ(A2),∀A1, A2 ∈ Iµ,
(3) τ(

∨
i∈Γ

Ai) ≥
∧

i∈Γ

τ(Ai) for every family (Ai)i∈Γ ⊆ Iµ.

The pair (µ, τ) is called a smooth fuzzy topological space.

Definition 2.2 ([33]). A smooth fuzzy cotopology on a fuzzy set µ ∈ IX is a map
F : Iµ → I satisfying, the following axioms:

(1) F (0X) = F (µ) = 1,
(2) F (A1 ∨A2) ≥ F (A1) ∨F (A2),∀A1, A2 ∈ Iµ,
(3) F (

∧
i∈Γ

Ai) ≥
∧

i∈Γ

F (Ai) for every family (Ai)i∈Γ ⊆ Iµ.

The pair (µ,F ) is called a smooth fuzzy cotopological space.

One may see that for a given smooth fuzzy topology τ : Iµ → I, if Fτ : Iµ → I
is defined by Fτ (U) = τ(µ− U), then Fτ is a smooth fuzzy cotopology on µ.

Definition 2.3 ([8]). U, V ∈ Iµ are said to be quasi-coincident referred to µ (written
as UqV [µ]) if there exists x ∈ X such that U(x) + V (x) > µ(x). If U is not quasi-
coincident with V , then we write U 6qV [µ].

A fuzzy set U ∈ Iµ is called a q-neighborhood of a fuzzy point Pλ
x in µ if Pλ

x qU [µ]
and τ(U) > 0.

Definition 2.4 ([12]). Let (µ, τ) be a smooth fuzzy topological space and U ∈ Iµ.
Then the fuzzy closure of U is defined as follows,

U =
∧
{K ∈ Iµ : τ(µ−K) > 0,K ≥ U} .

Definition 2.5 ([8]). Let µ ∈ IX and ν ∈ IS . A non-zero fuzzy subset F of X × S
is said to be a fuzzy proper function from µ to ν if

(1) F (x, s) ≤ min {µ(x), ν(s)}, ∀(x, s) ∈ X × S,
(2) for each x ∈ X, there exists a unique s0 ∈ S such that F (x, s0) = µ(x) and

F (x, s) = 0 if s 6= s0.

Definition 2.6 ([8]). Let F be a fuzzy proper function from µ to ν. If U ∈ Iµ and
V ∈ Iν , then F (U) : S → I and F−1(V ) : X → I are defined by

(F (U))(s) = sup {F (x, s) ∧ U(x) : x ∈ X} ,∀s ∈ S,

(F−1(V ))(x) = sup {F (x, s) ∧ V (s) : s ∈ S} ,∀x ∈ X.

The inverse image of a fuzzy subset V under a fuzzy proper function F can be
easily obtained as (F−1(V ))(x) = µ(x) ∧ V (s), where s ∈ S is unique such that
F (x, s) = µ(x).

Definition 2.7 ([17]). A fuzzy proper function F : µ → ν is said to be injective (or
one-to-one) if F (x1, s) > 0 and F (x2, s) > 0 for some x1, x2 ∈ X and s ∈ S, then
x1 = x2.

Definition 2.8 ([33]). Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let
(µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be a smooth
fuzzy continuous function on µ if τ(F−1(V )) ≥ σ(V ), ∀V ∈ Iν .
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Definition 2.9 ([33]). Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let
(µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be a weakly
smooth fuzzy continuous function on µ, if τ(F−1(V )) > 0 whenever σ(V ) > 0,
∀V ∈ Iν .

Definition 2.10 ([38]). Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let
(µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be qn-weakly
smooth fuzzy continuous at a fuzzy point Pλ

x ∈ µ if for every q-neighborhood V ∈ Iν

of F (Pλ
x ), there exists a q-neighborhood U ∈ Iµ of Pλ

x such that F (U) ≤ V .

A fuzzy proper function F is said to be qn-weakly smooth fuzzy continuous on µ
if F is qn-weakly smooth fuzzy continuous at every fuzzy point in µ.

Definition 2.11 ([14]). A fuzzy proper function F : (µ, τ) → (ν, σ) is called a weak
open map if σ(F (A)) > 0, whenever A ∈ Iµ with τ(A) > 0.

Definition 2.12 ([38]). Let (µ, τ) be a smooth fuzzy topological space. Then τ is
said to be a positive minimum smooth fuzzy topology if

∧
i∈Γ

τ(Ui) > 0, whenever

Ui ∈ Iµ and τ(Ui) > 0, ∀i ∈ Γ. The pair (µ, τ) is called a positive minimum smooth
fuzzy topological space.

Definition 2.13. Let D be a directed set and µ be a fuzzy subset of set X. Let Iµ

be the collection of fuzzy points in µ. Any function ζ : D → Iµ is called a fuzzy net
in µ. For every λ ∈ D, ζ(λ) is often denoted by ζλ and hence the net ζ is denoted
by {ζλ : λ ∈ D}.

3. Some properties of certain fuzzy continuous functions

In [11], it has been found that F−1(ν − V ) 6= µ− F−1(V ), for some V ∈ Iν and
the authors of [11] introduced the concept of maximal fuzzy set and pointed out
that the above equality holds only for maximal fuzzy subsets of ν. But the following
proposition shows that the same identity is true for all fuzzy subsets of ν if F : µ → ν
is a one-to-one fuzzy proper function such that ν = F (µ).

Proposition 3.1. If F : µ → ν is a one-to-one fuzzy proper function such that
ν = F (µ), then F−1(ν − V ) = µ− F−1(V ), ∀V ∈ Iν .

Proof. Let V ∈ Iν and let x ∈ X. Then there exists unique s ∈ Y such that
F (x, s) = µ(x).

F−1(ν − V )(x) = µ(x) ∧ (ν − V )(s)
= µ(x) ∧ (F (µ)− V )(s)

= µ(x) ∧

[ ∨
k∈X

{F (k, s) ∧ µ(k)} − V (s)

]
= µ(x) ∧ [µ(x)− V (s)] (since F is one-to-one)
= µ(x)− V (s)
= µ(x)− [µ(x) ∧ V (s)] (since V (s) ≤ µ(x))
= µ(x)− F−1(V )(x) = (µ− F−1(V ))(x)

Hence, F−1(ν − V ) = µ− F−1(V ), ∀V ∈ Iν . �
708
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Theorem 3.2. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function such
that ν = F (µ). Then F is smooth fuzzy continuous if and only if Fτ (F−1(V )) ≥
Fσ(V ), ∀V ∈ Iν .

Proof. Let V ∈ Iν be arbitrary. If Fσ(V ) = 0, then the required inequality is ob-
vious. Suppose that Fσ(V ) > 0. Using the fact that F is smooth fuzzy continuous
and by Proposition 3.1, we obtain τ(µ − F−1(V )) = τ(F−1(ν − V )) ≥ σ(ν − V ).
Therefore, we get Fτ (F−1(V )) ≥ Fσ(V ), ∀V ∈ Iν . To show the sufficiency, let us
assume that Fτ (F−1(V )) ≥ Fσ(V ), ∀V ∈ Iν . Now we choose V ∈ Iν arbitrarily. If
σ(V ) = 0, then it is obvious that τ(F−1(V )) ≥ σ(V ). If σ(V ) > 0, using the hypoth-
esis and Proposition 3.1, we get τ(F−1(V )) = Fτ (µ−F−1(V )) = Fτ (F−1(ν−V )) ≥
Fσ(ν − V ) = σ(V ). �

Theorem 3.3. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function and
ν = F (µ). Then F is weakly smooth fuzzy continuous if and only if Fτ (F−1(V )) > 0
whenever Fσ(V ) > 0, ∀V ∈ Iν .

Proof. The proof is similar to that of Theorem 3.2. �

Remark 3.4. The statements of Theorems 3.2, 3.3 are not true if F is not one-to-
one fuzzy proper function as shown by the following counterexamples.

Counterexample 3.5. Let X = {x, y}, S = {s, t} and µ
[0.5,0.4]
[x,y] , ν

[0.5,0]
[s,t] be fuzzy

subsets of X and S, respectively. Define two fuzzy subsets U1 ≤ µ, V1 ≤ ν by
U1

[0.3,0.3]
[x,y] , V1

[0.3,0]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.5, V = V1,

0, otherwise,

then obviously, (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5, F (x, t) = 0, F (y, s) = 0.4, F (y, t) = 0.

Then, F is not one-to-one and F (µ)[0.5,0]
[s,t] = ν. Since F−1(V1)

[0.3,0.3]
[x,y] = U1 and

τ(U1) = 0.6 > 0.5 = σ(V1), F is smooth fuzzy continuous and F is also weakly
smooth fuzzy continuous on µ. But Fτ (F−1(ν − V1)) = 0 < 0.5 = Fσ(ν − V1).

Counterexample 3.6. Let X = {x, y}, S = {s, t}, µ
[0.5,0.4]
[x,y] , ν

[0.5,0]
[s,t] , U1

[0.2,0.1]
[x,y] and

V1
[0.2,0]
[s,t] .
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Let τ : Iµ → I be defined by

τ(U) =


1, U = 0X or µ,

0.6, U = U1,

0, otherwise

and let σ : Iν → I be defined by

σ(V ) =


1, V = 0S or ν,

0.5, V = V1,

0, otherwise.

Let a fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5, F (x, t) = 0, F (y, s) = 0.4, F (y, t) = 0.

Then F is not one-to-one and F (µ)[0.5,0]
[s,t] = ν. Since Fτ (F−1(ν − V1)

[0.3,0.3]
[x,y] ) =

Fτ (µ − U1), Fτ (F−1(V )) ≥ Fσ(V ), ∀V ∈ Iν . But τ(F−1(V1)
[0.2,0.2]
[x,y] ) = 0 < 0.5 =

σ(V1).

Lemma 3.7. Let (µ, τ) be a smooth fuzzy topological space. If A ∈ Iµ is such that
Fτ (A) > 0, then Ā = A.

Proof of the lemma follows by the definition of fuzzy closure. The converse of
Lemma 3.7 is not true.

Counterexample 3.8. Let X = {x, y}, µ
[0.6,0.7]
[x,y] ∈ IX and U

[0.5− 1
n+1 ,0.6− 1

n+1 ]

n[x,y] ,
∀n = 1, 2 . . . .
If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,
1
n , U = Un, n = 1, 2, . . .

0, otherwise ,

then (µ, τ) is a smooth fuzzy topological space. Let A
[0.1,0.1]
[x,y] ∈ Iµ.

A =
∧
{K ∈ Iµ : Fτ (K) > 0,K ≥ S}

= µ ∧

( ∧
n∈N

(µ− Un)

)
= A.

But Fτ (A) = Fτ (A) = 0.

Remark 3.9. The converse of the Lemma 3.7 is true if (µ, τ) is a positive minimum
smooth fuzzy topological space.

Theorem 3.10. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function such
that ν = F (µ). If F is qn-weakly smooth fuzzy continuous, then F (A) ≤ F (A),∀A ∈
Iµ.

710



Kalaivani Chandran et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 3, 705–726

Proof. Let us assume that F is qn-weakly smooth fuzzy continuous on µ. If Pλ
x /∈

F−1(F (A)), then F (Pλ
x ) /∈ F (A) and hence there is a q-neighborhood V ∈ Iν of

F (Pλ
x ) such that V 6 qF (A)[ν]. Therefore, V (s) + F (A)(s) ≤ ν(s),∀s ∈ S. On

the other hand, since F is qn-weakly smooth fuzzy continuous, there exists a q-
neighborhood U of Pλ

x such that F (U) ≤ V . Since F is one-to-one, U(x) + A(x) =
F (U)(s) + F (A)(s) ≤ V (s) + F (A)(s) ≤ ν(s) = µ(x), for every x ∈ X. Hence,
F (A) ≤ F (A),∀A ∈ Iµ. �

Remark 3.11. In [33, 38], it is proved that smooth fuzzy continuity implies weakly
smooth fuzzy continuity and weakly smooth fuzzy continuity implies qn-weakly
smooth fuzzy continuity.

By Theorem 3.10 and Remark 3.11, we obtain the following theorems.

Theorem 3.12. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function such
that ν = F (µ). If F is weakly smooth fuzzy continuous, then F (A) ≤ F (A),∀A ∈ Iµ.

Theorem 3.13. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function such
that ν = F (µ). If F is smooth fuzzy continuous, then F (A) ≤ F (A), ∀A ∈ Iµ.

Remark 3.14. The statements of Theorems 3.10, 3.12, 3.13 are not true if F is not
one-to-one fuzzy proper function as shown by the following counterexample.

Counterexample 3.15. Let X = {x, y}, S = {s, t} and let µ
[0.6,0.5]
[x,y] , ν

[0.6,0]
[s,t] be

fuzzy subsets of X and S, respectively. Define two fuzzy subsets U1 ≤ µ, V1 ≤ ν by
U1

[0.4,0.4]
[x,y] , V1

[0.4,0]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.7, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise,

then obviously, (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0.5, F (y, t) = 0.

Then F is not one-to-one, F (µ)[0.6,0]
[s,t] = ν. Since F−1(0S) = 0X , F−1(ν) = µ,

F−1(V1)
[0.4,0.4]
[x,y] = U1 and τ(U1) = 0.7 > 0.6 = σ(V1), we conclude that F is smooth

fuzzy continuous. It follows that F is weakly smooth fuzzy continuous and qn-
weakly smooth fuzzy continuous on µ. For C = (F−1V1))

[0.2,0.2]
[x,y] , we get C =

F−1(ν − V1) = µ and hence F (C) = ν. But F (C) = F (F−1(ν − V1)) ≤ ν − V1

implies that F (C) ≤ ν − V1 = (ν − V1)
[0.2,0]
[s,t] . Hence, F (C) � F (C).

The converse of the Theorem 3.10 holds without assuming that F is one-to-one.
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Theorem 3.16. Let F : µ → ν be a fuzzy proper function such that ν = F (µ). If
F (A) ≤ F (A),∀A ∈ Iµ, then F is qn-weakly smooth fuzzy continuous on µ.

Proof. Let us assume that F (A) ≤ F (A),∀A ∈ Iµ. Suppose that F is not qn-weakly
smooth fuzzy continuous. Then there exists a q-neighborhood V1 of F (Pλ

x ) such
that F (Uα) � V1, for a given q-neighborhood Uα of Pλ

x . Therefore, for a given
Uα, there exists tα ∈ S such that F (Uα)(tα) > V1(tα). Hence, for each Uα and
for the corresponding tα, there exists yα ∈ X such that F (yα, tα) = µ(yα). Thus,
µ(yα)− Uα(yα) < µ(yα)− V1(tα) ≤ ν(tα)− V1(tα). If we define a fuzzy set A ∈ Iµ

by A(x) =

{
µ(yα)− V1(tα), x = yα,

0, x 6∈ {yα},
, then A(yα) + Uα(yα) > µ(yα), for every

Uα ⇒ Pλ
x ∈ A ⇒ F (Pλ

x ) ∈ F (A). Since, F (A)(t) ≤

{
(ν − V1)(tα), t = tα,

0, t 6∈ {tα},
we have V1 6qF (A)[ν] and hence F (Pλ

x ) /∈ F (A). Thus, F (A) � F (A), which is a
contradiction. This completes the proof of this theorem. �

The converse of the Theorems 3.12 holds if (µ, τ) is a positive minimum smooth
fuzzy topological space.

Theorem 3.17. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ) and let (µ, τ) be a positive minimum smooth fuzzy topological space. If
F (A) ≤ F (A),∀A ∈ Iµ, then F is weakly smooth fuzzy continuous on µ.

Proof. Assume that F (A) ≤ F (A),∀A ∈ Iµ. Let Fσ(V ) > 0 and Pλ
x ∈ F−1(V ).

Then, F (Pλ
x ) ∈ F (F−1(V )) ≤ F (F−1(V )) ≤ V = V ⇒ Pλ

x ∈ F−1(V ). Thus
F−1(V ) = F−1(V ). Then by Remark 3.9, we have Fτ (F−1(V )) > 0 and hence F is
weakly smooth fuzzy continuous on µ. �

The following examples show that the statement of Theorem 3.17 is not true
when F is not one-to-one or the domain of F is not a positive minimum smooth
fuzzy topological space.

Counterexample 3.18. Let X = {x, y}, S = {s, t}, µ
[0.8,0.7]
[x,y] , ν

[0.8,0]
[s,t] . Define two

fuzzy subsets U1 ≤ µ and V1 ≤ ν by U1
[0.3,0.2]
[x,y] , V1

[0.3,0]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.5, V = V1,

0, otherwise ,
712
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then obviously (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0.7, F (y, t) = 0.

Here, F is not one-to-one, F (µ)[0.8,0]
[s,t] = ν. Since τ(F−1(V1)

[0.3,0.3]
[x,y] ) = 0 and σ(V1) >

0, we get F is not weakly smooth fuzzy continuous on µ. Let C ∈ Iµ be arbitrary.
Case 1. Let C ≤ (µ− U1)

[0.5,0.5]
[x,y] . Then we have, F (C) ≤ (ν − V1)

[0.5,0]
[s,t] .

Subcase 1. If C = 0X , then F (C) = 0S . Therefore, F (C) = 0S = F (C).
Subcase 2. If 0X 6= C ≤ (µ − U1), then 0S 6= F (C) ≤ (ν − V1). In this case,
C = (µ− U1), F (C) = (ν − V1) and F (C) = ν − V1. Therefore, F (C) = F (C).
Case 2. C � (µ−U1). If C(x) > 0.5 or C(y) > 0.5, then F (C)(s) > 0.5. Therefore,
F (C) � (ν − V1) and hence F (C) ≤ ν = F (C).

Counterexample 3.19. Let X = {x, y}, S = {s, t} and let µ
[0.6,0.7]
[x,y] ∈ IX ,

ν
[0.6,0.7]
[s,t] ∈ IS , Un

[0.5− 1
n+1 ,0.6− 1

n+1 ]

[x,y] , ∀n = 1, 2, . . . , V1
[0.5,0.6]
[s,t] .

Let τ : Iµ → I be defined by

τ(U) =


1, U = 0X or µ,
1
n , U = Un,∀n = 1, 2, . . .

0, otherwise

and let σ : Iν → I be defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise .

Here (µ, τ) is a positive minimum smooth fuzzy topological space. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.7.

Clearly F is one-to-one and F (µ)[0.6,0.7]
[s,t] = ν. Since τ(F−1(V1)

[0.5,0.6]
[x,y] ) = 0 and

σ(V1) > 0, F is not weakly smooth fuzzy continuous on µ. We note that if C
[p,q]
[x,y] ∈

Iµ, then F (C)[p,q]
[s,t] .

Case 1. p ≤ 0.1 and q ≤ 0.1. Since F (C) ≤ (ν − V1)
[0.1,0.1]
[x,y] , F (C) = ν − V1 and

C = ∧(µ− Un)[0.1,0.1]
[x,y] . Therefore, F (C)[0.1,0.1]

[s,t] = F (C).

Case 2. p > 0.1 or q > 0.1. In this case, F (C) ≤ ν = F (C).

The converse of the Theorem 3.13 is not true.

Counterexample 3.20. Let X = {x, y}, S = {s, t} and let µ
[0.8,0.7]
[x,y] ∈ IX ,

ν
[0.8,0.7]
[s,t] ∈ IS , U1

[0.2,0.1]
[x,y] and V1

[0.2,0.1]
[s,t] . We define τ : Iµ → I by

τ(U) =


1, U = 0X or µ,

0.4, U = U1,

0, otherwise
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and σ : Iν → I by

σ(V ) =


1, V = 0S or ν,

0.5, V = V1,

0, otherwise .

Let a fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.7.

Clearly, F is one-to-one and F (µ)[0.8,0.7]
[s,t] = ν. Since, τ(F−1(V1)

[0.2,0.1]
[x,y] ) = τ(U1) =

0.4 < 0.5 = σ(V1), F is not smooth fuzzy continuous on µ. Let C ∈ Iµ.
Case 1. Let C ≤ (µ− U1)

[0.6,0.6]
[x,y] . Clearly, we have, F (C) ≤ (ν − V1)

[0.6,0.6]
[s,t] .

Subcase 1. If C = 0X , then F (C) = 0S . Therefore, F (C) = 0 = F (C).
Subcase 2. If 0X 6= C ≤ (µ − U1), then 0S 6= F (C) ≤ (ν − V1). In this case,
C = (µ− U1), F (C) = ν − V1 = F (C).
Case 2. C � (µ−U1). If C(x) > 0.6 or C(y) > 0.6, then F (C)(s) > 0.6. Therefore,
F (C) � (ν − V1) and hence F (C) ≤ ν = F (C).

Remark 3.21. Let (µ, τ) be a positive minimum smooth fuzzy topological space.
From Theorems 3.10, 3.17, one can notice that a one-to-one fuzzy proper function
F is weakly smooth fuzzy continuous if and only if F is qn-weakly smooth fuzzy
continuous.

4. Convergence of net of fuzzy sets

Definition 4.1. (Cf. [18]) Let {An : n ∈ D} be a net of fuzzy sets in a fuzzy
topological space µ. The fuzzy upper limit of the net {An : n ∈ D} in Iµ is denoted
by lim supD(An) and is defined by the union of all fuzzy points Pλ

x in µ such that
for a given n0 ∈ D and for a given q-neighborhood U of Pλ

x in µ, there exists n ∈ D
such that n ≥ n0 and AnqU [µ]. If there is no such Pλ

x , then let lim supD(An) = 0X .

Definition 4.2. (Cf. [18])Let {An : n ∈ D} be a net of fuzzy sets in a fuzzy topo-
logical space µ. The fuzzy lower limit of the net {An : n ∈ D} in Iµ is denoted by
lim infD(An) and is defined by the union of all fuzzy points Pλ

x in µ such that for
a given q-neighborhood U of Pλ

x in µ, there exists n0 ∈ D such that AnqU [µ], for
every n ∈ D with n ≥ n0. If there is no such Pλ

x , then let lim infD(An) = 0X .

Definition 4.3. (Cf. [18]) A net {An : n ∈ D} of fuzzy sets in a smooth fuzzy
topological space µ is said to be fuzzy convergent to the fuzzy set A if lim infD(An) =
lim supD(An) = A.

In this case, we write A = limD(An).

Definition 4.4. A fuzzy proper function F : µ → ν is said to be net 1 continuous
on µ if the net {F (An) : n ∈ D} of fuzzy sets in ν converges to F (A) whenever a net
{An : n ∈ D} of fuzzy sets converges to A in µ.

Theorem 4.5. (Cf. [18]) Let {An : n ∈ D} be a net of fuzzy sets in µ. If An = A
for every n ∈ D, then lim supD(An) = lim infD(An) = A.
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Theorem 4.6. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is qn-weakly smooth fuzzy continuous and weak open, then

F (lim sup
D

(An)) = lim sup
D

F (An),

for every net {An : n ∈ D} in µ.

Proof. Let us assume that F is qn-weakly smooth fuzzy continuous and F is weak
open. Now we choose Pλ

s ∈ F (lim supD(An)) and a q-neighborhood V ∈ Iν of Pλ
s

arbitrarily. Then, there exists Pλ
x ∈ lim supD(An) such that F (Pλ

x ) = Pλ
s . Since F

is qn-weakly smooth fuzzy continuous, there exists a q-neighborhood U of Pλ
x such

that F (U) ≤ V . On the other hand, since Pλ
x ∈ lim supD(An), ∀n0 ∈ D, there exists

n ∈ D such that n ≥ n0 and UqAn[µ]. Therefore, U(y) + An(y) > µ(y), for some
y ∈ X. For this y, there exists unique t ∈ S such that F (y, t) = µ(y). By using
the fact that F is one-to-one, we have V (t) + F (An)(t) ≥ F (U)(t) + F (An)(t) =
U(y) + An(y) > µ(y) = F (µ)(t) = ν(t). Hence Pλ

s ∈ lim supD F (An).
Let Pλ

s ∈ lim supD F (An). Then there exists Pλ
x ∈ µ such that F (Pλ

x ) = Pλ
s . Let

U and V be q-neighborhoods of Pλ
x and F (Pλ

x ), respectively. Since F is a weak open
map, σ(F (U)) > 0. By using F is one-to-one, λ + F (U)(s) = λ + U(x) > µ(x) =
F (µ)(s) = ν(s). Hence, F (U) is a q-neighborhood of Pλ

s . Therefore, V ∧ F (U) is a
q-neighborhood of Pλ

s . On the other hand, since Pλ
s ∈ lim supD F (An), for a given

n0 ∈ D, there exists n ∈ D such that n ≥ n0 and [V ∧ F (U)]qF (An)[ν]. Since [V ∧
F (U)](t) + F (An)(t) > ν(t) for some t ∈ S and F is one-to-one, there exists unique
y ∈ X such that F (y, t) = µ(y) and F−1(V ∧ F (U))(y) + An(y) = (V ∧ F (U))(t) +
F (An)(t) > ν(t) = F (µ)(t) = µ(y). Since F is one-to-one, F−1(V ∧ F (U)) =
F−1(V ) ∧ U . Therefore [U ∧ F−1(V )]qAn[µ], which implies that UqAn[µ]. Hence,
Pλ

x ∈ lim supD(An) and F (Pλ
x ) ∈ F (lim supD(An)). Thus, F (lim supD(An)) =

lim supD F (An). �

Theorem 4.7. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is qn-weakly smooth fuzzy continuous and weak open, then

F (lim inf
D

(An)) = lim inf
D

F (An),

for every fuzzy net {An : n ∈ D} in µ.

Proof. This is similar to the proof of Theorem 4.6. �

Theorem 4.8. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is qn-weakly smooth fuzzy continuous on µ and weak open, then F
is net 1 continuous on µ.

Proof. Let us assume that F be qn-weakly smooth fuzzy continuous and weak open.
If {An : n ∈ D} converges to A in µ, then lim supD(An) = lim infD(An) = A and
F (lim supD(An)) = F (lim infD(An)) = F (A). Then by Theorems 4.6, 4.7, we get
lim supD F (An) = lim infD F (An) = F (A). Therefore, {F (An) : n ∈ D} converges
to F (A). This completes the proof of this theorem. �

The following theorems hold trivially from Theorem 4.8.
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Theorem 4.9. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is smooth fuzzy continuous on µ and weak open, then F is net 1
continuous on µ.

Theorem 4.10. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is weakly smooth fuzzy continuous and weak open on µ, then F is
net 1 continuous on µ.

The statements of Theorems 4.8, 4.9, 4.10 are not true if F is not one-to-one or
F is not a weak open map. The following counterexamples justify our statement.

Counterexample 4.11. Let X = {x, y, z}, S = {s, t}, µ
[0.8,0.7,0.6]
[x,y,z] , ν

[0.8,0.6]
[s,t] . Define

two fuzzy subsets U1 ≤ µ and V1 ≤ ν by U1
[0.1,0.1,0.3]
[x,y,z] , V1

[0.1,0.3]
[s,t] .

We define τ : Iµ → I by

τ(U) =


1, U = 0X or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise ,

Let a fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0.7, F (y, t) = 0, F (z, s) = 0, F (z, t) = 0.6.

Therefore, F is not one-to-one and F (µ)[0.8,0.6]
[s,t] = ν. Clearly, F−1(V1) = U1,

F−1(0S) = 0X and F−1(ν) = µ. Hence, F is smooth fuzzy continuous. There-
fore, F is weakly smooth fuzzy continuous and qn-weakly smooth fuzzy continuous.

Consider a fuzzy net (An)
[0,0.6+ 1

n+10 ,0]

[x,y,z] , ∀n ∈ N , where N is the set of all natural
numbers. Hence, U1qAn[µ],∀n ∈ N . Clearly lim supN (An) = lim infN (An) = µ.

Therefore, {An : n ∈ N} converges to µ. Now, F (An)
[0.6+ 1

n+10 ,0]

[s,t] ,∀n ∈ N which is a
fuzzy net in ν. Let Pλ

s , P δ
t ∈ ν.

Case 1: 0.7 < λ ≤ 0.8 and 0.3 < δ ≤ 0.6
Here, V1 is a q-neighborhood of Pλ

s and P δ
t but V1 6qF (An)[ν],∀n ∈ N . Therefore,

Pλ
s and P δ

t /∈ lim supN F (An).
Case 2: 0 < λ ≤ 0.7 and 0 < δ ≤ 0.3
In this case, the only q-neighborhood of Pλ

s and P δ
t is ν, which is quasi-coincident

with F (An),∀n ∈ N .
Hence, lim supN F (An)[0.7,0.3]

[s,t] 6= F (µ). Therefore, {F (An) : n ∈ N} does not con-
verge to ν.
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Counterexample 4.12. Let X = {x, y}, S = {s, t} and let µ
[0.8,0.7]
[x,y] , ν

[0.8,0.7]
[s,t] and

U1
[0.1,0.4]
[x,y] . If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =

{
1, V = 0S or ν,

0, otherwise ,

then obviously (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.7.

Clearly, F is one-to-one, F (µ)[0.8,0.7]
[s,t] = ν, F is smooth fuzzy continuous, weakly

smooth fuzzy continuous and qn-weakly smooth fuzzy continuous. But F is not a

weak open map, because F (U1)
[0.1,0.4]
[s,t] . Consider a fuzzy net (An)

[ 1
n+1 , 1

n+9 ]

[x,y] , ∀n ∈ N ,
where N is the set of all natural numbers. Let Pλ

x and P δ
y ∈ µ be arbitrary.

Case 1: 0.7 < λ ≤ 0.8 and 0.3 < δ ≤ 0.7. Since U1 is a q-neighborhood of
Pλ

x as well as a q-neighborhood of P δ
y and U1 6 qAn[µ] for all n ∈ N , we obtain

Pλ
x , P δ

y /∈ lim supN (An).
Case 2: 0 < λ ≤ 0.7 and 0 < δ ≤ 0.3. In this case, the only q-neighborhood of Pλ

x

and P δ
y is µ which is quasi-coincident with An,∀n ∈ N . Therefore, lim supN (An) =

lim infN (An) = A
[0.7,0.3]
[x,y] . The only q-neighborhood of Pλ

s and P δ
t is ν, which is quasi

coincident with F (An)
[ 1

n+1 , 1
n+9 ]

[s,t] , ∀n ∈ N . Hence, lim supN F (An) = lim infN F (An) =

ν 6= F (A)[0.7,0.3]
[s,t] . Therefore, {F (An)} does not converge to F (A).

Remark 4.13. The converse of the Theorem 4.8 holds without assuming that F is
one-to-one and weak open.

Theorem 4.14. Let F : µ → ν be a one-to-one fuzzy proper function such that ν =
F (µ). If F is net 1 continuous on µ, then F is qn-weakly smooth fuzzy continuous
on µ.

Proof. Assume that F is net 1 continuous on µ. If F is not qn-weakly smooth
fuzzy continuous, then there is a q-neighborhood V1 ∈ Iν of F (Pλ

x ), for every q-
neighborhood Uα of Pλ

x such that F (Uα) � V1. Therefore, there exists tα ∈ S such
that F (Uα)(tα) > V1(tα). For each tα ∈ S, by assumption, there exists yα ∈ X such
that F (yα, tα) = µ(yα). Now, consider a fuzzy net {An : n ∈ N} which is defined as

follows, An(x) = C(x) =

{
µ(yα)− V1(tα), x = yα

0, x 6∈ {yα},
∀x ∈ S and ∀n ∈ N , where

N is the set of all natural numbers. Hence {An : n ∈ N} is a constant fuzzy net.
Then by Theorem 4.5, limN (An) = C = A. Here, {F (An) : n ∈ N} is a fuzzy net in

717



Kalaivani Chandran et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 3, 705–726

ν and

F (An)(s) ≤

{
ν(tα)− V1(tα), s = tα

0, otherwise.

For each Uβ , we have F (Uβ)(tβ) > V (tβ), for some tβ ∈ S. Therefore, there exists
at least one yβ ∈ X such that Uβ(yβ) > V1(tβ). Since (An)(yβ) = µ(yβ)− V1(tβ) >
µ(yβ) − Uβ(yβ), we have An(yβ) + Uβ(yβ) > µ(yβ) and hence (An)qUβ [µ],∀n ∈ N .
Similarly AnqUα[µ], for every q-neighborhood Uα of Pλ

x ⇒ Pλ
x ∈ A ⇒ F (Pλ

x ) ∈
F (A). Next, we claim that F (Pλ

x ) /∈ lim supN F (An). Let r ∈ S be arbitrary.
If there exists p ∈ X such that F (p, r) > 0, then V1(r) + F (An)(r) = ν(r). If
F (p, r) = 0, ∀p ∈ X, then F (An)(r) = 0. Therefore, V1 6qF (An)[ν],∀n ∈ N ⇒
F (Pλ

x ) /∈ lim supN F (An) ⇒ {F (An) : n ∈ N} does not converge to F (A), which is
a contradiction. Thus, F is qn-weakly smooth fuzzy continuous on µ. �

Theorem 4.15. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ) and let µ be a positive minimum smooth fuzzy topological space. If F is
net 1 continuous on µ, then F is weakly smooth fuzzy continuous on µ.

Proof. By Theorem 4.14 and Remark 3.21 the proof follows. �

The statement of the above theorem is not true if F is not one-to-one as shown
in the following counterexample.

Counterexample 4.16. Let X = {x, y}, S = {s, t}, µ
[0.5,0.6]
[x,y] , ν

[0.6,0]
[s,t] . Define two

fuzzy subsets U1 ≤ µ and V1 ≤ ν by U1
[0.1,0.2]
[x,y] , V1

[0.2,0]
[s,t] .

Let τ : Iµ → I be defined by

τ(U) =


1, U = 0X or µ,

0.7, U = U1,

0, otherwise

and let σ : Iν → I be defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise .

Let a fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5, F (x, t) = 0, F (y, s) = 0.6, F (y, t) = 0.

Here, F is not one-to-one and F (µ)[0.6,0]
[s,t] = ν. Since F−1(V1)

[0.2,0.2]
[x,y] , F is not weakly

smooth fuzzy continuous. Let {An : n ∈ D} be a fuzzy net converging to A in µ.
We claim that {F (An) : n ∈ D} converges to F (A) in ν. Let Pλ

s ∈ F (A). Clearly
we have Pλ

x , Pλ
y in A and F (Pλ

x ) = F (Pλ
y ) = Pλ

s .
Case 1: 0.4 < λ ≤ 0.6
Here, V1 and ν are the only q-neighborhoods of Pλ

s . Since Pλ
y ∈ lim infD(An) and

U1 is a q-neighborhood of Pλ
y , there exists n0 ∈ D such that AnqU1[µ],∀n ≥ n0.

Therefore, we have An(x) + U1(x) > µ(x) or An(y) + U1(y) > µ(y). Hence An(x) >
0.4 or An(y) > 0.4, which implies that F (An)(s) > 0.4. Since V1(s) + F (An)(s) >
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0.2 + 0.4 = 0.6 = ν(s), we get V1qF (An)[ν] and νqF (An)[ν],∀n ∈ D.
Case 2: 0 < λ ≤ 0.4
The only q-neighborhood of Pλ

s is ν and νqF (An)[ν],∀n ∈ D. Therefore, Pλ
s ∈

lim infD F (An) and hence F (A) ≤ lim infD F (An).

Next we assume that Pλ
s ∈ lim supD F (An).

Case 1: 0.4 < λ ≤ 0.6. We note that, V1 is a q-neighborhoods of Pλ
s . Therefore, for a

given n0 ∈ D, there exists n ∈ D such that n ≥ n0 and V1qF (An)[ν]. Since V1(t) = 0,
we have V1(s) + F (An)(s) > ν(s), which implies that F (An)(s) > 0.4. Therefore,
we get An(x) > 0.4 or An(y) > 0.4 and hence U1qAn[µ]. Clearly, µqAn[µ],∀n ≥ n0.
Since U1 and µ are the q-neighborhoods of Pλ

y , we get Pλ
y ∈ lim supD(An) = A.

Thus, Pλ
s = F (Pλ

y ) ∈ F (A).
Case 2: 0 < λ ≤ 0.4. In this case, the only q-neighborhood of Pλ

y is µ, which is
quasi-coincident with An, ∀n ∈ D. Therefore, Pλ

y ∈ lim supD(An) = A and hence
F (Pλ

y ) ∈ F (A). Therefore, F (A) ≤ lim infD F (An) ≤ lim supD F (An) ≤ F (A).
Thus {F (An) : n ∈ D} converges to F (A).

The converse of the Theorem 4.9 is not true.

Counterexample 4.17. Let X = {x, y}, S = {s, t}, µ
[0.5,0.6]
[x,y] , ν

[0.5,0.6]
[s,t] . Define two

fuzzy subsets U1 ≤ µ and V1 ≤ ν by U1
[0.1,0]
[x,y] , V1

[0.1,0]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.4, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise ,

then obviously (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

Clearly, F is one-to-one and F (µ)[0.5,0.6]
[s,t] = ν and F−1(V1)

[0.1,0.1]
[x,y] = U1. But

τ(F−1(V1)) = 0.4 < σ(V1). Hence, F is not smooth fuzzy continuous. Consider
a fuzzy net {An : n ∈ D} converging to A in µ. We claim that {F (An) : n ∈ D}
converges to F (A) in ν. Let Pλ

s ∈ F (A). Then there exists Pλ
x in A such that

F (Pλ
x ) = Pλ

s .
Case 1: 0.4 < λ ≤ 0.5. Here, V1 and ν are the only q-neighborhoods of Pλ

s . Since
Pλ

x ∈ lim infD(An) and U1 is the q-neighborhood of Pλ
x , there exists n0 ∈ D, such

that AnqU1[µ],∀n ≥ n0. Since Un(y) = 0, we have An(x)+U1(x) > µ(x) and we get
V1(s)+F (An)(s) = F (U1)(x)+F (An)(s) ≥ U1(x)+An(x) > µ(x) = F (µ)(s) = ν(s).
Hence, V1qF (An)[ν]. Obviously, we have, νqF (An)[ν],∀n ∈ D.
Case 2: 0 < λ ≤ 0.4. The only q-neighborhood of Pλ

s is ν. Clearly, νqF (An)[ν],∀n ∈
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D. Therefore, Pλ
s ∈ lim infD F (An). The only q-neighborhood of P δ

t is ν, which is
quasi-coincident with all F (An). Hence, F (A) ≤ lim infD F (An).

Let Pλ
s , P δ

t ∈ lim supD F (An) be arbitrary. Then there exist Pλ
x , P δ

y ∈ µ such
that F (Pλ

x ) = Pλ
s and F (P δ

y ) = P δ
t .

Case 1: 0.4 < λ ≤ 0.5. In this case, V1 and ν are the q-neighborhoods of Pλ
s . There-

fore, for each n0 ∈ D, there exists n ∈ D such that n ≥ n0 and V1qF (An)[ν]. Since F
is one-to-one, we have V1(s)+F (An)(s) > ν(s), which implies that U1(x)+An(x) =
V1(s) + F (An)(s) > ν(s) = µ(x). Clearly µqAn[µ]. Thus, Pλ

x ∈ lim supD(An).
Case 2: 0 < λ ≤ 0.4. In this case, the only q-neighborhood of Pλ

x is µ which
is quasi-coincident with all An. The only q-neighborhood of Pλ

y is µ, which is
quasi-coincident with all An. Finally, we get that Pλ

x , P δ
y ∈ lim supD(An) = A.

Since Pλ
s = F (Pλ

x ) ∈ F (A) and P δ
t = F (Pλ

y ) ∈ F (A), we conclude that F (A) ≤
lim infD(An) ≤ lim supD(An) ≤ F (A). Therefore, {F (An : n ∈ D)} converges to
F (A).

5. Convergence of net of fuzzy points

Definition 5.1. (Cf. [27]) Let ζ = {ζλ : λ ∈ D} be a fuzzy net in µ. ζ is said
to be quasi-coincident with A if for each λ ∈ D, ζλ is quasi-coincident with A. ζ
is said to be eventually quasi-coincident with A if there is m ∈ D such that ζλ is
quasi-coincident with A, for every λ ∈ D with λ ≥ m.

Definition 5.2. (Cf. [27]) A fuzzy net ζ = {ζλ : λ ∈ D} in a smooth fuzzy topologi-
cal space (µ, τ) is said to converge to a fuzzy point ξ if ζ is eventually quasi-coincident
with each q-neighborhood of ξ.

Lemma 5.3. (Cf. [27]) In a smooth fuzzy topological space (µ, τ), a fuzzy point
Pλ

x ∈ A if and only if there is a fuzzy net ζ in A such that ζ converges to Pλ
x .

Definition 5.4. A fuzzy proper function F : µ → ν is said to be net 2 continuous
on µ if the net {F (ζn) : n ∈ D} of fuzzy points in ν converges to a fuzzy point F (ξ),
whenever a net {ζn : n ∈ D} of fuzzy points in µ converges to a fuzzy point ξ in µ.

Theorem 5.5. Let F : µ → ν be a one-to-one fuzzy proper function such that ν =
F (µ). If F is qn-weakly smooth fuzzy continuous on µ, then F is net 2 continuous
on µ.

Proof. Let us assume that F is qn-weakly smooth fuzzy continuous on µ and let a
fuzzy net {ζn : n ∈ D} converge to Pλ

x . If V is a q-neighborhood of F (Pλ
x ), using F

is qn-weakly smooth fuzzy continuous, there exists a q-neighborhood U of Pλ
x such

that F (U) ≤ V . Then by hypothesis, there exists n0 ∈ D, such that Uqζn[µ],∀n ≥
n0. Therefore, U(z) + ζn(z) > µ(z), for some z ∈ X and ∀n ≥ no. For this
z ∈ X, there exists unique t ∈ S such that F (z, t) = µ(z). Since F is one-to-one,
V (t) + F (ζn)(t) ≥ F (U)(t) + F (ζn)(t) = U(z) + ζn(z) > µ(z) = F (µ)(t) = ν(t).
Hence, {F (ζn) : n ∈ D} is a fuzzy net in ν and it converges to F (Pλ

x ). �

The following theorems hold trivially from the above theorem.

Theorem 5.6. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). IF F is weakly smooth fuzzy continuous on µ, then F is net 2 continuous
on µ.
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Theorem 5.7. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ). If F is smooth fuzzy continuous on µ, then F is net 2 continuous on µ.

If F is not one-to-one, then the statements of Theorems 5.5, 5.6, 5.7 are not true.
The following counterexample justifies our statement.

Counterexample 5.8. Let X = {x, y, z}, S = {s, t} and let µ
[0.8,0.7,0.6]
[x,y,z] , ν

[0.8,0.6]
[s,t] ,

U1
[0.1,0.1,0.3]
[x,y,z] , V1

[0.1,0.3]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.7, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise ,

then obviously (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0.7, F (y, t) = 0, F (z, s) = 0, F (z, t) = 0.6.

Clearly, F is one-to-one and F (µ)[0.8,0.6]
[s,t] = ν. Here, F−1(V1) = U1 and τ(F−1(V1)) =

0.7 > 0.6 = σ(V1). Hence F is smooth fuzzy continuous which implies that F
is weakly smooth fuzzy continuous and F is qn-weakly smooth fuzzy continuous.

Consider a fuzzy net (ζn)
[0,0.6+ 1

n+10 ,0]

[x,y,z] , ∀n ∈ N , where N is the set of all natural
numbers. Here, the q-neighborhoods of P 0.75

x are U1 and µ. Clearly, µ and U1 are
quasi-coincident with ζn,∀n ∈ N . Therefore, {ζn} converge to P 0.75

x . Now, the fuzzy

net in ν is
{

F (ζn)
[0.6+ 1

n+10 ,0]

[s,t] : n ∈ N

}
. We note that, V1 is a q-neighborhood of

F (P 0.75
x ). But V1(s) + F (ζn)(s) = 0.1 + 0.6 + 1

1+10 < 0.8,∀n ∈ N . Hence {F (ζn)}
does not converge to F (P 0.75

x ).

The converse of the Theorem 5.5 holds without assuming one-to-one.

Theorem 5.9. Let F : µ → ν be a fuzzy proper function such that ν = F (µ). If F
is net 2 continuous on µ, then F is qn-weakly smooth fuzzy continuous on µ.

Proof. Let us assume that F is net 2 continuous on µ. Suppose if F is not qn-weakly
smooth fuzzy continuous, then there is q-neighborhood V1 ∈ Iν of F (Pλ

x ) such that
F (Uα) � V1, for every q-neighborhood Uα of Pλ

x . Therefore there exists tα ∈ S such
that F (Uα)(tα) > V1(tα). Hence, there exists yα ∈ X such that Uα(yα) > V1(tα).
If D =

{
Uα : Uα is a q-neighborhood of Pλ

x

}
, then (D,≤) is a directed set. Define

ζUα
(yα) = µ(yα) − V1(tα). Then, {ζUα

: Uα ∈ D} is a fuzzy net of fuzzy points in
µ. Now, we have ζUα

(yα) = µ(yα) − V1(tα) > µ(yα) − Uα(yα), for every Uα ∈ D.
Therefore, ζUαqUα[µ]. If Uk is a q-neighborhood of Pλ

x , then ζUαqUk[µ], for every
Uα ≤ Uk. Hence, {ζUα : Uα ∈ D} converges to Pλ

x . Clearly {F (ζUα) : Uα ∈ D} is
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a fuzzy net in ν and F (Uα)(tα) = µ(yα) − V1(tα) ≤ ν(tα) − V1(tα). Therefore,
F (ζUα) 6 qV1[ν],∀Uα ∈ D ⇒ {F (ζUα) : Uα ∈ D} does not converge to F (Pλ

x ), which
is a contradiction. Thus, F is qn-weakly smooth fuzzy continuous. �

The converse of the Theorem 5.6, holds for the positive minimum smooth fuzzy
topological space (µ, τ).

Theorem 5.10. Let F : µ → ν be a one-to-one fuzzy proper function such that
ν = F (µ) and let (µ, τ) be a positive minimum smooth fuzzy topological space. If F
is net 2 continuous on µ, then F is weakly smooth fuzzy continuous.

Proof. Let Fσ(V ) > 0 and let Pλ
z ∈ F−1(V ). Then by Lemma 5.3, there ex-

ists a fuzzy net {ζn : n ∈ D} in F−1(V ) converging to Pλ
z . Then by hypothe-

sis, {F (ζn) : n ∈ D} is a fuzzy net in V and it converges to F (Pλ
z ). Therefore,

F (Pλ
z ) ∈ V = V . Hence, Pλ

z ∈ F−1(V ). Thus, we conclude that F is weakly smooth
fuzzy continuous. �

The statement of the above theorem is not true when F is not one-to-one.

Counterexample 5.11. Let X = {x, y}, S = {s, t}, µ
[0.6,0.7]
[x,y] , ν

[0.7,0]
[s,t] . Define two

fuzzy subsets U1 ≤ µ and V1 ≤ ν by U1
[0.2,0.3]
[x,y] , V1

[0.3,0]
[s,t] .

Let τ : Iµ → I be defined by

τ(U) =


1, U = 0X or µ,

0.7, U = U1,

0, otherwise

and let σ : Iν → I be defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise .

Let a fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0.7, F (y, t) = 0.

Clearly, F is not one-to-one and F (µ)[0.7,0]
[s,t] = ν. Since F−1(V1)

[0.3,0.3]
[x,y] , F is not

weakly smooth fuzzy continuous. First, we show that if a fuzzy net {ζn : n ∈ D}
converges to Pλ

x in µ, then {F (ζn) : n ∈ D} converges to F (Pλ
x ) in ν.

Case 1: 0.4 < λ ≤ 0.6
In this case, the q-neighborhoods of F (Pλ

x ) = Pλ
s are V1 and ν. Since {ζn : n ∈ D}

converges to Pλ
x and U1 is a q-neighborhood of Pλ

x , there exists n0 ∈ D such that
ζnq(U1)[µ],∀n ≥ n0. Therefore, we have ζn(x) + U1(x) > µ(x) or ζn(y) + U1(y) >
µ(y). Hence ζn(x) > 0.4 or ζn(y) > 0.4, which implies that F (ζn)(s) > 0.4. From
these observations, we have V1(s) + F (ζn)(s) > 0.3 + 0.4 = 0.7 = ν(s). Hence,
V1qF (ζn)[ν]. Clearly, F (ζn)qν,∀n ∈ D.
Case 2: 0 < λ ≤ 0.4
Since the only q-neighborhood of Pλ

s is ν and νqF (ζn)[ν],∀n ∈ D, clearly {F (ζn) : n ∈ D}
converges to F (Pλ

x ).
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Similarly, if any {ζn : n ∈ D} converges to Pλ
y in µ, then {F (ζn) : n ∈ D} converges

to F (Pλ
y ) in ν.

The converse of the Theorem 5.7 is not true.

Counterexample 5.12. Let X = {x, y}, S = {s, t}, µ
[0.7,0.8]
[x,y] , ν

[0.7,0.8]
[s,t] , U1

[0.3,0]
[x,y] and

V1
[0.3,0]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =


1, U = 0X or µ,

0.4, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =


1, V = 0S or ν,

0.6, V = V1,

0, otherwise ,

then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let a fuzzy proper func-
tion F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.7, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.8.

Clearly F is one-to-one and F (µ)[0.7,0.8]
[s,t] . Since, τ(F−1(V1)) = 0.4 < 0.6 = σ(V1),

F is not smooth fuzzy continuous. Assume that {ζn : n ∈ D} is a fuzzy net in µ
converging to Pλ

x . We claim that {F (ζn) : n ∈ D} converges to F (Pλ
x ) in ν.

Case 1: 0.4 < λ ≤ 0.7. The q-neighborhoods of F (Pλ
x ) = Pλ

s are V1 and ν only.
Clearly, F (ζn)qν,∀n ∈ D. Since net {ζn : n ∈ D} of fuzzy points converges to Pλ

x

and U1 is a q-neighborhood of Pλ
x , there exists n0 ∈ D such that ζnqU1[µ],∀n ≥ n0.

Since U1(y) = 0, ζn(x) + U1(x) > µ(x). Hence, ζn(x) > 0.4, which implies that
F (ζn)(s) > 0.4. Therefore, V1(s) + F (ζn)(s) > 0.3 + 0.4 = 0.7 = ν(s). Thus,
V1qF (sλ)[ν].
Case 2: 0 < λ ≤ 0.4.
The only q-neighborhood of Pλ

s is ν and νqF (ζn)[ν],∀n ∈ D. Therefore, {F (ζn) : n ∈ D}
converges to F (Pλ

x ). Similarly, one can prove that if any {ζn : n ∈ D} in µ converges
to Pλ

y , then {F (ζn) : n ∈ D} converges to F (Pλ
y ).

6. Conclusion

In this article, we have discussed various notions of continuity and also find the
relations among them. Finally, the results obtained in sections 3, 4 and 5 are sum-
marized in the following diagrams.

Smooth fuzzy continuous
1−1=⇒
⇐=
1−1

Fτ (F−1(V )) ≥ Fσ(V ), ∀V ∈ Iν .

Weakly smooth fuzzy continuous
1−1=⇒
⇐=
1−1

Fτ (F−1(V )) > 0 if Fσ(V ) > 0, ∀V ∈ Iν .
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[10] B. Chen, Semi-precompactness in Šostak’s L-fuzzy topological spaces, Ann. Fuzzy Math. In-

form. 2(1) (2011) 49–56.

724



Kalaivani Chandran et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 3, 705–726

[11] A. K. Chaudhuri and P. Das, Some results on fuzzy topology on fuzzy sets, Fuzzy Sets and
Systems 56(3) (1993) 331–336.

[12] M. Demirici, On several types of compactness in smooth topological spaces, Fuzzy sets and
Systems 90(1) (1997) 83–88.

[13] M. Demirici, On the convergence structure of L-topological spaces and the continuity in L-

topological spaces, New Math. Nat. Comput. 3(1) (2007) 1–25.
[14] M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, Almost compactness and near compactness

in smooth topological spaces, Fuzzy Sets and Systems 62(2) (1994) 193–202.
[15] S. A. El Sheikh, On convergence in fuzzy topological spaces, J. Egypt. Math. Soc. 14(1) (2006)

15–28.

[16] Z. Fang, Semicompactness degree in L-topological spaces, Ann. Fuzzy Math. Inform. 2(1)

(2011) 91–98.
[17] M. A. Fath Alla and F. S. Mahmoud, Fuzzy topology on fuzzy sets, Functions with fuzzy

closed graphs, strong fuzzy closed graphs, J. Fuzzy Math. 9(3) (2001) 525–533.
[18] D. N. Georgiou and B. K. Papadopoulos, Convergence in fuzzy topological spaces, Fuzzy Sets

and Systems 101(3) (1999) 495–504.
[19] D. N. Georgiou and B. K. Papadopoulos, On fuzzy θ-convergence, Fuzzy Sets and Systems

116(3) (2000) 385–399.
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