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1. Introduction

Since the introduction of fuzzy set theory by L. A. Zadeh [16] in 1965, fuzzy logic
has become an important area of research in various branches of mathematics such
as metric and topological spaces, automata theory, optimization, control theory etc.
Fuzzy set theory also found applications for modeling uncertainty and vagueness in
various fields of science and engineering. George and Veeramoni [6], Kramosil and
Michalek [8] have introduced the concept of fuzzy topological spaces induced by fuzzy
metric which have important applications in quantum particle physics particularly
in connections with both string and E-infinity theory.

On the other hand, a number of generalizations of metric spaces have been done
and one such generalization is generalized metric space or D-metric space initiated
by Dhage [4] in 1992. Many other authors viz. Sedghi et al. [14] made a significant
contribution in fixed point theory of D*-metric space which is another generalization
of D-metric space. Recently Sedghi et al. [13] introduced the concept of M-fuzzy
metric space which is a generalization of fuzzy metric space due to George & Veera-
moni [6]. The author [2] of this paper modify the definition of M-fuzzy metric space
and achieve two decomposition theorems. The idea of cone metric space is relatively
new which is introduced by H. Long-Guang et al. [9] and it is a generalization of
classical metric space. In such space, authors have considered a real Banach space as
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the range set of the cone metric. On cone metric space, many papers have appeared
by different authors ( for references please see [1, 3, 10, 12, 15] ).

In this paper, idea of fuzzy cone metric space is introduced and some basic defi-
nitions are given. Here the range of fuzzy cone metric is considered as E∗(I) where
E is a given real Banach space and E∗(I) denotes the set of all non-negative fuzzy
real numbers defined on E. It is seen that fuzzy cone metric space is a generalization
of Kaleva & Seikkala [7] type fuzzy metric space ( when L = min and U = max ).
Some fixed point theorems have been established in such spaces.

The organization of the paper is as follows:
Section 1 comprises some preliminary results which are used in this paper.
Definition of fuzzy cone metric space and some basic properties are discussed in
Section 2. In Section 3, some fixed point theorems for contractive mappings are
established.

2. Preliminaries

A fuzzy number is a mapping x : R → [0 , 1] over the set R of all reals. A fuzzy
number x is convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r. The α-level set of
a fuzzy real number η denoted by [η]α and defined as [η]α = {t ∈ R : η(t) ≥ α}. If
there exists a t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 < α ≤ 1, α-
level set of an upper semi continuous convex normal fuzzy number ( denoted by [η]α)
is a closed interval [aα , bα], where aα = −∞ and bα = +∞ are admissible. When
aα = −∞, for instance, then [aα , bα] means the interval (−∞ , bα]. Similar is the
case when bα = +∞. A fuzzy number x is called non-negative if x(t) = 0, ∀t < 0.
Kaleva ( Felbin ) denoted the set of all convex, normal, upper semicontinuous fuzzy
real numbers by E ( R(I)) and the set of all non-negative, convex, normal, upper
semicontinuous fuzzy real numbers by G(R∗(I)).

A partial ordering ” ¹ ” in E is defined by η ¹ δ if and only if a1
α ≤ a2

α and
b1
α ≤ b2

α for all α ∈ (0 , 1] where [η]α = [a1
α , b1

α] and [δ]α = [a2
α , b2

α]. The
strict inequality in E is defined by η ≺ δ if and only if a1

α < a2
α and b1

α < b2
α for each

α ∈ (0 , 1].
According to Mizumoto and Tanaka [11] , the arithmetic operations ⊕, ª ,¯ on

E × E are defined by
(x⊕ y)(t) = Sups∈Rmin {x(s) , y(t− s)}, t ∈ R
(xª y)(t) = Sups∈Rmin {x(s) , y(s− t)}, t ∈ R
(x¯ y)(t) = Sups∈R,s 6=0min {x(s) , y( t

s )}, t ∈ R

Proposition 2.1 ([11]). Let η , δ ∈ E(R(I)) and [η]α = [a1
α , b1

α], [δ]α = [a2
α , b2

α],
α ∈ (0 , 1]. Then

[η
⊕

δ]α = [a1
α + a2

α , b1
α + b2

α]
[η ª δ]α = [a1

α − b2
α , b1

α − a2
α]

[η ¯ δ]α = [a1
αa2

α , b1
αb2

α]

Definition 2.2 ([7]). A sequence {ηn} in E is said to be convergent and converges to
η denoted by lim

n→∞
ηn = η if lim

n→∞
an

α = aα and lim
n→∞

bn
α = bα where [ηn]α = [an

α, bn
α]

and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.3 ([7]). If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).
658
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Note 2.4 ([7]). For any scalar t, the fuzzy real number tη is defined as tη(s) = 0 if
t=0 otherwise tη(s) = η( s

t ).

Following is the definition of fuzzy metric space introduced by Kaleva et al [6].

Definition 2.5 ([7]). Let X be a nonempty set, d be a mapping from X × X to
G and let the mappings L,U : [0 , 1] × [0 , 1] → [0 , 1] be symmetric, nonde-
creasing in both arguments and satisfy L(0 , 0) = 0 and U(1 , 1) = 1. Denote
[d(x, y)]α = [λα(x, y) , ρα(x, y)] for x ∈ X, 0 < α ≤ 1. The quadruple (X, d, L, U)
is called a fuzzy metric space and d is a fuzzy metric if

(i) d(x, y) = 0̄ if and only if x = y ;
(ii)d(x, y) = d(y, x), ∀x, y ∈ X ;
(iii) for all x, y, z ∈ X,
(a) d(x, y)(s + t) ≥ L(d(x, z)(s) , d(z, y)(t)) whenever s ≤ λ1(x, z), t ≤ λ1(z, y)

and s + t ≤ λ1(x, y).
(b) d(x, y)(s+ t) ≤ U(d(x, z)(s) , d(z, y)(t)) whenever s ≥ λ1(x, z), t ≥ λ1(z, y)

and s + t ≥ λ1(x, y).

Remark 2.6 ([7]). Kaleva et al. proved that, if L =
∧

(Min) and U =
∨

(Max)
then the triangle inequality (iii) in the Definition 1. 1 is equivalent to

d(x , y) ¹ d(x , z)
⊕

d(z , y).

Further λα and ρα are crisp metrices on X for each α ∈ (0 , 1].

Definition of fuzzy norm on a linear space as introduced by C. Felbin is given
below:

Definition 2.7 ([5]). Let X be a vector space over R. Let || || : X → R∗(I) and let
the mappings L,U : [0 , 1]× [0 , 1] → [0 , 1] be symmetric, nondecreasing in both
arguments and satisfy L(0 , 0) = 0 and U(1 , 1) = 1. Write [||x||]α = [||x||1α , ||x||2α]
for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X, x 6= 0, there exists α0 ∈ (0 , 1]
independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ;
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s + t ≤ ||x + y||11, ||x + y||(s +

t) ≥ L(||x||(s) , ||y||(t)),
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s + t ≥ ||x + y||11, ||x + y||(s +

t) ≤ U(||x||(s) , ||y||(t))
Remark 2.8 ([5]). Felbin proved that, if L =

∧
(Min) and U =

∨
(Max) then the

triangle inequality (iii) in the Definition 1. 1 is equivalent to

||x + y|| ¹ ||x||
⊕

||y||.
Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1].
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Definition 2.9 ([9]). Let E be a real Banach space and P be a subset of E. P is
called a cone if

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ;
(iii) x ∈ P and −x ∈ P ⇒ x = 0.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y

iff y−x ∈ P . On the other hand x < y indicates that x ≤ y but x 6= y while x << y
will stand for y − x ∈IntP where IntP denotes the interior of P.

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,
with 0 ≤ x ≤ y implies ||x|| ≤ K||y||. The least positive number satisfying above
is called the normal constant of P. The cone P is called regular if every increasing
sequence which is bounded from above is convergent. That is if {xn} is a sequence
such that x1 ≤ x2 ≤ ........ ≤ xn ≤ .... ≤ y for some y ∈ E, then there is x ∈ E such
that ||xn−x|| → 0 as n →∞. Equivalently, the cone P is regular if every decreasing
sequence which is bounded below is convergent. It is clear that a regular cone is a
normal cone.

In the following we always assume that E is a real Banach space, P is a cone in
E with IntP 6= φ and ≤ is a partial ordering with respect to P.

Definition 2.10 ([9]). Let X be a nonempty set. Suppose the mapping d : X×X →
E satisfies

(d1) 0 ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0 iff x = y;
(d2) d(x, y) = d(y, x) ∀x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

3. Fuzzy cone metric spaces

In this section an idea of fuzzy cone metric space is introduced.

Definition 3.1. Let (E, || ||) be a fuzzy real Banach space where || || : E → R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 3.2. A member η ∈ R∗(I) is said to be an interior point if ∃r > 0 such
that S(η, r) = {δ ∈ R∗(I) : η ª δ ≺ r̄} ⊂ R∗(I). Set of all interior points of R∗(I)
is called interior of R∗(I).

Definition 3.3. A subset of F of E∗(I) is said to be fuzzy closed if for any sequence
{ηn} such that lim

n→∞
ηn = η implies η ∈ F.

Definition 3.4. A subset P of E∗(I) is called a fuzzy cone if
(i) P is fuzzy closed, nonempty and P 6= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P ;
Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤ with respect to P by

η ≤ δ iff δª η ∈ P and η < δ indicates that η ≤ δ but η 6= δ while η << δ will stand
for δ ª η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
η, δ ∈ E∗(I), with 0̄ ≤ η ≤ δ implies η ¹ Kδ. The least positive number satisfying
above is called the normal constant of P. The fuzzy cone P is called regular if every
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increasing sequence which is bounded from above is convergent. That is if {ηn} is a
sequence such that η1 ≤ η2 ≤ ........ ≤ ηn ≤ .... ≤ η for some η ∈ E∗(I), then there
is δ ∈ E∗(I) such that ηn → δ as n → ∞. Equivalently, the fuzzy cone P is regular
if every decreasing sequence which is bounded below is convergent. It is clear that
a regular fuzzy cone is a normal fuzzy cone.

In the following we always assume that E is a fuzzy real Banach space, P is a
fuzzy cone in E with IntP 6= φ and ≤ is a partial ordering with respect to P.

Definition 3.5. Let X be a nonempty set. Suppose the mapping d : X×X → E∗(I)
satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;
(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;
(Fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Note 3.6. Fuzzy cone metric space is a generalized fuzzy metric space. For, choose
E = R and P = {η ∈ E∗(I) : η º 0̄} and partial ordering ≤ as ¹ then (X, d) is a
Kaleva & Seikkala type fuzzy metric space when L= min and U=Max.

Example 3.7. Let (E, || ||′) be a Banach space. Define || || : E → R∗(I) by

||x||(t) =
{

1 if t > ||x||′
0 if t ≤ ||x||′

Then [||x||]α = [||x||′ , ||x||′] ∀α ∈ (0, 1]. It is easy to verify that,
(i) ||x|| = 0̄ iff x = 0
(ii) ||rx|| = |r|||x|| (iii) ||x + y|| ¹ ||x|| ⊕ ||y||.

Thus (E, || ||) is a fuzzy normed linear space ( when L=min and U=max ). Let {xn}
be a Cauchy sequence in (E, || ||) So, limm,n→∞ ||xn − xm|| = 0̄.
⇒ limm,n→∞ ||xn − xm|| = 0 ⇒ {xn} be a Cauchy sequence in (E, || ||′). Since
(E, || ||′) is complete, ∃x ∈ E such that limm,n→∞ ||xn−x||′ = 0. i. e. limn→∞ ||xn−
x|| = 0̄. Thus (E, || ||) is a real fuzzy Banach space. Define P = {η ∈ E∗(I) : η º 0̄}.
(i) P is fuzzy closd.
For, consider a sequence {δn} in P such that limn→∞ δn → δ.
i. e. limn→ δ1

n,α = δ1
α and

limn→ δ2
n,α = δ2

α where [δn]α = [δ1
n,α , δ2

n,α] and [δ]α = [δ1
α , δ2

α] ∀α ∈ (0, 1].
Now δn º 0̄ ∀n.
So, δ1

n,α ≥ 0 and δ2
n,α ≥ 0 ∀α ∈ (0, 1].

⇒ limn→∞ δ1
n,α ≥ 0 and limn→∞ δ2

n,α ≥ 0 ∀α ∈ (0, 1]
⇒ δ1

α ≥ 0 and δ2
α ≥ 0 ∀α ∈ (0, 1]

⇒ δ º 0̄.
So δ ∈ P. Hence P is fuzzy closed.
(ii) It is obvious that, a, b ∈ R, a, b ≥ 0 η, δ ∈ P ⇒ aη ⊕ bδ ∈ P.
Thus P is a fuzzy cone in E.
Now choose the ordering ≤ as ¹ and define d : E×E → E∗(I) by d(x, y) = ||x−y||.
Then it is easy to verify that d satisfies the conditions (Fd1) to (Fd3). Hence (E , d)
is a fuzzy cone metric space.

Definition 3.8. Let (X, d) be a fuzzy cone metric space. Let{xn} be a sequence
in X and x ∈ X. If for every c ∈ E with 0̄ << ||c|| there is a positive integer N
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such that for all n > N, d(xn, x) << ||c||, then {xn} is said to be convergent and
converges to x and x is called the limit of {xn}. We denote it by lim

n→∞
xn = x.

Lemma 3.9. Let (X, d) be a fuzzy cone metric space and P be a normal fuzzy cone
with normal constant K. Let{xn} be a sequence in X. Then {xn} converges to x iff
d(xn, x) → 0̄ as n →∞.

Proof. First we suppose that {xn} converges to x. For every real ε > 0, choose c ∈ E
with 0̄ << ||c|| and K||c|| ≺ ε̄.
Then ∃ a natural number N, such that ∀n > N, d(xn, x) << ||c||.
So that when n > N, d(xn, x) ¹ K||c|| ≺ ε̄ ( since P is normal ).
i. e. d1

α(xn, x) < ε and d2
α(xn, x) < ε ∀n ∈ N, ∀α ∈ (0, 1].

i. e. lim
n→∞

d1
α(xn, x) = 0 and lim

n→∞
d2

α(xn, x) = 0 ∀α ∈ (0, 1].

i. e. d(xn, x) → 0̄ as n →∞.
Conversely, suppose that d(xn, x) → 0̄ as n →∞.
For, c ∈ E with 0̄ << ||c|| , there is δ > 0 such that ||x|| ≺ δ̄.
This implies that ||c|| ª ||x|| ∈ IntP.
For this δ there is a positive integer N such that ∀n > N, d(xn, x) ≺ δ̄.
Let d(xn, x) = ||yn||. So ||yn|| ≺ δ̄ ∀n > N .
i. e. ||c|| ª ||yn|| ∈ IntP ∀n > N
⇒ ||yn|| << ||c|| ∀n > N
⇒ d(xn, x) << ||c|| ∀n > N
⇒ xn → x as n →∞. ¤

Lemma 3.10. Let (X, d) be a fuzzy cone metric space and P be a normal fuzzy cone
with normal constant K. Let{xn} be a sequence in X. If {xn} is convergent then its
limit is unique.

Proof. If possible suppose that limn→∞ xn = x and limn→∞ xn = y. Thus for
any c ∈ E with 0̄ << ||c||, there exists a natural number N such that ∀n >
N, d(xn, x) << ||c|| and d(yn, y) << ||c||.
We have d(x, y) ≤ d(x, xn)⊕ d(xn, y) ≤ 2||c||.
Hence d(x, y) ¹ 2K||c||.
Since c is arbitrary, we have d(x, y) = 0̄. i. e. x = y. ¤

Definition 3.11. Let (X, d) be a fuzzy cone metric space and {xn} be a sequence
in X. If for any c ∈ E with 0̄ << ||c||, there exists a natural number N such that
∀m,n > N, d(xn, xm) << ||c||, then {xn} is called a Cauchy sequence in X.

Definition 3.12. Let (X, d) be a fuzzy cone metric space. If every Cauchy sequence
is convergent in X, then X is called a complete fuzzy cone metric space.

Lemma 3.13. Let (X, d) be a fuzzy cone metric space and {xn} be a sequence in
X. If {xn} is convergent then it is a Cauchy sequence.

Proof. Let {xn} converges to x. So for any c ∈ E with 0̄ << ||c|| there exists a
natural number N such that ∀m, n > N, d(xn, x) << || c2 || and d(xm, x) << || c2 ||.
Hence d(xn, xm) ≤ d(xn, x)⊕ d(x, xm) << ||c|| ∀m,n > N.
Thus {xn} is a Cauchy sequence. ¤
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Lemma 3.14. Let (X, d) be a fuzzy cone metric space, P be a normal fuzzy cone with
normal constant K. Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence
iff d(xn, xm) → 0̄ as m,n →∞.

Proof. Let {xn} be a Cauchy sequence in X. For ε > 0 choose c ∈ E with 0̄ << ||c||
and K||c|| ≺ ε̄. Then there is a natural number N such that ∀m,n > N, d(xn, xm) <<
||c||.
So that when m,n > N, d(xn, xm) ¹ K||c|| ≺ ε̄ ( since P is normal ).
Since ε > 0 is arbitrary, it follows that d(xn, xm) → 0̄ as m,n →∞.
Conversely suppose that d(xn, xm) → 0̄ as m, n →∞.
For c ∈ E with 0̄ << ||c||, there is δ > 0 such that ||x|| ≺ δ̄.
i. e. ||c|| ª (||c|| ª ||x)|| ≺ δ̄ implies ||c|| ª ||x|| ∈ IntP. For this δ > 0, there exists a
natural number N such that ∀m, n > N, d(xn, xm) ≺ δ̄.
i. e. ||zm,n|| ≺ δ̄ if we write d(xn, xm) = ||zm,n|| where zm,n ∈ E.
⇒ ||c|| ª ||zm,n|| ∈ IntP ∀m,n > N
⇒ ||zm,n|| << ||c|| ∀m,n > N
⇒ d(xm, xn) << ||c|| ∀m,n > N
⇒ {xn} is a Cauchy sequence. ¤

Lemma 3.15. Let (X, d) be a fuzzy cone metric space , P be a normal fuzzy cone with
normal constant K. Let {xn} and {yn} be two sequences in X and xn → x, yn → y
as n →∞. Then d(xn, yn) → Kd(x, y) as n →∞.

Proof. For every ε > 0, choose c ∈ E with 0̄ << ||c|| and ||c|| ≺ ¯( ε
2k ).

Since xn → x, yn → y there is a natural number N such that ∀n > N,
d(xn, x) << ||c|| and d(yn, y) << ||c||.
We have d(xn, yn) ≤ d(xn, x)⊕ d(x, y)⊕ d(y, yn)
i. e. d(xn, yn) ≤ d(x, y)⊕ 2||c|| ∀n > N.
Thus d(xn, yn) ¹ K(d(x, y)⊕ 2||c||) ∀n > N.
⇒ d1

α(xn, yn) ≤ Kd1
α(x, y)+2K||c||1α and d2

α(xn, yn) ≤ Kd2
α(x, y)+2K||c||2α ∀n > N.

⇒ d1
α(xn, yn) < Kd1

α(x, y) + ε and d2
α(xn, yn) < Kd2

α(x, y) + ε ∀n > N
⇒ limn→∞ d1

α(xn, yn) = Kd1
α(x, y) and limn→∞ d2

α(xn, yn) = Kd2
α(x, y)

⇒ limn→∞ d(xn, yn) = Kd(x, y). ¤

Definition 3.16. Let (X, d) be a fuzzy cone metric space. If for any sequence {xn}
in X, there exists a sequence {xnk

} of {xn} such that {xnk
} is convergent in X, then

X is called a sequentially compact fuzzy cone metric space.

4. Fixed point theorems in fuzzy cone metric spaces

In this Section some fixed point theorems of contractive mappings are established
in fuzzy cone metric spaces.

Theorem 4.1. Let (X, d) be a complete fuzzy cone metric space, P be a normal
fuzzy cone with normal constant K. Suppose the mapping T : X → X satisfies the
contractive condition
d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ X where k ∈ [0, 1) is a constant. Then T has a unique
fixed point in X. For any x ∈ X, iterative sequence {Tnx} converges to the fixed
point.
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Proof. Choose x0 ∈ X.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .....
we have,
d(xn+1, xn) = d(Txn, Txn−1) ≤ kd(xn, xn−1) ≤ k2d(xn−1, xn−2) ≤ .... ≤ knd(x1, x0).
So for n > m, we have
d(xn, xm) ≤ d(xn, xn−1)⊕ d(xn−1, xn−2)⊕ ....⊕ (xm+1, xm).
i. e. d(xn, xm) ≤ (kn−1 + kn−2 + ........ + km)d(x1, x0).
i. e. d(xn, xm) ≤ km

1−kd(x1, x0).
This implies that d(xn, xm) ¹ km

1−kKd(x1, x0) ( since P is normal )
⇒ limm,n→∞ d(xn, xm) = 0̄.
⇒ {xn} is a Cauchy sequence in X.
By completeness of X, there is x∗ ∈ X such that xn → x∗.
Now,
d(Tx∗, x∗) ≤ d(Txn, Tx∗)⊕ d(Txn, x∗) ≤ kd(xn, x∗)⊕ d(xn+1, x

∗)
⇒ d(Tx∗, x∗) ¹ K{kd(xn, x∗)⊕ d(xn+1, x

∗)}
⇒ d(Tx∗, x∗) = 0̄ ( since d(xn, x∗) → 0̄, d(xn+1, x

∗) → 0̄ as n →∞)
⇒ Tx∗ = x∗

⇒ x∗ is a fixed point of T.
Now if y∗ is another fixed point of T then
d(x∗, y∗) = d(Tx∗, T y∗) ≤ kd(x∗, y∗)
⇒ d(x∗, y∗) ¹ Kkd(x∗, y∗)
⇒ d(x∗, y∗) = 0̄.
⇒ x∗ = y∗. ¤

Corollary 4.2. Let (X, d) be a complete fuzzy cone metric space, P be a normal
fuzzy cone with normal constant K. For c ∈ E with 0̄ << ||c|| and x0 ∈ X,
set B(x0, c) = {x ∈ X : d(x0, x) ≤ ||c||}.
Suppose the mapping T : X → X satisfies the contractive condition
d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ B(x0, c) where k ∈ [0, 1) is a constant
and d(Tx0, x0) ≤ (1− k)||c||.
Then T has a unique fixed point in B(x0, c).

Proof. We only need to prove that B(x0, c) is complete and Tx ∈ B(x0, c) ∀x ∈
B(x0, c).
Let {xn} be a Cauchy sequence in B(x0, c). Then {xn} is also a Cauchy sequence in
X. By completeness of X, there is x in X such that xn → x.
We have, d(x0, x) ≤ d(xn, x0)⊕ d(xn, x) ≤ d(xn, x)⊕ ||c||.
Since xn → x, thus d(xn, x) → 0̄ and hence d(x0, x) ≤ ||c||.
i. e. x ∈ B(x0, c). Hence B(x0, c) is complete.
Now, for every x ∈ B(x0, c),
d(x0, Tx) ≤ d(Tx0, x0)⊕ d(Tx0, Tx) ≤ (1− k)||c|| ⊕ kd(x0, x) ≤ (1− k)||c|| ⊕ k||c||
⇒ d(x0, Tx) ≤ ||c||.
⇒ Tx ∈ B(x0, c).
This completes the proof. ¤

Corollary 4.3. Let (X, d) be a complete fuzzy cone metric space, P be a normal
fuzzy cone with normal constant K. Suppose a mapping T : X → X satisfies for
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some positive integer n, d(Tnx, Tny) ≤ kd(x, y) ∀x, y ∈ X where k ∈ [0, 1) is a
constant. Then T has a unique fixed point in X.

Proof. From Theorem 4. 1, it follows that Tn has a unique fixed point x∗.
But Tn(Tx∗) = T (Tnx∗) = Tx∗. So Tx∗ is a fixed point of Tn.
Hence Tx∗ = x∗ and thus x∗ is a fixed point of T.
Since the fixed point of T is also a fixed point of Tn, so the fixed point of T is
unique. ¤

Theorem 4.4. Let (X, d) be a sequentially compact fuzzy cone metric space and P
be a regular fuzzy cone. Suppose the mapping T : X → X satisfies the the contractive
condition d(Tx, Ty) < d(x, y) ∀x, y(x 6= y) ∈ X
Then T has a unique fixed point.

Proof. Choose x0 ∈ X.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .....
If for some n, xn+1 = xn then xn is a fixed point of T and the proof is complete.
So we assume that for all n, xn+1 6= xn.
Set ||yn|| = d(xn+1, xn) where yn ∈ E.
Then ||yn+1|| = d(xn+1, xn+2) = d(Txn, Txn+1) < d(xn, xn+1) = ||yn||
Thus ||yn|| is a decreasing sequence bounded below by 0̄.
Since P is regular, there is y ∈ E such that ||y|| ∈ E∗(I) and ||yn|| → ||y|| as n →∞.
Since X is sequentially compact, there exists a subsequence {xni} of {xn} and x∗ ∈ X
such that {xni} → x∗.
We have, d(Txni , Tx∗) < d(xni , x

∗), i = 1, 2, .......
So, d(Txni , Tx∗) ¹ Kd(xni , x

∗), i = 1, 2, ....... where K is the normal constant of
E.
i. e. d1

α(Txni , Tx∗) ≤ Kd1
α(xni , x

∗) and
d2

α(Txni , Tx∗) ≤ Kd2
α(xni , x

∗) ∀α ∈ (0, 1]. (4. 4.
1)
Since {xni} → x∗, thus d(xni , x

∗) → 0̄ as n →∞.
i. e. d1

α(xni , x
∗) → 0 and d2

α(xni , x
∗) → 0 ∀α ∈ (0, 1] as n →∞.

Fom (4. 4. 1) we have, d1
α(Txni , Tx∗) → 0 and d2

α(Txni , Tx∗) → 0 ∀α ∈ (0, 1] as
n →∞.
i. e. d(Txni , Tx∗) → 0̄ as i →∞.
Hence Txni → Tx∗ as i →∞.
Similarly T 2xni → T 2x∗ as i →∞.
By using Lemma 3. 15, we have
d(Txni , xni) → Kd(Tx∗, x∗) and d(T 2xni , Txni) → Kd(T 2x∗, Tx∗) as i →∞.
Also we have, d(Txni , xni) = ||yni || → K||y|| = Kd(Tx∗, x∗) as i →∞.
Now we shall show that Tx∗ = x∗.
If Tx∗ 6= x∗, then ||y|| 6= 0̄ and then we get
K||y|| = Kd(Tx∗, x∗) > Kd(T 2x∗, Tx∗) = limi→∞ d(T 2xni , Txni) = limi→∞ ||yni || =
K||y||.
Which is a contradiction and hence Tx∗ = x∗.
So x∗ is a fixed point of T. The uniqueness of x∗ follows easily. ¤
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Theorem 4.5. Let (X, d) be a complete fuzzy cone metric space and P be a normal
fuzzy cone with normal constant K. Suppose the mapping T : X → X satisfies the the
contractive condition d(Tx, Ty) < k(d(Tx, x)⊕d(Ty, y)) ∀x, y ∈ X, where k ∈ [0, 1

2 )
is a constant. Then T has a unique fixed point in X. Also for any x ∈ X, iterative
sequence {Tnx} converges to the fixed point.

Proof. Choose x0 ∈ X.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .... .
We have,
d(xn+1, xn) = d(Txn, Txn−1) ≤ k(d(Txn, xn)⊕ d(Txn−1, xn−1)) = k(d(xn+1, xn)⊕
d(xn, xn−1)).
So, d(xn+1, xn) ≤ k

1−kd(xn, xn−1) = hd(xn, xn−1) where h = k
1−k .

For n > m,
d(xn, xm) ≤ d(xn, xn−1)⊕ d(xn−1, xn−2)⊕ ......⊕ d(xm+1, xm).
i. e. d(xn, xm) ≤ (hn−1 + hn−2 + ...... + hm)d(x1, x0) = hm

1−hd(x1, x0).
We have d(xn, xm) ¹ K hm

1−hd(x1, x0) ( since P is normal ).
This implies that d(xn, xm) → 0̄ as m,n →∞.
Hence {xn} is a Cauchy sequence. By completeness of X, there is x∗ ∈ X such that
xn → x∗ as n →∞.
Now d(Tx∗, x∗) ≤ d(Txn, Tx∗)⊕d(Txn, x∗) ≤ k(d(Txn, xn)⊕d(Tx∗, x∗))⊕d(xn+1, x

∗).
⇒ d(Tx∗, x∗) ≤ 1

1−k (kd(Txn, xn)⊕ d(xn+1, x
∗)).

We have,
d(Tx∗, x∗) ¹ K 1

1−k (kd(xn+1, xn)⊕ d(xn+1, x
∗)) → 0̄ as n →∞.

Hence d(Tx∗, x∗) = 0̄. i. e. Tx∗ = x∗. So x∗ is a fixed point of T.
Now if y∗ is another fixed point of T, then,
d(x∗, y∗) = d(Tx∗, T y∗) ≤ k(d(Tx∗, x∗)⊕ d(Ty∗, y∗)) = 0̄.
i. e. d(x∗, y∗) = 0̄.
i. e. x∗ = y∗.
Thus fixed point of T is unique. ¤

Note 4.6. The Lemma 3. 15 is not valid in classical sense when k 6= 1.
For, in Example 3. 7, we see that over the same linear space ( real ), (E , || ||′) is
a Banach space and (E , || ||) is a fuzzy Banach space ( where L=min and U=max
).

Consider this real Banach space (E , || ||′) and fuzzy Banach space (E , || ||).
According to Lemma 3. 15, if (X , d) is a fuzzy cone metric space, P is a normal
cone with normal constant k and if {xn} and {yn} be two sequences in X and
xn → x, yn → y as n →∞ then d(xn , yn) → kd(x , y) as n →∞.
This Lemma ( Lemma 5 ) is already established in [9] in classical sense.
The statement of the Lemma is as follows:
Let (X , d) be a cone metric space, P be a normal cone with normal constant k.
Let {xn} and {yn} be two sequences in X and xn → x, yn → y as n → ∞. Then
d(xn , yn) → d(x , y) as n →∞.
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5. Conclusion

In this paper, an idea of fuzzy cone metric space is introduced which is a gener-
alization of fuzzy metric space. In fuzzy cone metric space, range of fuzzy metric is
considered as ordering fuzzy real numbers defined on a real fuzzy Banach space. It
is seen that Kaleva et al. type ( max, min ) fuzzy metric space is a particular case
of fuzzy cone metric space. I think that there is a large scope of developing more
results of fuzzy functional analysis in this context.
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