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Abstract. In this paper we have introduced the notion of multigroups
(in short mgroups) and study its important properties. We have shown
that the intersection of two mgroups is again a mgroup but their union
may not be a mgroup. It has been also shown that the homomorphic
image and pre image of a mgroup is again a mgroup. Next we have defined
the notions of submgroups, abelian mgroups, normal mgroups and factor
mgroups and study some of their properties. In this paper we have also
studied some basic results regarding msets, like functional image and pre
image of a mset under a mapping, decomposition theorems of msets etc.
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1. Introduction

Theory of Multisets is an important generalization of classical set theory which
has emerged by violating a basic property of classical sets that an element can be-
long to a set only once. The term multiset (mset in short) as Knuth [21] notes, was
first suggested by N. G. de Bruijn [5] in a private communication to him. Owing to
its aptness, it has replaced a variety of terms viz. list, heap, bunch, bag, sample,
weighted set, occurrence set and fireset (finitely repeated element set) used in dif-
ferent contexts but conveying synonimity with mset. It is a “set” where an element
can occur more than once. Multisets are very useful structures arising in many areas
of mathematics and computer science such as database queries. Many authors like
Yager [30], Miyamoto [25], Hickman [19], Blizard [3], Girish and John [16, 17] etc.
have studied the properties of multisets. Some authors have also generalized the
notion of multisets in cases of fuzzy sets and soft sets to form fuzzy multisets [23],
soft multisets [24, 2] etc. One of the important applications of fuzzy multisets is in
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information retrieval on the web, since an information item may appear more than
once with possibly different degrees of relevance to a query. Except this, multisets
and fuzzy multisets have been applied in multiple type of scenario’s such as in statis-
tics, multicriteria decision making, knowledge representation in data based systems,
biological systems and membrane computing [30, 26, 20, 27, 28, 22]. More works on
multisets can be found in [4, 18, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Again the theory of
groups is one of the most important algebraic structures in modern mathematics.
Several authors have introduced the notion of group in fuzzy sets [29], intuitionistic
L-fuzzy sets [15], soft sets [1] etc. Therefore the study of group structure in multisets
is very natural. Here we have introduced a notion of group in multiset setting. The
organization of the rest of this paper is as follows:
In section 2, some preliminary definitions and results regarding multisets have been
introduced. Also we have studied the image and preimage of a mset under a map-
ping. A decomposition of a multiset into a family of ordinary set and vice-versa
has also been discussed here. In section 3, the notion of multigroup has been intro-
duced. Several properties regarding multigroups are studied and notions like normal
multigroup, factor multigroup etc are also defined in this section.

2. Preliminaries

In this section definition of a multiset (mset in short) is given and studied its
properties. Unless otherwise stated, X will be assumed to be an initial universal set
and MS(X) denote the set of all mset over X.

Definition 2.1 ([17]). An mset M drawn from the set X is represented by a Count
function CM defined as CM : X → N where N represents the set of non negative
integers.

Here CM (x) is the number of occurrence of the element x in the mset M. The
presentation of the mset M drawn from X = {x1, x2, . . . , xn} will be as M =
{x1/m1, x2/m2, . . . , xn/mn} where mi is the number of occurances of the element
xi, i = 1, 2, . . . , n in the mset M.

Also here for any positive integer w, [X]w is the set of all msets whose elements
are in X such that no element in the mset occurs more than w times and [X]∞ is the
set of all msets whose elements are in X such that there is no limit on the number
of occurances of an element in a mset. As in [17], [X]w and [X]∞ will be referred to
as mset spaces.

Definition 2.2 ([17]). Let M1 and M2 be two msets dwawn from a set X. Then M1

is said to be submset of M2 if CM1(x) ≤ CM2(x), ∀ x ∈ X. This relation is denoted
by M1 ⊆ M2. M1 is said to be equal to M2 if CM1(x) = CM2(x), ∀ x ∈ X. It is
denoted by M1 = M2.

Definition 2.3 ([17]). Let {Mi; i ∈ I} be a nonempty family of msets drawn from
the set X. Then

(a) Their Intersection, denoted by
⋂

i∈I Mi where
C⋂

i∈I Mi
(x) =

∧
i∈I CMi(x), ∀ x ∈ X.

(b) Their Union, denoted by
⋃

i∈I Mi where
C⋃

i∈I Mi
(x) =

∨
i∈I CMi(x), ∀ x ∈ X.
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(c) The Complement of any mset Mi in [X]w, denoted by M c
i where

CMc
i
(x) = w − CMi(x), ∀ x ∈ X.

Definition 2.4. Let M be a mset over a set X. Then we define a set Mn = {x ∈
X : CM (x) ≥ n}, where n is a natural number, is called n-level set of M.

Example 2.5. Let X = {a, b, c} and M = {a, a, b, b, b}. Then M ∈ MS(X) and
the level sets of M are M1 = {a, b}, M2 = {a, b}, M3 = {b} and Mn = {φ}, n ≥ 4.

Proposition 2.6. Let A, B be msets over X and m,n ∈ N.

(i) If A ⊆ B, then An ⊆ Bn :
(ii) If m ≤ n, then Am ⊇ An;
(iii) (A ∩B)n = An ∩Bn;
(iv) (A ∪B)n = An ∪Bn;
(v) A = B iff An = Bn, ∀ n ∈ N.

Proof. The proofs are straightforward. ¤

Definition 2.7. Let P ⊆ X. Then for each n ∈ N, we define a mset nP over X,
where CnP (x) = n, ∀ x ∈ X.

Example 2.8. Let X = {a, b, c} and P = {a, b}. Then 1P = {a, b}, 2P =
{a, a, b, b}, 3P = {a, a, a, b, b, b}, . . . , nP = {a, a, . . . n times, b, b, . . . n times}
and nP ∈ MS(X), ∀ n ∈ N.

Theorem 2.9. (First Decomposition Theorem) If An, n ∈ N be the level sets
of a mset A over X, then CA(x) =

∑
n∈N χAn(x), where χAn is the characteristic

function of An.

Proof. Let x ∈ X and x ∈ Ap, p = 1, 2, . . . , p but x 6∈ Ap+n, n ∈ N.
Then CA(x) = p and∑

n∈N χAn(x) =
∑p

n=1 χAn(x)+
∑

n∈N χAp+n(x) = [1+1+ . . . p times]+[0+ . . .] = p
Therefore, CA(x) =

∑
n∈N χAn(x). ¤

Theorem 2.10. (Second Decomposition Theorem) If An, n ∈ N be the level
sets of a mset A over X, then A =

⋃
n∈N nAn, where

⋃
denotes the standrad mset

union.

Proof. Let x ∈ X and CA(x) = p.
Then x ∈ An, n = 1, 2, . . . , p and x 6∈ An, ∀ n ≥ (p + 1).

Now C⋃
n∈N nAn

(x) = ∨n∈N{[nAn](x)}
= [1A1](x) ∨ [2A2](x) ∨ . . . ∨ [pAp](x) ∨ [(p + 1)Ap+1](x) ∨ . . .

= ∨{1, 2, . . . , p, 0, 0, . . .}
= p = CA(x), ∀ x ∈ X.

Therefore A =
⋃

n∈N nAn. ¤

Definition 2.11. Let X and Y be two nonempty sets and f : X → Y be a mapping.
Then
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(i) the image of a mset M ∈ [X]w under the mapping f is denoted by f(M) or
f [M ], where

Cf(M)(y) =
{ ∨

f(x)=y CM (x) if f−1(y) 6= φ

0 otherwise

(ii) the inverse image of a mset N ∈ [Y ]w under the mapping f is denoted by
f−1(N) or f−1[N ] where Cf−1(N)(x) = CN [f(x)].

Proposition 2.12. Let X, Y and Z be three nonempty sets and f : X → Y, g :
Y → Z be two mappings. If Mi ∈ [X]w, Ni ∈ [Y ]w, i ∈ I then

(i) M1 ⊆ M2 ⇒ f(M1) ⊆ f(M2).
(ii) f [

⋃
i∈I Mi] =

⋃
i∈I f [Mi].

(iii) N1 ⊆ N2 ⇒ f−1(N1) ⊆ f−1(N2).
(iv) f−1[

⋃
i∈I Mi] =

⋃
i∈I f−1[Mi].

(v) f−1[
⋂

i∈I Mi] =
⋂

i∈I f−1[Mi].
(vi) f(Mi) ⊆ Nj ⇒ Mi ⊆ f−1[Nj ].
(vii) g[f(Mi)] = [gf ](Mi) and f−1[g−1(Nj)] = [gf ]−1(Nj).

Proof. We give proof of (vii) and others are straightforward. Let Mi ∈ [X]w and
z ∈ Z. Then

Cg[f(Mi)](z) = ∨{[Cf(Mi)](y); y ∈ Y, g(y) = z}
= ∨{∨{CMi(x); x ∈ X, f(x) = y, }; y ∈ Y, g(y) = z}
= ∨{CMi(x); x ∈ X, [gf ](x) = z}
= C[gf ](Mi)(z).

Therefore g[f(Mi)] = [gf ](Mi). Again let Nj ∈ [Z]w and x ∈ X. Then

C[(gf)−1](Nj)(x) = CNj [gf ](x) = CNj g[f(x)] = Cg−1(Nj)f(x) = Cf−1[g−1(Nj)](x).

Therefore f−1[g−1(Nj)] = [gf ]−1(Nj). ¤
Proposition 2.13. Let X and Y be two nonempty sets and f : X → Y be a
mapping. If M ∈ [X]w then

(i) M⊂̃f−1[f(M)].
(ii) f−1[f(M)] = M, if f is injective.

Proof. (i) Since

Cf−1[f(M)](x) = Cf(M)[f(x)] = ∨{CM (x′); x′ ∈ X, f(x′) = f(x)} ≥ CM (x),

it follows that M⊂̃f−1[f(M)].
(ii) If f is injective, then

Cf−1[f(M)](x) = Cf(M)[f(x)] = ∨{CM (x′); x′ ∈ X, f(x′) = f(x)} = CM (x),

and hence f−1[f(M)] = M, if f is injective. ¤
Proposition 2.14. Let X and Y be two nonempty sets and f : X → Y be a
mapping. If N ∈ [Y ]w then

(i) f [f−1(N)]⊂̃N.
(ii) f [f−1(N)] = N, if f is surjective.
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Proof. The proof is similar to that of Proposition 2.13. ¤
Definition 2.15. An mset containing only one element x of n times is called a
singleton mset and it is denoted by nx.

3. Multigroups

Throughout this section, let X be a group and e be the identity element of X.
Also throughtout the rest of the paper we assume that msets are taken from [X]w

and MG(X) denote the set of all mgroups over a group X.

Definition 3.1. Let A, B ∈ [X]w. Then we define A ◦B and A−1 as follows:
CA◦B(x) =

∨{CA(y) ∧ CB(z); y, z ∈ X and yz = x} and CA−1(x) = CA(x−1).

Proposition 3.2. If A, B, C, Ai ∈ [X]w, then the following assertions hold:
(i) CA◦B(x) =

∨
y∈X [CA(y)∧CB(y−1x)] =

∨
y∈X [CA(xy−1)∧CB(y)], ∀ x ∈ X;

(ii) [A−1]−1 = A;
(iii) A ⊆ B ⇒ A−1 ⊆ B−1;
(iv) [

⋃
i∈I Ai]−1 =

⋃
i∈I [A

−1
i ];

(v) [
⋂

i∈I Ai]−1 =
⋂

i∈I [A
−1
i ];

(vi) (A ◦B)−1 = B−1 ◦A−1;
(vii) (A ◦B) ◦ C = A ◦ (B ◦ C).

Proof. (i) Since X is a group, it follows that for each x, y ∈ X there exists a unique
z ∈ X such that yz = x. Thus

CA◦B(x) = ∨{CA(y) ∧ CB(z); y, z ∈ X and yz = x}
= ∨y∈X [CA(y) ∧ CB(y−1x)] = ∨y∈X [CA(xy−1) ∧ CB(y)], ∀ x ∈ X.

(ii) From Definition 3.1, we have C[A−1]−1(x) = C[A]−1(x−1) = CA(x), ∀ x ∈ X.

Hence [A−1]−1 = A.
(iii) Since A ⊆ B, it follows that CA(x) ≤ CB(x), ∀ x ∈ X.

So, CA−1(x) = CA(x−1) ≤ CB(x−1) = CB−1(x), ∀ x ∈ X.
Hence A−1 ⊆ B−1.

(iv) Since

C[
⋃

i∈I Ai]−1(x) = C[
⋃

i∈I Ai](x
−1) = ∨i∈I [CAi(x

−1)]

= ∨i∈I [CA−1
i

(x)] = C[
⋃

i∈I A−1
i ](x), ∀ x ∈ X.

Hence, [
⋃

i∈I Ai]−1 =
⋃

i∈I [A
−1
i ].

(v) Similar to that of item (iv).
(vi) Now,

C(A◦B)−1(x) = C(A◦B)(x−1)

= ∨y∈X [CA(y) ∧ CB(z) : ∀ y, z ∈ X such that yz = x−1]

= ∨y∈X [CA−1(y−1) ∧ CB−1(z−1) : ∀ y−1, z−1 ∈ X such that (yz)−1 = x]

= ∨z−1∈X [CB−1(z−1) ∧ CA−1(y−1) : ∀ z−1, y−1 ∈ X such that z−1y−1 = x]

= CB−1◦A−1(x), ∀ x ∈ X.

Therefore, (A ◦B)−1 = B−1 ◦A−1.
647
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(vii) Can be proved in a similar way. ¤
Remark 3.3. If e ∈ B∗, then A ⊆ (A ◦B).

Definition 3.4. Let X be a group. A multiset G over X is said to be a multigroup
over X if the Count function G or CG satisfies the following two conditions.

(i) CG(xy) ≥ [CG(x) ∧ CG(y)], ∀ x, y ∈ X;
(ii) CG(x−1) ≥ CG(x), ∀ x ∈ X.

The set of all multigroups over X is denoted by MG(X).

Example 3.5. Let X = {e, a, b, c} be Klein’s 4-group and

G = {e, e, e, a, a, b, b, b, c, c}
be a multiset over X. Now
CG(ea) = CG(a) = 2 ≥ [CG(e) ∧ CG(a)], CG(eb) = CG(b) = 3 ≥ [CG(e) ∧ CG(b)],
CG(ec) = CG(c) = 2 ≥ [CG(e) ∧ CG(c)], CG(ab) = CG(c) = 2 ≥ [CG(a) ∧ CG(b)],
CG(bc) = CG(a) = 2 ≥ [CG(b) ∧ CG(c)], CG(ca) = CG(b) = 3 ≥ [CG(c) ∧ CG(a)],
CG(a2) = CG(e) = 3 ≥ [CG(a) ∧ CG(a)], CG(b2) = CG(e) = 3 ≥ [CG(b) ∧ CG(b)],
CG(c2) = CG(e) = 3 ≥ [CG(c)∧CG(c)], CG(e2) = CG(e) = 3 ≥ [CG(e)∧CG(e)] and
CG(a−1) = CG(a) = 2, CG(b−1) = CG(b) = 3, CG(c−1) = CG(c) = 2, CG(e−1) =
CG(e) = 3.
Therefore G is a multigroup over X.

Proposition 3.6. Let A ∈ MG(X). Then
(i) CA(e) ≥ CA(x), ∀ x ∈ X;
(ii) CA(xn) ≥ CA(x), ∀ x ∈ X;
(iii) CA(x−1) = CA(x), ∀ x ∈ X;
(iv) A = A−1.

Proof. Let x, y ∈ G. (i) CA(e) = CA(xx−1) ≥ [CA(x) ∧ CA(x−1)] = [CA(x) ∧
CA(x)] = CA(x), ∀ x ∈ X;

(ii) CA(xn) ≥ CA(xn−1)∧CA(x) ≥ CA(xn−2)∧CA(x)∧CA(x) ≥ [CA(x)∧CA(x)∧
. . . ∧ CA(x)] = CA(x).

(iii) Since CA(x−1) ≥ CA(x) = CA([x−1]−1) ≥ CA(x−1).
Hence CA(x−1) = CA(x).

(iv) Since CA−1(x) = CA(x−1) = CA(x). Hence A = A−1. ¤
Proposition 3.7. Let A be a mset. Then A ∈ MG(X) iff CA(xy−1) ≥ [CA(x) ∧
CA(y)], ∀ x, y ∈ X.

Proof. Let A ∈ MG(X). Then

CA(xy−1) ≥ [CA(x) ∧ CA(y−1)] = [CA(x) ∧ CA(y)], ∀ x, y ∈ X.

Therefore the given condition is satisfied.
Conversely let the given condition be satisfied. Now, CA(e) = CA(xx−1) ≥

CA(x) ∧ CA(x) = CA(x), ∀ x ∈ X. ......(1)
Again CA(x−1) = CA(ex−1) ≥ CA(e) ∧ CA(x) = CA(x), ∀ x ∈ X [From (1)]......(2)
Also CA(xy) = CA[x(y−1)−1] ≥ [CA(x) ∧ CA(y−1)
≥ [CA(x) ∧ CA(y)] [From (2)]..............(3)
Therefore, from (2) and (3) we have A ∈ MG(X). ¤
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Definition 3.8. Let A ∈ MG(X). Then define An = {x ∈ X; CA(x) ≥ n, n ∈ N}.
Proposition 3.9. Let A ∈ MG(X). Then An, n ∈ N are subgroups of X.

Proof. Let x, y ∈ An. Then CA(x) ≥ n and CA(y) ≥ n. Since A ∈ MG(X), it follows
that CA(xy−1) ≥ [CA(x)∧CA(y)] ≥ n. Hence xy−1 ∈ An. Therefore, An, n ∈ N are
subgroups of X. ¤
Proposition 3.10. If An, n ∈ N are subgroups of X, then the mset A, define in
Theorem 2.9, is a mgroup over X.

Proof. Let x, y ∈ X and CA(x) = p, CA(y) = q. Then x ∈ Ap, p = 1, 2, . . . , p, x 6∈
Ap+n, n ∈ N, x ∈ Aq, q = 1, 2, . . . , q and x 6∈ Aq+n, n ∈ N. Let min{p, q} = p.
Since An, n ∈ N are subgroups of X, it follows that xy−1 ∈ Ap, p = 1, 2, . . . , p and
hence CA(xy−1) ≥ p = min{p, q} = CA(x) ∧ CA(y). Therefore, A ∈ MG(X). ¤
Definition 3.11. Let A ∈ MG(X). Then define A∗ = {x ∈ X; CA(x) = CA(e)}
and A∗ = {x ∈ X; CA(x) > 0}.
Proposition 3.12. Let A ∈ MG(X). Then A∗ and A∗ are subgroups of X.

Proof. Let x, y ∈ A∗. Then CA(x) = CA(y) = CA(e). Now

CA(xy−1) ≥ [CA(x) ∧ CA(y)] = [CA(e) ∧ CA(e)] = CA(e) ≥ CA(xy−1).

So, CA(xy−1) = CA(e), ∀ x, y ∈ X and hence x, y ∈ A∗ ⇒ xy−1 ∈ A∗. Therefore
A∗ is a subgroup of X.

Again let x, y ∈ A∗. Then CA(x) > 0 and CA(y) > 0. Now CA(xy−1) ≥ [CA(x) ∧
CA(y)] > 0. Therefore, x, y ∈ A∗ ⇒ xy−1 ∈ A∗ and hence A∗ is a subgroup of
X. ¤
Proposition 3.13. Let A ∈ MS(X). Then A ∈ MG(X) iff A satisfies the following
conditions:

(a) (i) A ◦A ⊆ A;
(ii) A−1 ⊆ A or A ⊆ A−1 or A−1 = A.

or
(b) A ◦A−1 ⊆ A.

Proof. Let A ∈ MG(X). Then CA(yz) ≥ CA(y)∧CA(z), ∀ y, z ∈ X. Thus, CA(x) ≥
{CA(y) ∧ CA(z) : yz = x}. Hence

CA(x) ≥ ∨y,z∈X{CA(y) ∧ CA(z) : yz = x} = CA◦A(x), ∀ x ∈ X.

Therefore, A ◦ A ⊆ A. Again since CA−1(x) = CA(x−1) = CA(x), it follows that
A = A−1 and hence A ⊆ A−1 and A−1 ⊆ A. Thus the given conditions are satisfied.

Conversely let the given conditions are satisfied. Let x, y ∈ X. Then CA(xy−1) ≥
CA◦A(xy−1) =

∨
z∈X [CA(z) ∧ CA(z−1xy−1)] ≥ [CA(x) ∧ CA(y−1)] = [CA(x) ∧

CA(y)]}. Therefore A ∈ MG(X).
Similarly we can proof the ‘or’ part. ¤

Remark 3.14. By Proposition 3.2, the condition a(i) is equivalent to a(i’) A◦A = A
and condition (b) is equivalent to (b’) A ◦A−1 = A.

Proposition 3.15. Let A, B ∈ MG(X). Then A ◦B ∈ MG(X) iff A ◦B = B ◦A.
649
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Proof. Since A, B ∈ MG(X), it follows that A = A−1 and B = B−1. Suppose
A ◦B ∈ MG(X). Then A ◦B = (A ◦B)−1 = B−1 ◦A−1 = B ◦A.

Conversely let A ◦B = B ◦A. Then (A ◦B)−1 = (B ◦A)−1 = A−1 ◦B−1 = A ◦B
and (A◦B)◦ (A◦B) = A◦ (B ◦A)◦B = A◦ (A◦B)◦B = (A◦A)◦ (B ◦B) ⊆ A◦B.
Therefore A ◦B ∈ MG(X). ¤

Proposition 3.16. Let A, B ∈ MG(X). Then A ∩B ∈ MG(X).

Proof. Since A, B ∈ MG(X), we have CA(xy−1) ≥ [CA(x)∧CA(y)] and CB(xy−1) ≥
[CB(x) ∧ CB(y)], ∀ x, y ∈ X. Now

CA∩B(xy−1) = ∧{CA(xy−1), CB(xy−1)}
≥ ∧{[CA(x) ∧ CA(y)], [CB(x) ∧ CB(y)]}
= CA(x) ∧ CA(y) ∧ CB(x) ∧ CB(y)
= [CA(x) ∧ CB(x)] ∧ [CA(y) ∧ CB(y)]
= CA∩B(x) ∧ CA∩B(y)

and CA∩B(x−1) = CA(x−1) ∧ CB(x−1)
= CA(x) ∧ CB(x) = CA∩B(x).

Therefore A ∩B ∈ MG(X). ¤

Remark 3.17. If {Ai, i ∈ I} be a family of multigroups over a group X, then their
intersection ∩i∈IAi is a multigroup over X.

Remark 3.18. If A, B ∈ MG(X), then the following example shows that their
union A ∪B is not a multigroup over X in general.

Example 3.19. Let X = K4 = {e, a, b, c} be the Klein’s 4-group,

A = {e, e, a} and B = {e, e, b}. Then A, B ∈ MG(X).

Clearly A∪B = {e, e, a, b} and CA∪B(c) = CA∪B(ab) = 0 6≥ ∧
[CA∪B(a), CA∪B(b)] =

1. Therefore A ∪B is not a multigroup over X.

Definition 3.20. Let A and B be two multigroups over a group X. Then A is said
to be a submultigroup of B if A ⊆ B.

Example 3.21. Let X = {e, a, b, c} be the Klein’s 4-group,

A = {e, e, a, a, b, b, c, c} and B = {e, e, e, a, a. b, b, b, c, c}.
Then clearly A, B ∈ MG(X) and A ⊆ B. Therefore, A is a submultigroup of B.

Proposition 3.22. Let X, Y be two groups and f : X → Y be a homomorphism.
If A ∈ MG(X), then f(A) ∈ MG(Y ).

Proof. Let u, v ∈ Y.
Case-I: Let u, v 6∈ f(X). Then Cf(A)(u) ∧ Cf(A)(v) = 0 ∧ 0 ≤ Cf(A)(uv).
Case-II: Let u 6∈ f(X). Then u−1 6∈ f(X) and Cf(A)(u)∧Cf(A)(v) = 0∧Cf(A)(v) =

0 ≤ Cf(A)(uv).
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Case-III: Let u, v ∈ f(X). Then ∃ x, y ∈ X such that f(x) = u and f(y) = v.
Now

Cf(A)(uv) = ∨{CA(w); w ∈ X, f(w) = uv}
≥ {CA(xy); x, y ∈ X, f(x) = u, f(y) = v}
≥ {CA(x) ∧ CA(y); x, y ∈ X, f(x) = u, f(y) = v}
= [∨{CA(x); x ∈ X, f(x) = u}] ∧ [∨{CA(y); y ∈ X, f(y) = v}]
= [Cf(A)(u)] ∧ [Cf(A)(v)].

Also

Cf(A)(u−1) = ∨{CA(z); z ∈ Y, f(z) = u−1}
= ∨{CA(z−1), z ∈ Y, f(z−1) = u} = Cf(A)(u).

Therefore, f(A) ∈ MG(Y ). ¤
Proposition 3.23. Let X, Y be two groups and f : X → Y be a homomorphism.
If B ∈ MG(Y ), then f−1(B) ∈ MG(X).

Proof. Proof is similar to that of Proposition 3.22. ¤
Proposition 3.24. Let A ∈ MS(X). Then the following assertions are equivalent:

(i) CA(xy) = CA(yx), ∀x, y ∈ X;
(ii) CA(xyx−1) = CA(y) ∀x, y ∈ X;
(iii) CA(xyx−1) ≥ CA(y) ∀x, y ∈ X;
(iv) CA(xyx−1) ≤ CA(y) ∀x, y ∈ X.

Proof. (i) ⇒ (ii) : Let x, y ∈ X. Then CA(xyx−1) = CA(x−1xy) = CA(y).
(ii) ⇒ (iii) : straightforward.
(iii) ⇒ (iv) : CA(xyx−1) ≤ CA(x−1[xyx−1](x−1)−1) = CA(y).
(iv) ⇒ (i) : Let x, y ∈ X. Then

CA(xy) = CA(x[yx]x−1) ≤ CA(yx) = CA(y[xy]y−1) ≤ CA(xy).

Hence CA(xy) = CA(yx). Thus the above assertions are equivalent. ¤
Proposition 3.25. Let A ∈ MS(X). Then the following assertions are equivalent.

(i) CA(xy) = CA(yx), ∀x, y ∈ X;
(ii) A ◦B = B ◦A, ∀ B ∈ MS(X).

Proof. (i) ⇒ (ii) : Let x ∈ X. Then

CA◦B(x) = ∨y∈X [CA(xy−1) ∧ CB(y)]

= ∨y∈X [CB(y) ∧ CA(y−1x)]
= CB◦A(x).

Hence A ◦B = B ◦A.
(ii) ⇒ (i) : Let x, y ∈ X, [CA(xy) ∨ CA(yx)] = n and T = ny−1 . Then T ∈

MS(X). Since A ◦ B = B ◦ A, ∀ B ∈ MS(X), it follows that A ◦ T = T ◦ A and
hence CA◦T (x) = CT◦A(x), ∀ x ∈ X. Now CA◦T (x) = ∨uv=x{CA(u) ∧ CT (v)} =
CA(xy) ∧ CT (y−1) = CA(xy).

Similarly we have CT◦A(x) = CA(yx). Hence CA(xy) = CA(yx), ∀ x, y ∈ X. ¤
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Definition 3.26. A mgroup G over X is called abelian over X if CG(xy) =
CG(yx), ∀ x, y ∈ X. Let AMG(X) denote the set of all abelian mgroups over
X.

Example 3.27. Let X be an abelian group and G be a mgroup over X. Then G is
an abelian mgroup over X.

Proposition 3.28. Let A ∈ AMG(X). The A∗, A∗ and An, n ∈ N are normal
subgroups of X.

Proof. By Proposition 3.12 and 3.9, A∗, A∗ and An, n ∈ N are subgroups of X.
Let x ∈ X and y ∈ A∗. Then CA(y) > 0 and by Proposition 3.24, CA(xyx−1) =
CA(y) > 0. Thus xyx−1 ∈ A∗ and hence A∗ is a normal subgroup of X.

Similarly A∗ is also a normal subgroup of X.
Let x ∈ X and y ∈ An. Then CA(y) ≥ n and by Proposition 3.24, CA(xyx−1) =

CA(y) ≥ n. Thus xyx−1 ∈ An and hence An, n ∈ N are a normal subgroups of X.
Similarly A∗ is also a normal subgroup of X. ¤

Definition 3.29. Let H ∈ MG(X) and x ∈ X. Also let e be the identity element
of X and [CH(e)]x be as in Definition 2.15. Then

(i) the mset [CH(e)]x ◦H is called a left mcoset of H in X and is denoted by
xH, where
CxH(z) = ∨{C[CH(e)]x(u) ∧ CH(v); u, v ∈ X, uv = z}
= C[CH(e)]x(x) ∧ CH(x−1z) = CH(e) ∧ CH(x−1z) = CH(x−1z).

(ii) the mset H ◦ [CH(e)]x is called a right mcoset of of H in X and is denoted
by Hx, where
CHx(z) = ∨{CH(u) ∧ C[CH(e)]x(v); u, v ∈ X, uv = z}
= CH(zx−1) ∧ C[CH(e)]x(x) = CH(zx−1) ∧ CH(e) = CH(zx−1).

Remark 3.30. If H ∈ AMG(X), then xH = Hx, ∀ x ∈ X.

Proposition 3.31. Let H ∈ MG(X). Then ∀ x, y ∈ X,

(i) xH = yH ⇐⇒ xH∗ = yH∗;
(ii) Hx = Hy ⇐⇒ H∗x = H∗y

Proof. (i) Let xH = yH. Then [CH(e)]x ◦H = [CH(e)]y ◦H and hence CH(x−1z) =
CH(y−1z), ∀ z ∈ X.In particular CH(x−1y) = CH(y−1y) = CH(e). Thus x−1y ∈ H∗
and hence xH∗ = yH∗.

Conversely let xH∗ = yH∗. Then x−1y, y−1x ∈ H∗. Now

CH(x−1z) = CH([x−1y][y−1z]) ≥ CH(x−1y) ∧ CH(y−1z)
= CH(e) ∧ CH(y−1z) = CH(y−1z), ∀ z ∈ X.

Similarly, CH(y−1z) ≥ CH(x−1z), ∀ z ∈ X. Therefore, CH(x−1z) = CH(y−1z), ∀ z ∈
X which shows that xH = yH.

(ii) Proof is similar to that of part (i). ¤

Proposition 3.32. Let H ∈ AMG(X). If xH = yH, then CH(x) = CH(y), ∀ x, y ∈
X.
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Proof: Let xH = yH. Then by Proposition 3.31, x−1y, y−1x ∈ H∗.
Since H ∈ AMG(X), it follows that
CH(x) = CH(y−1xy) ≥ [CH(y−1x) ∧ CH(y) = CH(e) ∧ CH(y) = CH(y).
Similarly CH(y) ≥ CH(x) and therefore CH(x) = CH(y).

Proposition 3.33. Let H ∈ AMG(X) and define X/H = {xH; x ∈ X}. Then the
following assertions hold:

(i) (xH) ◦ (yH) = (xy)H, ∀ x, y ∈ X;
(ii) If xH = x1H and yH = y1H then (xy)H = (x1y1)H;
(iii) (X/H, ◦) is a group;
(iv) X/H ' X/H∗;

Proof. (i) For all x, y ∈ X, we have

(xH) ◦ (yH) = ([CH(e)]x ◦H) ◦ ([CH(e)]y ◦H)
= ([CH(e)]x ◦H) ◦ (H ◦ [CH(e)]y)(by Proposition 3.25)
= [CH(e)]x ◦ (H ◦H) ◦ [CH(e)]y(by associativity of ◦)
= [CH(e)]x ◦H ◦ [CH(e)]y(by Remark 3.14)
= [CH(e)]x ◦ [CH(e)]y ◦H(since H is abelian)
= ([CH(e)]xy ◦H = (xy)H.

(ii) Let xH = x1H and yH = y1H. Then CH(x−1z) = CH(x−1
1 z) and CH(y−1z) =

CH(y−1
1 z), ∀ z ∈ X. Now

CH [(xy)−1z] = CH [y−1x−1z] = CH [y−1
1 x−1z]

= CH [x−1zy−1
1 ] = CH [x−1

1 zy−1
1 ]

= CH [y−1
1 x−1

1 z] = CH [(x1y1)−1z], ∀ z ∈ X.

Therefore (xy)H = (x1y1)H.
(iii) From (ii), the composition is well defined. From (i), X/H is closed under the

operation ◦. Also by Proposition 3.2, ◦ is associative. Now H ◦ xH = eH ◦ xH =
(ex)H = xH, ∀ x ∈ X and x−1H ◦ xH = (xx−1)H = eH = H, ∀ x ∈ X. Therefore,
(X/H, ◦) is a group.

(iv) Since H ∈ AMG(X), it follows that H∗ is a normal subgroup of X and hence
X/H∗ is a group. Now let f : X/H → X/H∗, defined by f(xH) = xH∗. Then f is
an isomorphism and hence X/H ' X/H∗. ¤

The group X/H is called the factor mgroup (or quotient mgroup) of X relative
to the normal mgroup H.

Proposition 3.34. Let A ∈ MG(X) and N be a normal subgroup of X. Define
Â ∈ MS(X/N) such that CÂ(xN) =

∨{CA(z); z ∈ xN}, ∀ x ∈ X. Then Â ∈
MG(X/N).
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Proof. Now

CÂ[(xN)−1] = CÂ(x−1N) = ∨{CA(z); z ∈ x−1N}
= ∨{CA(w−1); w−1 ∈ x−1N}
= ∨{CA(w); w ∈ xN}(w ∈ xNifandonlyifw−1 ∈ x−1N,

as N is a normal subgroup of X)
= CÂ(xN), ∀ x ∈ X.

Again

CÂ(xNyN) = ∨{CA(z); z ∈ xyN} = ∨{CA(uv); u ∈ xN, v ∈ yN}
≥ ∨{CA(u) ∧ CA(v); u ∈ xN, v ∈ yN}
= [∨{CA(u); u ∈ xN}] ∧ [∨{CA(v); v ∈ yN}]
= CÂ(xN) ∧ CÂ(yN), ∀ x, y ∈ X.

Hence Â ∈ MG(X/N). ¤

Definition 3.35. The mgroup Â, as in Proposition 3.34 is called the factor mgroup
of the mgroup A over X relative to the normal subgroup N of X and is denoted by
A/N.

Proposition 3.36. Let H ∈ AMG(X) and Y be a group. Suppose that f : X → Y
be an onto homomorphism. Then f(H) ∈ AMG(Y ).

Proof. By Proposition 3.22, f(H) ∈ MG(Y ). Now let y, z ∈ Y. Since f is onto,
∃ u ∈ X such that f(u) = z. Thus

Cf(H)(zyz−1) = ∨{CH(w); w ∈ X, f(w) = zyz−1}
= ∨{CH(u−1wu); w ∈ X, f(u−1wu) = y}
= ∨{CH(v); v ∈ X, f(v) = y} = Cf(H)(y).

Therefore, f(H) ∈ AMG(Y ). ¤
Proposition 3.37. Let H ∈ AMG(Y ) and X be a group. Suppose that f : X → Y
be an into homomorphism. Then f−1(H) ∈ AMG(X).

Proof. By Proposition 3.23, f−1(H) ∈ MG(X). Let x, z ∈ X. Thus

Cf−1(H)(xz) = CH [f(xz)] = CH [f(x)f(z)] = CH [f(z)f(x)]
= CH [f(zx)] = Cf−1(H)(zx).

Therefore, f−1(H) ∈ NMG(X). ¤

4. conclusion

In this paper, we have introduced the notion of mgroups for the first time, and
studied its important properties. We have studied some basic properties of msets
also. The theory of msets and mgroups can be very useful in many areas like in-
formation retrival on the web, data encription, data mining, coding theory, decision
making etc. One can further study the deeper properties of mgroups viz. the iso-
morphism theorems etc. In future we will study mgroup structures on several hybrid
sets like fuzzy msets, soft msets etc.
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