Annals of Fuzzy Mathematics and Informatics Volume 6, No. 3, (November 2013), pp. 625–632

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

http://www.kyungmoon.com

Fuzzy $\alpha\psi$ -closed sets

Parimala Mani, Devi Ramasamy

Received 19 June 2012; Revised ; Accepted 27 February 2013

ABSTRACT. In this paper, a new class of set called fuzzy $\alpha\psi$ -closed set is introduced and its properties are studied. As an application of this set we also introduce the notions $F\alpha\psi$ -continuity, $F\alpha\psi$ -irresolute mappings and $F\alpha\psi$ -connectedness and we establish some fundamental properties of these fuzzy mappings.

2010 AMS Classification: 54A40

Keywords: Fuzzy topology, $F\alpha\psi$ -closed set, $F\alpha\psi$ -continuity.

Corresponding Author: Parimala Mani (rishwanthpari@gmail.com)

1. Introduction

The concept of fuzzy set and fuzzy set operations were first introduced by Zadeh in his classical paper [11]. Subsequently several authors have applied various basic concepts from general topology to fuzzy sets and developed the theory of fuzzy topological spaces. Pu and Liu [7] introduced the concept of quasi-coincidence and quasi-neighbourhoods by which the extensions of functions in fuzzy settings can very interestingly and effectively be carried out.

The aim of this paper is to introduce the notion of fuzzy $\alpha\psi$ -closed set in topological space. Moreover, as applications, we introduce $F\alpha\psi$ -continuity, $F\alpha\psi$ -irresolute mappings and $F\alpha\psi$ -connectedness.

2. Preliminaries

Throughout this paper X means a fuzzy topological space (briefly, fts) in Chang's [3] sense. For a fuzzy set A of a fuzzy topological space X, the notion cl(A), int(A) and 1-A denote the closure, the interior and the complement of A respectively. By 0_X and 1_X we will mean the fuzzy sets with constant membership function 0 (zero function) and 1 (unit function) respectively. The following definitions are useful in the sequel.

Definition 2.1. A fuzzy set A of a space (X, τ) is called

- 1. a fuzzy semi-open (breifly, Fs-open) set [1, 4] if $A \leq cl(int(A))$ and a fuzzy semi-closed(breifly, Fs-closed) set if $int(cl(A)) \leq A$.
- 2. a fuzzy α -open (breifly, $F\alpha$ -open) set [2] if $A \leq int(cl(int(A)))$ and a fuzzy α -closed (breifly, $F\alpha$ -closed) set if $cl(int(cl(A))) \leq A$.
- 3. a fuzzy pre-open (breifly, Fp-open) set [2] if $A \leq int(cl(A))$ and a fuzzy pre-closed (breifly, Fp-closed) set if $cl(int(A)) \leq A$.
- 4. a fuzzy semi pre-open (breifly, Fsp-open) set [10] if $A \leq cl(int(cl(A)))$ and a fuzzy semi pre-closed (breifly, Fsp-closed) set if $int(cl(int(A))) \leq A$. By $FSO(X,\tau)$ (resp. $F\alpha O(X,\tau)$, $FPO(X,\tau)$, $FSPO(X,\tau)$,) we denote the family of all Fs-open (resp. $F\alpha$ -open, Fp-open, Fsp-open) sets of fts X.

Definition 2.2. A subset A of a topological space (X, τ) is called

- 1. a Fuzzy generalized α -closed (briefly $Fg\alpha$ -closed) set [9] if $\alpha cl(A) \leq H$ whenever $A \leq H$ and H is $F\alpha$ -open in (X, τ) . The complement of $Fg\alpha$ -closed set is called $Fg\alpha$ -open set.
- 2. a Fuzzy generalized pre-closed (briefly Fgp-closed) set [6] if $pcl(A) \leq H$ whenever $A \leq H$ and H is F-open in (X, τ) . The complement of Fgp-closed set is called Fgp-open set.
- 3. a Fuzzy generalized semi-pre closed (briefly Fgsp-closed) set [8] if $spcl(A) \leq H$ whenever $A \leq H$ and H is fuzzy open in (X, τ) . The complement of fuzzy gsp-closed set is called fuzzy gsp-open set.
- 4. a fuzzy semi-generalized closed (briefly Fsg-closed) set [5] if $scl(A) \leq H$ whenever $A \leq H$ and H is fuzzy semi-open in (X, τ) . The complement of fuzzy sg-closed set is called fuzzy sg-open set.
- 5. a fuzzy ψ -closed (briefly $F\psi$ -closed) set, if $scl(A) \leq H$ whenever $A \leq H$ and H is Fsg-open in (X, τ) . The complement of fuzzy ψ -closed set is called fuzzy ψ -open set.

Definition 2.3 ([7]). A fuzzy point $x_p \in A$ is said to be quasi-coincident with the fuzzy set A denoted by x_pqA if and only if p+A(x)>1. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by AqB if and only if there exists $x \in X$ such that A(x)+B(x)>1. If A and B are not quasi-coincident then we write $A\overline{q}B$. Note that $A < B \iff A\overline{q}(1-B)$.

Definition 2.4 ([7]). A fuzzy topological space (X, τ) is said to be fuzzy semi-connected (briefly, Fs-connected) if and only if the only fuzzy sets which are both Fs-open and Fs-closed are 0_X and 1_X .

Definition 2.5 ([3]). Let f be a mapping from X into Y. If A is a fuzzy set of X and B is a fuzzy set of Y, then

(i) f(A) is a fuzzy set of Y, where

$$\begin{array}{l} f(A) = \sup_{x \in f^{-1}(y)} \, A(x), \ if \ f^{-1}(y) \neq 0 \\ = 0, \ \text{otherwise, for every} \ y \in Y \end{array}$$

- (ii) $f^{-1}(B)$ is fuzzy set of X, where $f^{-1}(B)(x) = B(f(x))$ for each $x \in X$,
- (iii) $f^{-1}(1-B) = 1 f^{-1}(B)$.

3. On fuzzy $\alpha\psi$ -closed sets

Definition 3.1. A fuzzy $\alpha\psi$ -closed (briefly, $F\alpha\psi$ -closed) set if $\psi cl(A) \leq H$ whenever $A \leq H$ and H is $F\alpha$ -open in (X, τ) . The complement of fuzzy $\alpha\psi$ -closed set is called fuzzy $\alpha\psi$ -open set.

By $F\alpha\psi C(X,\tau)$, we denote the family of all fuzzy $\alpha\psi$ -closed sets of fts X.

Theorem 3.2. Every fuzzy-closed, $F\alpha$ -closed, $Fg\alpha$ -closed sets are $F\alpha\psi$ -closed and every $F\alpha\psi$ -closed set is Fs-closed, Fgp-closed and Fgsp-closed.

Proof. It is Obvious.
$$\Box$$

From the above discussion we introduce the following diagram

The converse of the above theorem is not true in general by the following necessary counter example.

Example 3.3. Let $X = \{a, b\}$ and $Y = \{x, y, z\}$ and fuzzy sets A, B, E, H, K, L be defined by:

$$\begin{split} A(a) &= 0.1,\, A(b) = 0.2\\ B(a) &= 0.2,\, B(b) = 0.4\\ K(a) &= 0.1,\, K(b) = 0.2\\ L(a) &= 0.3,\, L(b) = 0.7\\ E(x) &= 0.1,\, E(y) = 0.2,\, E(z) = 0.7\\ H(x) &= 0.1,\, H(y) = 0.4,\, H(z) = 0.7\\ \end{split}$$

Let $\tau = \{0, L, 1\}$, $\sigma = \{0, H, 1\}$ and $\gamma = \{0, E, 1\}$. Then A is Fgsp-closed in (Y, γ) but not $F\alpha\psi$ -closed. B is $F\alpha\psi$ -closed in (Y, σ) but not $F\alpha$ -closed. K is $F\alpha\psi$ -closed in (Y, σ) but not Fs-closed. E is $F\alpha\psi$ -closed in (X, τ) but not Fs-closed.

Theorem 3.4. Let (X,τ) be a fts and let $A \in I^X$. If A is $F\alpha\psi$ -closed set and $A \leq B \leq \psi cl(A)$, then B is $F\alpha\psi$ -closed set.

Proof. Let H be a $F\alpha$ -open set such that $B \leq H$. Since $A \leq B$, then $A \leq H$. But A is $\alpha \psi$ -closed, so $\psi cl(A) \leq H$. Since $B \leq \psi cl(A)$. Since $\psi cl(B) \leq \psi cl(A)$ and hence $\psi cl(B) \leq H$. Therefore B is $F\alpha \psi$ -closed set.

Theorem 3.5. Let A be $F\alpha\psi$ -open in X and ψ int(A) $\leq B \leq A$, then B is $F\alpha\psi$ -open.

Proof. Suppose A is $F\alpha\psi$ -open in X and $\psi int(A) \leq B \leq A$. Then 1-A is $F\alpha\psi$ -closed and $1-A \leq 1-B \leq \psi cl(1-A)$. Then 1-A is $F\alpha\psi$ -closed set by theorem 3.4. Hence B is $F\alpha\psi$ -open set in X.

Theorem 3.6. Let (X, τ) be a fts. A fuzzy set $A \in I^X$ is $F\alpha\psi$ -open set if and only if $B \leq \psi int(A)$ whenever B is $F\alpha$ -closed set and $B \leq A$.

Proof. Let A be a $F\alpha\psi$ -open set and let B be $F\alpha$ -closed set such that $B \leq A$. Then $(1-A) \leq (1-B)$ and hence $\psi cl(1-A) \leq (1-B)$, since (1-A) is $F\alpha\psi$ -closed. But $\psi cl(1-A) = 1 - (\psi int(A))$, thus $B \leq \psi int(A)$.

Conversely, suppose that the condition is satisfied, then $(1-(\psi int(A))) \le (1-B)$ whenever (1-B) is $F\alpha$ -open set and $(1-A) \le (1-B)$. This implies that $\psi cl(1-A) \le (1-B) = H$ where H is $F\alpha$ -open set and $(1-A) \le H$. Therefore (1-A) is $F\alpha\psi$ -closed set and hence A is $F\alpha\psi$ -open.

Theorem 3.7. A fuzzy set A of (X, τ) is $F\alpha\psi$ -closed if and only if $A\overline{q}E$ implies $\psi cl(A)\overline{q}E$, for every $F\alpha$ -closed set E of X.

Proof. Let E be a $F\alpha$ -closed set of X and $A\overline{q}E$. Then $A \leq (1-E)$ and (1-E) is $F\alpha$ -open in X, which implies that $\psi cl(A) \leq (1-E)$ as A is $F\alpha\psi$ -closed. Hence $\psi cl(A)\overline{q}E$.

Conversely, let H be $F\alpha$ -open set of X such that $A \leq H$. Then $A\overline{q}(1-H)$ and (1-H) is $F\alpha$ -closed in X. By hypothesis, $\psi cl(A)\overline{q}(1-H)$ implies $\psi cl(A) \leq H$. Hence A is $F\alpha\psi$ -closed in X.

Theorem 3.8. Let A be $F\alpha\psi$ -closed set of (X, τ) and x_p be a fuzzy point of X such that $x_p \overline{q} \psi cl(A)$ then $\psi cl(x_p) qA$.

Proof. If $\psi cl(x_p)\overline{q}A$ then $A \leq 1 - \psi cl(x_p)$ and so $\psi cl(A) \leq 1 - \psi cl(x_p) \leq 1 - x_p$ because $1 - \psi cl(x_p)$ is $F\alpha$ -open and A is $F\alpha\psi$ -closed in X. Hence $x_p\overline{q}\psi cl(A)$ is a contradiction.

4. On fuzzy $\alpha\psi$ -continuous and fuzzy $\alpha\psi$ -irresolute mappings

Definition 4.1. A function $f:(X,\tau)\to (Y,\sigma)$ is called a fuzzy $\alpha\psi$ -continuous (briefly, $F\alpha\psi$ -continuous) if $f^{-1}(V)$ is $F\alpha\psi$ -closed in (X,τ) for every fuzzy closed set V of (Y,σ) .

Theorem 4.2. Let $f:(X,\tau)\to (Y,\sigma)$ be a function from a fts (X,τ) into a fts (Y,σ) . Then the following statements are equivalent.

- (i) f is $\alpha \psi$ -continuous;
- (ii) the inverse image of each open fuzzy set in Y is $F\alpha\psi$ -open set in X.

Proof. It is obvious, because $f^{-1}(1-H)=1-f^{-1}(H)$ for each fuzzy open set H of Y.

Theorem 4.3. For $F\alpha\psi$ -continuous mapping $f:(X,\tau)\to (Y,\sigma)$, the following statements hold:

- (i) $f(\alpha \psi cl(A)) \leq cl(f(A))$, for every fuzzy set A in X;
- (ii) $\alpha \psi cl(f^{-1}(B)) \leq f^{-1}(cl(B))$, for every fuzzy set B in Y.

Proof. (i) Since cl(f(A)) is fuzzy closed set in Y and f is $F\alpha\psi$ -continuous, then $f^{-1}(cl(f(A)))$ is $\alpha\psi$ -closed in X. Now, since $A \leq f^{-1}(cl(f(A)))$. So, $\alpha\psi cl(A) \leq f^{-1}(cl(f(A)))$. Therefore, $f(\alpha\psi cl(A)) \leq cl(f(A))$.

(ii) Replacing A by B in (i), we get $f(\alpha \psi cl(f^{-1}(B))) \leq cl(f(f^{-1}(B))) \leq cl(B)$. Hence $\alpha \psi cl(f^{-1}(B)) \leq f^{-1}(cl(B))$. **Definition 4.4.** A function $f:(X,\tau)\to (Y,\sigma)$ is called a fuzzy $\alpha\psi$ -irresolute (briefly, $F\alpha\psi$ -irresolute) if $f^{-1}(V)$ is $F\alpha\psi$ -closed in (X,τ) for every $F\alpha\psi$ -closed set V of (Y,σ) .

Theorem 4.5. Every $F\alpha\psi$ -irresolute map is $F\alpha\psi$ -continuous.

Proof. Since every closed fuzzy set is $\alpha\psi$ closed, then it is proved that f is $F\alpha\psi$ -continuous. The converse of the above theorem need not be true in general by the following example.

Example 4.6. Let $X = \{a, b\}$, $Y = \{x, y\}$. The fuzzy set A is defined as: A(a) = 0.3 and A(b) = 0.7. Let $\tau = \{0, A, 1\}$ and $\sigma = \{0, 1\}$. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ is defined by f(a) = x and f(b) = y is $F\alpha\psi$ -continuous but not $F\alpha\psi$ -irresolute

Theorem 4.7. If $f:(X,\tau)\to (Y,\sigma)$ is $F\alpha\psi$ -continuous then for each fuzzy point x_p of X and each $A\in\sigma$ such that $f(x_p)\in A$, there exists a $F\alpha\psi$ -open set B of X such that $x_p\in B$ and $f(B)\leq A$.

Proof. Let x_p be fuzzy point of X and $A \in \sigma$ such that $f(x_p) \in A$. Put $B = f^{-1}(A)$. Then by hypothesis B is a $F\alpha\psi$ -open set of X such that $x_p \in B$ and $f(B) = f(f^{-1}(A)) \leq A$.

Theorem 4.8. Let $f:(X,\tau) \to (Y,\sigma)$ be $F\alpha\psi$ -continuous, then for each fuzzy point x_p of X and each $A \in \sigma$ such that $f(x_p)qA$, there exists a $F\alpha\psi$ -open set B of X such that x_pqB and $f(B) \leq A$.

Proof. Let $x_p \in X$ and $A \in \sigma$ such that $f(x_p)qA$. Put $B = f^{-1}(A)$. Then by hypothesis B is a $F\alpha\psi$ -open set of X such that x_pqB and $f(B) = f(f^{-1}(A)) \leq A$.

Theorem 4.9. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be any two functions, then

- (i) $gof:(X,\tau)\to (Z,\eta)$ is $F\alpha\psi$ -continuous, if g is fuzzy continuous and f is $F\alpha\psi$ -continuous.
 - (ii) gof is $F\alpha\psi$ -continuous, if g is $F\alpha\psi$ -continuous and f is $F\alpha\psi$ -irresolute.

Proof. It is Obvious

Theorem 4.10. If $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ are both $F\alpha\psi$ -irresolute mappings, then $g\circ f:(X,\tau)\to (Z,\eta)$ is $F\alpha\psi$ -irresolute.

Proof. Suppose that H is $F\alpha\psi$ -open set in Z, then $g^{-1}(H)$ is $F\alpha\psi$ -open in Y and $f^{-1}(g^{-1}(H))$ is $F\alpha\psi$ -open in X, since g and f are $F\alpha\psi$ -irresolute. Thus, $(gof)^{-1}(H) = f^{-1}(g^{-1}(H))$ is $F\alpha\psi$ -open and therefore gof is $F\alpha\psi$ -irresolute. \square

Theorem 4.11. If $f:(X,\tau)\to (Y,\sigma)$ be a mapping from a fts (X,τ) into a fts (Y,σ) , then the following statements are equivalent:

- (i) f is $F\alpha\psi$ -irresolute;
- (ii) the inverse image of each $F\alpha\psi$ -open set in Y is $F\alpha\psi$ -open set in X.

Proof. It is Obvious \Box

5. Fuzzy $\alpha\psi$ -connectedness

Definition 5.1. A fuzzy topological space (X, τ) is said to be fuzzy $\alpha \psi$ -connected (briefly, $F\alpha \psi$ -connected) if and only if the only fuzzy sets which are both $F\alpha \psi$ -open and $F\alpha \psi$ -closed are 0_X and 1_X .

Example 5.2. Let $X = \{a, b, c\}$ and a fuzzy topology $\tau = \{0, 1, A\}$, where $A : X \to [0, 1]$ is such that A(a) = 1, A(b) = A(c) = 0. Then it is clear that (X, τ) is $F\alpha\psi$ -connected.

Theorem 5.3. A fuzzy topological space (X, τ) is $F\alpha\psi$ -connected if and only if X has no non zero $F\alpha\psi$ -open sets A and B such that $A + B = 1_X$.

Proof. Suppose (X, τ) is $F\alpha\psi$ -connected. If X has two non zero $F\alpha\psi$ -open sets A and B such that $A+B=1_X$, then A is proper $F\alpha\psi$ -open and $F\alpha\psi$ -closed set of X. Hence, X is not $F\alpha\psi$ -connected, which is a contradiction.

Conversely, If (X, τ) is not $F\alpha\psi$ -connected, then it has a proper fuzzy set A of X which is both $F\alpha\psi$ -open and $F\alpha\psi$ -closed. So B=1-A, is a $F\alpha\psi$ -open set of X such that $A+B=1_X$, which is a contradiction.

Theorem 5.4. If $f:(X,\tau)\to (Y,\sigma)$ is $F\alpha\psi$ -continuous surjective and (X,τ) is $F\alpha\psi$ -connected, then (Y,σ) is fuzzy connected.

Proof. Let X be a $F\alpha\psi$ -connected and Y is not fuzzy connected. As Y is not fuzzy connected, then there exists a proper fuzzy set V of Y such that $V \neq 0_Y$, $V \neq 1_Y$ and V is both fuzzy open and fuzzy closed set. Since, f is $F\alpha\psi$ -continuous, $f^{-1}(V)$ is both $F\alpha\psi$ -open and $F\alpha\psi$ -closed set of X such that $f^{-1}(V) \neq 0_X$ and $f^{-1}(V) \neq 1_X$. Hence, X is not $F\alpha\psi$ -connected, which is a contradiction.

Theorem 5.5. If $f:(X,\tau)\to (Y,\sigma)$ is $F\alpha\psi$ -irresolute surjective and (X,τ) is $F\alpha\psi$ -connected, then (Y,σ) is so.

Proof. Similar to the proof of the above theorem.

Definition 5.6. A fuzzy topological space (X, τ) is said to be $F\alpha\psi$ -connected between fuzzy sets A and B if there is no $F\alpha\psi$ -closed, $F\alpha\psi$ -open set E in X such that $A \leq E$ and $E\overline{q}B$.

Theorem 5.7. If a fuzzy topological space (X, τ) is said to be $F\alpha\psi$ -connected between fuzzy sets A and B if and only if there is no $F\alpha\psi$ -closed, $F\alpha\psi$ -open set E in X such that $A \leq E \leq 1 - B$.

Proof	It is Obvious.	

Theorem 5.8. If a fuzzy topological space (X, τ) is said to be $F\alpha\psi$ -connected between fuzzy sets A and B, then A and B are non zero.

Proof. If A = 0, then A is $F\alpha\psi$ -closed, $F\alpha\psi$ -open in X such that $A \leq A$ and $A\overline{q}B$. Hence X cannot be $F\alpha\psi$ -connected, which is a contradiction.

Theorem 5.9. If a fuzzy topological space (X, τ) is $F\alpha\psi$ -connected between fuzzy sets A and B and $A \leq A_1$ and $B \leq B_1$, then (X, τ) is $F\alpha\psi$ -connected between fuzzy sets A_1 and B_1 .

Proof. Suppose (X, τ) is not $F\alpha\psi$ -connected between A_1 and B_1 . Then, there is a $F\alpha\psi$ -closed, $F\alpha\psi$ -open set E in X such that $A_1 \leq E$ and $E\overline{q}B_1$. Clearly, $A \leq E$. Now we claimb that $E\overline{q}B$. If EqB, then there exists a point $x \in X$ such that E(x) + B(x) > 1. Therefore, $E(x) + B_1(x) > E(x) + B(x) > 1$ and EqB_1 , which is a contradiction.

Theorem 5.10. Let (X, τ) be a fuzzy topological space, A and B are fuzzy sets in X. If AqB, then (X, τ) is $F\alpha\psi$ -connected between A and B.

Proof. If E is any $F\alpha\psi$ -closed, $F\alpha\psi$ -open set in X such that $A \leq E$, then AqB implies EqB. Converse of the above theorem need not be true by the following example.

Example 5.11. Let $X = \{a, b\}$. Fuzzy sets A, B and H on X are defined as:

$$A(a) = 0.3, \ A(b) = 0.5;$$

 $B(a) = 0.4, \ B(b) = 0.5;$
 $H(a) = 0.5, \ H(b) = 0.7.$

Let $I = \{0, H, 1\}$ be fuzzy topology on X. Then (X, τ) is $F\alpha\psi$ -connected between A and B but $A\overline{q}B$.

Theorem 5.12. A fuzzy topological space (X, τ) is $F\alpha\psi$ -connected if and only if it is $F\alpha\psi$ -connected between every pair of its non zero fuzzy sets.

Proof. Let A and B be any pair of non zero fuzzy sets X. Suppose (X, τ) is not $F\alpha\psi$ -connected between A and B. Then there is a $F\alpha\psi$ -closed, $F\alpha\psi$ -open set E in X such that $A \leq E$ and $E\overline{q}B$. Since A and B are non zero, it follows that E is proper $F\alpha\psi$ -closed, $F\alpha\psi$ -open set of X. This implies that is not $F\alpha\psi$ -connected.

Conversely, if suppose (X, τ) is not $F\alpha\psi$ -connected. Then there exists a proper fuzzy set E of X which is both $F\alpha\psi$ -closed and $F\alpha\psi$ -open. Consequently, X is not $F\alpha\psi$ -connected between E and 1-E, which is a contradiction.

References

- K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981) 14–32.
- [2] A. S. Bin Shahna, On fuzzy strongly semi continuity and fuzzy pre continuity, Fuzzy Sets and Systems 44(2) (1991) 303–308.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] B. Ghosh, Semi-continuous and semi closed mappings and semi connectedness in fuzzy settings, Fuzzy Sets and Systems 35(3) (1990) 345–355.
- [5] H. Maki et al, Generalized closed sets in fuzzy topological spaces, I. Meeting on Topological Spaces Theory and its Applications (1998) 23–36.
- [6] S. Murugesan and P. Thangavelu, Fuzzy pre-semi-closed sets, Bull. Malays. Math. Sci. Soc. (2) 31 (2) (2008) 223–232.
- [7] P. M. Pu and Y. M. Liu, Fuzzy topology, I. Neighbourhood structure of a fuzzy point and Moore-Smith convrgence, J. Math. Anal. Appl. 76(2) (1980) 571–599.
- [8] R. K. Saraf and M. Khanna, Fuzzy generalized semi pre closed sets, J. Indian Acad. Math. 25(1) (2003) 133–143.
- [9] R. K. Saraf and S. Mishra, Fg α -closed sets, J. Tripura Math. Soc. 2 (2000) 27–32.
- [10] S. S. Thakur and S. Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems 98 (1998) 383–391.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

$\underline{PARIMALA\ MANI}\ (\texttt{rishwanthpariQgmail.com})$

Department of mathematics, Bannari Amman Institute of Technology, Sathyamangalam, postal code 638401, Tamil Nadu, India

$\underline{\mathrm{DEVI}\ Ramasamy}\ (\mathtt{rdevicbe@yahoo.com})$

Former Principal, Kongunadu Arts and Science College, Coimbatore, postal code 641029, Tamil Nadu, India