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1. Introduction

Rough set theory had been proposed by Pawlak [16] in the early of 1982.
Rough set theory has achieved a large amount of applications in various real-life
fields, like economics, medical diagnosis, biochemistry, environmental science, biol-
ogy, chemistry, psychology, conflict analysis, medicine, pharmacology, banking, mar-
ket research, engineering, speech recognition, material science, information analysis,
data analysis, data mining, linguistics, networking and other fields can be found in
[9, 15, 22].

The standard rough set theory starts from an equivalence relation. The theory is a
new mathematical tool to deal with vagueness and imperfect knowledge. It is dealing
with vagueness(ambiguous) of the set by using the concept of the lower and upper
approximations [16]. The set has the same lower and upper approximations, called
crisp (exact) set, otherwise known as rough (inexact) set. Therefore, the boundary
region is defined as the difference between the upper and lower approximations,
and then the accuracy of the set or ambiguous depending on the boundary region
is empty or not respectively. Nonempty boundary region of a set means that our
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knowledge about the set is not sufficient to define the set precisely. The main aim
of rough set is reducing the boundary region by increasing the lower approximation
and decreasing the upper approximation.

In this paper, we present some definitions in Section 2. The aim of Section 3 is to
use the notion of the after composed set and after -c composed set [1] to define the
lower and upper approximations of any set with respect to any relation. The present
method reduces the boundary region by increasing the lower approximation and de-
creasing the upper approximation with the comparison of Abo Khadra’s method [1].
The lower and upper approximations satisfies the properties of Pawalk’s spaces, and
that can be considered as one of the differences between the present generalization
and the other generalizations such as [2, 7] and Yao’s space [18, 19]. Although they
used general binary relation but they added some conditions to satisfy the properties
of Pawlak’s space. Moreover, an application of rough sets theory in network medium
is presented. The goal of Section 4 is to use the intersection of the after set and the
fore set to generalize Yao’s approximations [20]. Moreover, an applied example of
rough sets theory in network cable is introduced. In Section 5 a new method is used
to define the lower and upper approximations of any set with respect to any relation.
The present method is compared to Abo–Tabl’s method [2] and shown to be more
general. Furthermore, an application of rough sets theory in network topologies is
presented. The main purpose of Section 6 is to use a subbase of filter to define the
lower and upper approximations of any set with respect to any relation. The current
approximations are better than Kozae’s approximation [8] and Yao’s approximation
[21] because it decreases the boundary region by increasing the lower approximation
and decreasing the upper approximation. Moreover, an application of rough sets
theory in viruses is introduced.

2. Preliminaries

In this section, definitions of the lower (upper) approximations, boundary region,
after set and fore set are presented.

Definition 2.1 ([1, 2, 4]). If R is a binary relation on X, then
(1) The after set of x ∈ X denoted by xR,where xR = {y : xRy}.
(2) The fore set of x ∈ X denoted byRx, where Rx = {y : yRx}.
(3) The class S = {xR : x ∈ X} is a subbase for the topology τ .
(4) The after-fore set of x ∈ X denoted by RxR, where RxR = Rx ∩ xR
(5) The minimal right set denoted by < x > R, where < x > R = ∩{pR : x ∈ pR}
(6) The minimal left set denoted by R < x >, where R < x >= ∩{Rp : x ∈ Rp}.

Definition 2.2 ([13]). A class {Ai} of sets is said to have the finite intersection
property if every subclass Ai1 , ..., Aim

has a non-empty intersection, i.e. Ai1 ∩ ... ∩
Aim 6= ∅.

Definition 2.3 ([13]). A subfamily F of P (X) is called a filter on X if:
(1) ∅ 6∈ F
(2) If A1, A2 ∈ F, then A1 ∩A2 ∈ F
(3) If A ∈ F and A ⊆ B ⊆ X, then B ∈ F.

The first two properties imply that a filter has the finite intersection property.
606
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Definition 2.4 ([13]). A subset B of P (X) is called a filter base if:
(1) ∅ 6∈ B
(2) If B1, B2 ∈ B, then ∃B3 ⊆ B : B3 ⊆ B1 ∩B2.

A filter base can be turned into a filter by including all sets of P (X) which contains
a set of,i.e. F = {A ∈ P (X) : A ⊇ B,B ∈ B}.

Definition 2.5 ([13]). Let ξ ⊆ P (X). Then ξ is called a filter subbasis on X if it
satisfies the finite intersection property.

The original rough set theory introduced by Pawlak was based on an equivalence
relation R on a finite universe X. In the approximation space (X, R), he considered
two operators, the lower and upper approximations of subsets. Let A ⊆ X

apr(A) = {x ∈ X : [x]R ⊆ A}
apr(A) = {x ∈ X : [x]R ∩A 6= ∅}.

Boundary, positive and negative regions are also defined:

BNR(A) = R(A)−R(A)

POSR(A) = R(A)
NEGR(A) = X −R(A).

There have been some extensions on Pawlak’s original concept. One extension is
to replace the equivalence relation by an arbitrary binary relation [1, 2, 8, 21]. If
R is a binary general relation on X, then the pair (X, R) is called a generalized
approximation space in briefly “GAS” [1]. For example of this extension:
Yao [21] introduced and investigated the notion of generalized approximation space
by using the after sets concepts as follows:

(2.1) R(A) = ∪xR⊆A xR

R(A) = R(A
′
)
′

Yao [20] introduced and investigated another notion of generalized approximation
space by using the after sets concept as follows:

(2.2) R(A) = {x ∈ X : xR ⊆ A},
R(A) = {x ∈ X : xR ∩A 6= ∅}.

Obviously, if R is an equivalence relation, then xR = [x]R. In addition, these defi-
nitions are equivalent to the original Pawlak’s definitions.
Abo-Tabl [2] introduced and investigated another notion of generalized approxima-
tion space by using the after set concept as follows:

(2.3) R∗(A) = {x ∈ X :< x > R ⊆ A},
R∗(A) = {x ∈ X :< x > R ∩A 6= ∅}.

Obviously, if R is an equivalence relation, then < x > R = [x]R. In addition, these
definitions are equivalent to the original Pawlak’s definitions. The other direction is
to study rough set via topological method [1, 3, 6, 8]. For example
Kozae et al. [8], calculate the lower and the upper approximation by using the
subbase {xR : x ∈ X} of the topology τ as follows:

(2.4) Rτ (A) = ∪{G ∈ τ : G ⊆ A}
607
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Rτ (A) = ∩{H ∈ τ
′
: A ⊆ H}.

Abo Khadra et al. [1], introduced and investigated another notion of generalized
approximation space by using the after composed set and after -c composed set. Let
(X, R) be a “GAS” and A ⊆ X, then the lower (respectively upper) approximation
is given by:

(2.5) RτR
(A) = ∪{G ∈ τR : G ⊆ A};

Rτ
′
R
(A) = ∩{F ∈ τ

′

R : A ⊆ F}

where τR = {A ⊆ X : ∀x ∈ A, xR ⊆ A}(resp.τ
′

R = {A ⊆ X : ∀x ∈ A,Rx ⊆ A}) is
the class of all after composed (respectively after-c composed) sets.

Proposition 2.6 ([1]). Let R be a binary relation on X. Then the class τR (respec-
tively τ

′

R) forms a topology on X.

Theorem 2.7 ([1]). Let R be a binary relation on X. Then τR is the complement
topology of τ

′

R and vice versa.

3. Rough sets and common network connectivity devices

The aim of this section is to propose a new method to define the lower and
upper approximations of any set with respect to any relation by using the after-fore
composed set. The current method reduces the boundary region by increasing the
lower approximation and decreasing the upper approximation with the comparison
of Abo Khadra’s method [1]. At the end of this section an applied example of the
current method in the network connectivity devices is introduced.

Definition 3.1. Let R be a binary relation on X, A ⊆ X. Then A is called the
after-fore composed set if A contains all the after-fore sets for all its elements, i.e.
∀x ∈ A,RxR ⊆ A.
The class of all after-fore composed sets is defined by the class

τ∗R = {A ⊆ X : ∀x ∈ A,RxR ⊆ A}.

Proposition 3.2. Let R be a binary relation on X, A ⊆ X. Then the class τ∗R forms
a topology on X.

Proof. (1) Clearly X and ∅ are after-fore composed sets, then X and ∅ ∈ τ∗R.
(2) Let A,B ∈ τ∗R, and let x ∈ A ∩B. Then x ∈ A and x ∈ B

⇒ RxR ⊆ A and RxR ⊆ B
⇒ RxR ⊆ A ∩B
⇒ A ∩B ∈ τ∗R.

(3) Let Ai ∈ τ∗R ∀i ∈ I and x ∈ ∪i∈IAi. Then ∃i0 ∈ I such that x ∈ Ai0 ⊆ ∪i∈IAi

⇒ RxR ⊆ Ai0 ⊆ ∪i∈IAi

⇒ ∪i∈IAi ∈ τ∗R.
From 1), 2) and 3) τ∗R is a topology on X. �

Proposition 3.3. Let R be a binary relation on X, A ⊆ X. Then if A ∈ τ∗R, then
A

′ ∈ τ∗R
608



A. M. Kozae et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 3, 605–624

Proof. Let A ∈ τ∗R. Then RaR ⊆ A ∀a ∈ A.
Let b ∈ A

′
. Then there are two different cases :

(1) If RbR ∩A 6= ∅ ⇒ ∃c ∈ A and c ∈ RbR
⇒ ∃c ∈ A and b ∈ RcR such that b 6∈ A which is a contradiction.

(2) If RbR ⊆ A
′
, then A

′ ∈ τ∗R. �

Definition 3.4. Let R be a binary relation on X, A ⊆ X. Then the lower (respec-
tively upper) approximations is given by:
Rτ∗

R
(A) = ∪{G ∈ τ∗R : G ⊆ A};

Rτ∗
R
(A) = ∩{F ∈ τ∗R : A ⊆ F}.

It is easy to notice that the lower Rτ∗
R
(A) (respectively upper Rτ∗

R
(A)) approxi-

mations of a subset A is exactly the interior A0 (respectively closure A) of A in the
topology τ∗R(A).

Proposition 3.5. Let R be a binary relation on X, A,B ⊆ X. Then
(1) Rτ∗

R
(A) ⊆ A ⊆ Rτ∗

R
(A)

(2) Rτ∗
R
(X) = X and Rτ∗

R
(∅) = ∅

(3) A ⊆ B ⇒ Rτ∗
R
(A) ⊆ Rτ∗

R
(B)

(4) Rτ∗
R
(A ∩B) = Rτ∗

R
(A) ∩Rτ∗

R
(B)

(5) Rτ∗
R
(A ∪B) ⊇ Rτ∗

R
(A) ∪Rτ∗

R
(B)

(6) Rτ∗
R
(A) = Rτ∗

R
(Rτ∗

R
(A))

(7) Rτ∗
R
(Rτ∗

R
(A)) ⊆ Rτ∗

R
(Rτ∗

R
(A)) and Rτ∗

R
(Rτ∗

R
(A)) ⊆ R(τ

∗
R)(A)

(8) Rτ∗
R
(A) = [Rτ∗

R
(A

′
)]

′
, A

′
is the complement of A

Proof. The proof is straightforward from Definition 3.4. �

It should be noted that in the present generalization the above properties satisfies
without any condition on binary relation R, but in the other generalizations such as
[7, 23] and Yao space [18, 19] this properties satisfied with adding some conditions
on binary relation R.

The relation between the topology which was generated by Abo Khadra’s method
[1] and topology which is generated by the current method is presented in following
proposition.

Proposition 3.6. Let R be a binary relation on X. Then the topology τ∗R is finer
than the both topology τR, τ

′

R.

Proof. Let A ∈ τR. Then xR ⊆ A ∀x ∈ A
⇒ RxR ⊆ xR ⊆ A ∀x ∈ A
⇒ A ∈ τ∗R. Hence τR ⊆ τ∗R. Similarly we can prove that τ

′

R ⊆ τ∗R and hence the
topology τ∗R is finer than the both topology τR, τ

′

R. �

Proposition 3.7. Let R be a binary relation on X, A ⊆ X. Then
(1) RτR

(A) ⊆ Rτ∗
R
(A)

(2) Rτ∗
R
(A) ⊆ Rτ

′
R
(A)

(3) BNτ∗
R
(A) ⊆ BNτR

(A)
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Proof. (1) Let y ∈ RτR
(A) = ∪{G ∈ τR : G ⊆ A}. Then ∃ G ∈ τR such that

y ∈ G ⊆ A, and since τR ⊆ τ∗R
⇒ G ∈ τ∗R such that y ∈ G ⊆ A
⇒ y ∈ Rτ∗

R
(A) and hence RτR

(A) ⊆ Rτ∗
R
(A)

(2) Let y 6∈ Rτ
′
R
(A). Then ∃ Oy ∈ τ

′

R such that Oy ∩A = ∅, and since τ
′

R ⊆ τ∗R
⇒ ∃ Oy ∈ τ∗R such that Oy ∩A = ∅
⇒ y 6∈ Rτ∗

R
(A) and hence Rτ∗

R
(A) ⊆ Rτ

′
R
(A)

(3) BNτ∗
R
(A) = Rτ∗

R
(A)−Rτ∗

R
(A)

= Rτ∗
R
(A) ∩ (Rτ∗

R
(A))

′

= Rτ∗
R
(A) ∩ (Rτ∗

R
(A

′
))

⊆ Rτ
′
R
(A) ∩Rτ

′
R
(A

′
)

= Rτ
′
R
(A)− (Rτ

′
R
(A

′
))

′
= Rτ

′
R
(A)−RτR

(A).
Hence BNτ∗

R
(A) ⊆ BNτR

(A). �

It is noted from Proposition 3.7 that the Definition 3.4 reduces the boundary re-
gion by increasing the lower approximation and decreasing the upper approximation
with the comparison of Abo Khadra’s method [1].

Networks deploy many different hardware components, known as devices. They
are connected as resources for network users. We are already familiar with PCs,
printers and other office equipment. Other equipment that we may not be familiar
with are network interface card, hubs, switches, repeaters, bridges, routers and gate-
ways [5, 11]. An applied example of the current method in the network connectivity
devices is introduced.

Example 3.8. Let X = {x1, x2, x3, x4} be a set of four network connectivity devices
and A = {A1, A2, A3} be the attributes of network connectivity devices, where
x1 is a hub, x2 switch, x3 bridge, x4 router,
A1 = Connection ={a1, b1, c1, d1, e1, f1, g1}, where
a1= Connect all computers on each side of the network,
b1= Connect two segments of the same LAN,
c1= Connect two local area networks (LANs),
d1= Connect two similar network,
e1= Connect two dissimilar network,
f1= Divide a busy network into two segments and
g1= Select the best path to route a message based on the destination address and
origin.
A2 = Read or cannot read the addresses={a2, b2, c2, d2}, where
a2= Read the addresses of all computers on each side of the network,
b2= Cannot read the addresses of any computer in the network,
c2= Read the addresses of bridges on the network and
e2= Read the addresses of other routers on the network.
A3 = Cost ={a3, b3, c3}, where a3 = 100 L.E., b3 = 300 L.E., c3 = 500 L.E. and
d3 = 800 L.E.
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Table 1. Attributes network connectivity devices

X/A A1 A2 A3

{x1} {a1, b1} {b2} {a3}
{x2} {a1, b1} {a2} {b3}
{x3} {a1, b1, c1, d1, f1} {a2} {c3}
{x4} {a1, b1, c1, d1, e1, g1} {a2, c2, d2} {d3}

Let R be a general relation as follows:
x1Rx2 ⇔ A(x1) ⊆ A(x2), x1, x2 ∈ X.
For the first attribute A1, we get
RA1 = 4∪ {(x1, x2), (x1, x3), (x1, x4), (x2, x1), (x2, x3), (x2, x4)};
x1RA1 = x2RA1 = X, x3RA1 = {x3}, x4RA1 = {x4},
RA1x1 = RA1x2 = {x1, x2}, RA1x3 = {x1, x2, x3}, RA1x4 = {x1, x2, x4},
RA1x1RA1 = RA1x2RA1 = {x1, x2}, RA1x3RA1 = {x3}, RA1x4RA1 = {x4}.
τR = {X, ∅, {x3}, x4, {x3, x4}, {x3, x4}},
τ
′

R = {X, ∅, {x1, x2}, {x1, x2, x3}, {x1, x2, x4}},
τ∗R = {X, ∅, {x3}, {x4}, {x1, x2}, {x3, x4}, {x1, x2, x3}, {x1, x2, x4}}.
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4. Rough sets and cables network medium

Yao [20] defined distinct approximation operators by using the after sets and fore
sets concepts as follows:

(4.1) R(A) = {x ∈ X : xR ⊆ A}

R(A) = {x ∈ X : xR ∩A 6= φ}

(4.2) R(A) = {x ∈ X : Rx ⊆ A}

R(A) = {x ∈ X : Rx ∩A 6= φ}

(4.3) R(A) = {x ∈ X : (xR ∪Rx) ⊆ A}

R(A) = {x ∈ X : (xR ∪Rx) ∩A 6= φ}

(4.4) R(A) = {x ∈ X : RxR ⊆ A}

R(A) = {x ∈ X : RxR ∩A 6= φ},
where RxR = xR ∩Rx.

In this section, the definition (4.4) is used to show that this definition reduces the
boundary region by increasing the lower approximation and decreasing the upper
approximation with the comparison of the methods (4.1), (4.2) and (4.3). This
definition satisfies some properties in analogues of Pawalk’s properties. Furthermore,
the necessary and sufficient condition that can be stated on a binary relation R
is proposed in order to have the pair of lower (upper) approximations satisfying
the Kuratowski’s axioms of interior(closure) operators. Moreover, an application of
rough sets in network cable is introduced.

Proposition 4.1. Let R be any binary relation on a non-empty set X and A,B ⊆ X.
Then the following conditions hold:

(1) R(A) = [R(A
′
)]

′

(2) R(X) = X
(3) A ⊆ B ⇒ R(A) ⊆ R(B)
(4) R(A ∩B) = R(A) ∩R(B)
(5) R(A ∪B) ⊇ R(A) ∪R(B)
(6) A ⊆ R(R(A))

Proof. (1) [R(A
′
)]

′
= ({x ∈ X : RxR ⊆ A

′})′

= {x ∈ X : RxR ∩A
′
= φ}

= {x ∈ X : RxR ⊆ A}
= R(A)

(2) Let x ∈ X. Then RxR ⊆ X
⇒ x ∈ R(X).
⇒ X ⊆ R(X)
and since R(X) ⊆ X, then R(X) = X

(3) Let x ∈ R(A). Then RxR ⊆ A. Also, A ⊆ B
⇒ RxR ⊆ B
⇒ x ∈ R(B). Hence R(A) ⊆ R(B)
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(4) R(A ∩B) ⊆ R(A) ∩R(B)(by 3). Let x ∈ R(A) ∩R(B). Then RxR ⊆ A,B
⇒ RxR ⊆ A ∩B
⇒ x ∈ R(A ∩B)
and hence R(A ∩B) = R(A) ∩R(B)

(5) The proof is immediately follows from (3)
(6) Let x ∈ A. Since ∀y ∈ RxR, then x ∈ RyR

⇒ x ∈ RyR ∩A ⇒ y ∈ R(A), i.e.∀y ∈ RxR
⇒ y ∈ R(A)
⇒ y ∈ R(A)
⇒ x ∈ R(R(A)). Hence A ⊆ R(R(A)).

�

The following example shows that the following conditions do not hold generally
∀ A ⊆ X

(1) R(φ) = φ
(2) R(A) ⊆ A
(3) R(R(A)) = R(A)

Example 4.2. Let X = {a, b, c, d} and R = {(a, b), (a, d), (b, a), (b, c), (c, d), (d, a)}.
Then
aR = {b, d}, bR = {a, c}, cR = {d}, dR = {a}, Ra = {b, d}, Rb = {a}, Rc =
{b}, Rd = {a, c}, RaR = {b, d}, RbR = {a}, RcR = ∅ and RdR = {a}.
If we take A = φ, then R(∅) = {c}. Hence R(φ) 6= φ.
Also, if we take A = {a}, then R(A) = {b, c, d}, R(R(A)) = {a, c}.
Hence R(A) * A and R(A) 6= R(R(A).

Proposition 4.3. For any reflexive relation R on X the following conditions hold.
(1) R(∅) = ∅
(2) R(A) ⊆ A

Proof. (1) Since R is a reflexive relation on X, then x ∈ RxR ∀ x ∈ X. Then
6 ∃ x ∈ X s.t RxR ⊆ ∅ hence R(∅) = ∅

(2) Let x ∈ R(A). Then RxR ⊆ A. Since R is a reflexive relation on X, then
x ∈ RxR ∀x ∈ X. Thus x ∈ A and so R(A) ⊆ A.

�

Proposition 4.4. Let R be a preorder relation on X. Then R(R(A)) = R(A).

Proof. R(R(A)) ⊆ R(A) by Proposition 4.3. Let x 6∈ R(R(A)). Then RxR * R(A)
⇒ ∃y ∈ RxR, y 6∈ R(A)
⇒ ∃ y ∈ RxR, RyR * A
⇒ ∃ y ∈ RxR ∃ z ∈ RyR, z 6∈ A
⇒ z ∈ RxR(since R is transitive),z 6∈ A
⇒ RxR * A. Hence x 6∈ R(A). Then R(R(A)) ⊇ R(A) and consequently R(R(A)) =
R(A). �

Theorem 4.5. For any preorder relation R on X. The pair of lower and upper ap-
proximations (4.4) is a pair of interior and closure operators satisfying Kuratowski’s
axioms.
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Proof. The proof follows immediately from Propositions 4.1, 4.3 and 4.4. �

The main network medium is network cable. Cable is the medium through which
information usually moves from one network device to another. There are several
types of cable such as twisted-pair cable, coaxial cable, and optical fiber [12]. An
application of rough sets in network cable is introduced in the following example.

Example 4.6. Let X = {x1, x2, x3} be a set of three different cables and A =
{A1, A2, A3, A4} be the attributes of cables, where
x1 is a twisted-pair cable, x2 a coaxial cable, x3 an optical fiber,
A1 = The maximum segment length={Less than 185 m, 200-500 m, 80 km} =
{a1, b1, c1}
A2 = The transmission speed range ={10Mb/s − 100Mb/s, 10Mb/s, 40Gb/s} =
{a2, b2, c2}
A3 = Cost ={3L.E./m, 5L.E./m, 100L.E./m} = {a3, b3, c3}
A4 = Time of install ={1 minute, 5 minutes, 40 minutes} = {a4, b4, c4}.

Table 3. Attributes of cables

X/A A1 A2 A3 A4

{x1} {a1} {a2} {a3} {a4}
{x2} {b1} {b2} {b3} {b4}
{x3} {c1} {c2} {c3} {c4}

Let R be a general relation as follows:
x1Rx2 ⇔ A(x1) ⊆ A(x2), x1, x2 ∈ X.
For the first attribute A1, we get
RA1 = 4∪ {(x1, x2), (x1, x3), (x2, x3)};
x1RA1 = X, x2RA1 = {x2, x3}, x3RA1 = {x3},
RA1x1 = x1, RA1x2 = {x1, x2}, RA1x3 = X,
x1RA1x1 = x1, x2RA1x2 = {x1, x2}, x3RA1x3 = X.

Table 4. Comparison between the method (4.1) and the method (4.4)

The method (4.1) The method (4.4)
A R(A) R(A) BN(A) R(A) R(A) BN(A)
∅ ∅ ∅ ∅ ∅ ∅ ∅
{x1} ∅ {x1} {x1} {x1} {x1} ∅
{x2} ∅ {x1, x2} {x1, x2} {x2} {x2} ∅
{x3} {x3} X {x1, x2} {x3} {x3} ∅
{x1, x2} ∅ {x1, x2} {x1, x2} {x1, x2} {x1, x2} ∅
{x1, x3} {x3} X {x1, x2} {x1, x3} {x1, x3} ∅
{x2, x3} {x2, x3} X {x1} {x2, x3} {x2, x3} ∅
X X X ∅ X X ∅

The approximations (4.4) are better than the approximations (4.1) because the
approximation (4.4) decreases the boundary region by increasing the lower

approximation and decreasing the upper approximation.
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5. Rough sets and network topologies

The goal of this section is to introduce a new method to define the lower and
upper approximations of any set with respect to any relation. The present method
reduces the boundary region by increasing the lower approximation and decreasing
the upper approximation with the comparison of Abo-Tabl’s method [2]. At the
end of this section an applied example of rough sets in the main types of physical
topologies is presented.

We denote, < x > R ∩R < x > by R < x > R, i.e
< x > R ∩R < x >= R < x > R

Definition 5.1. Let R be any binary relation on X. The lower and upper approx-
imations on X according to R are defined as:

(5.1) R∗∗(A) = {x ∈ X : R < x > R ⊆ A}“Lower approximation”

R∗∗(A) = {x ∈ X : R < x > R ∩A 6= ∅}“Upper approximation”

BN∗∗(A) = R(A)−R(A)“Boundary region”

Proposition 5.2. Let R be any binary relation on a non-empty set X and A,B ⊆ X.
Then the following conditions hold:

(1) R∗∗(A) = [R∗∗(A
′
)]

′

(2) R∗∗(X) = X
(3) A ⊆ B ⇒ R∗∗(A) ⊆ R∗∗(B)
(4) R∗∗(A ∩B) = R∗∗(A) ∩R∗∗(B)
(5) R∗∗R(A ∪B) ⊇ R∗∗(A) ∪R∗∗(B)
(6) R∗∗(R∗∗R(A)) ⊆ R∗∗(A)

Proof. The proof of 1, 2, 3, 4 and 5 are the same as in Proposition 4.1.
(6) Let x ∈ R∗∗(A). Then R < x > R ⊆ A. We want to prove x ∈ R∗∗(R∗∗(A)),
i.e.,

R < x > R ⊆ R∗∗(A).

So, let y ∈ R < x > R. Then R < y > R ⊆ R < x > R
⇒ R < y > R ⊆ A
⇒ y ∈ R∗∗(A). Hence R∗∗(R∗∗(A)) ⊆ R∗∗(A). �

It should be noted that the equality in Proposition 5.2 (5) and (6) is not hold in
general, also the following conditions do not hold generally ∀A ⊆ X

(1) R∗∗(φ) = φ
(2) R∗∗(A) ⊆ A
(3) A ⊆ R∗∗(R∗∗(A))
(4) R∗∗(A) ⊆ R∗∗(R∗∗(A))

Proposition 5.3. For any reflexive relation R on X the following conditions hold.
(1) R∗∗(∅) = ∅
(2) R∗∗(A) ⊆ A

Proof. The proof is the same as in the Proposition 4.3 �
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Theorem 5.4. For any reflexive relation R on X. The pair of lower and upper
approximations is the pair of interior and closure operators satisfying Kuratowski’s
axioms.

Proof. The proof follows immediately from Propositions 5.2 and 5.3. �

Proposition 5.5. Let R be any binary relation on a non-empty set X and A ⊆
X, then A ⊆ R∗∗(R∗∗(A)) in the following cases:

(1) If R and R−1 are functional relations on X.
(2) If R is an irreflexive, symmetric and transitive relation
(3) If R\∆ = ∅, where ∆ is an identity relation
(4) If R is an anti-identity relation

Proof. We prove part 1 and the other parts are similar.
(1) Let x ∈ A. Since R and R−1 are functional relation, then

R < x > R = {x} or ∅ ∀x ∈ X.
If R < x > R = {x}, then R < x > R ∩A 6= ∅.
⇒ x ∈ R∗∗(A)
⇒ {x} = R < x > R ⊆ R∗∗(A)
⇒ x ∈ R∗∗(R∗∗(A)),
and if R < x > R = ∅, then R < x > R ⊆ R∗∗(A)
⇒ x ∈ R∗∗(R∗∗(A)).

�

Lemma 5.6. If R is an anti-identity relation and A ⊆ X, then A is an exact set.

Proof. Since R is an anti-identity relation, then R < x > R = {x}∀x ∈ X
⇒ R∗∗(A) = R∗∗(A) = A
⇒ BN∗∗(A) = ∅. Hence A is an exact set. �

The relation between Abo–Tabl’s approximations [2] and the current approxima-
tions is presented in the following proposition.

Proposition 5.7. Let R be any binary relation on a non-empty set X and A ⊆ X.
Then

(1) R∗(A) ⊆ R∗∗(A)
(2) R∗∗(A) ⊆ R∗(A)
(3) BN∗∗(A) ⊆ BN∗(A)

Proof. Straightforward. �

In Computer networking “Topology” refers to the layout or design of the con-
nected devices. Network Topologies can be physical or logical. The physical topology
of a network refers to the configuration or the layout of cables, computers and other
peripherals. It means the physical design of a network including the devices, loca-
tion and cable installation. Physical topology should not be confused with logical
topology which is the method used to pass the information between the computers.
Logical Topology refers to the fact that how data actually transfers in a network as
opposed to its design. The main types of physical topologies are bus topology, ring
topology, star topology, and mesh topology [5, 11, 24, 25]. An applied example of
rough sets in the main types of physical topologies is presented.
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Example 5.8. Let X = {x1, x2, x3, x4} be a set of four different network topology
and A = {A1, A2, A3} be the attributes network topology, where
x1 is a bus topology, x2 a ring topology, x3 a star topology, x3 a mesh topology
A1 = The method of transfer data={broadcast, multicast, unicast} = {a1, b1, c1},
A2 =Cable type={twisted pair cable, thin coaxial cable, thick coaxial cable, fiber
optic cable} ={a2, b2, c2, d2} and
A3 = Bandwidth capacity ={10Mbit/s, 10− 100Mbit/s, 10Mbit/s− 40Gbit/s}

= {a3, b3, c3}.

Table 5. Attributes of network topologies

X/A A1 A2 A3

{x1} {a1} {b2, c2} {a3}
{x2} {a1} {c2, d2} {b3}
{x3} {a1, b1, c1} {a2, b2, c2, d2} {c3}
{x4} {c1} {a2, b2, c2, d2} {c3}

Let R be a general relation as follows:
x1Rx2 ⇔ A(x1) ⊆ A(x2), x1, x2 ∈ X.
For the first attribute A1, we get
RA1 = 4∪ {(x1, x2), (x1, x3), (x2, x1), (x2, x3), (x4, x3)};
x1RA1 = {x1, x2, x3}, x2RA1 = {x1, x2, x3}, x3RA1 = {x3}, x4RA1 = {x3, x4},
RA1x1 = {x1, x2}, RA1x2 = {x1, x2}, RA1x3 = X, RA1x4 = {x4},
< x1 > RA1 =< x2 > RA1 = {x1, x2, x3}, < x3 > RA1 = {x3},
< x4 > RA1 = {x3, x4},
RA1 < x1 >= RA1 < x2 >= {x1, x2}, RA1 < x3 >= X, RA1 < x4 >= {x4},
RA1 < x1 > RA1 = RA1 < x2 > RA1 = {x1, x2}, RA1 < x3 > RA1 = {x3},
RA1 < x4 > RA1 = {x4}.
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6. Rough sets and viruses

Kozae et al. [8] introduced and investigated another notion of generalized approx-
imation space by using the subbase {xR : x ∈ X} of the topology τ . They proved
that their approximations are better than Yao’s approximations [21] because their
approximations decrease the boundary region by increasing the lower approximation
and decreasing the upper approximation. The goal of this section is to investigate
a new definition of the lower and upper operators for any binary relation by using
the set {xR : x ∈ X} as a filter subbase. The current approximations decrease the
boundary region by increasing the lower approximation and decreasing the upper
approximation so it is better than Kozae’s approximation [8] and Yao’s approxima-
tions [21]. We consider the filter is generated by the after sets which has a nonempty
finite intersection. To construct the filter F, let ξ = {xR : x ∈ X} be a subbase of a
filter F.

Definition 6.1. Let R be a binary relation on X and A ⊆ X. Then the lower and
upper approximation on X according to R are defined as:

(6.1) RF(A) = ∪{G ∈ F : G ⊆ A}

RF(A) = {∩{H∈F
′
:A⊆H}

X if 6∃H∈F′ :A⊆H
}

Proposition 6.2. Let R be a binary relation on a non-empty set X and A,B ⊆ X.
Then the following conditions hold:

(1) RF(A) ⊆ A ⊆ RF(A)
(2) RF(X) = X, RF(∅) = ∅
(3) A ⊆ B ⇒ RF(A) ∩RF(B)
(4) RF(A ∩B) = RF(A) ∩RF(B)
(5) RF(A ∪B) ⊇ RF(A) ∪RF(B)
(6) RF(A) = RF(RF(A))
(7) RF(RF(A)) ⊆ RF(RF(A)) and RF(RF(A)) ⊆ RF(A)
(8) RF(A) = [RF(A

′
)]

′
.

Proof. The proof follows immediately from the Definition 6.1. �

The relation between the topology τ generated by the subbase ξ = {xR : x ∈ X}
and the filter F generated by the same subbase is given in the following proposition.

Proposition 6.3. Let R be a binary relation on X. Then τ \∅ ⊆ F, where τ is the
topology generated by the subbase ξ = {xR : x ∈ X} and F is a filter generated by
the same subbase.

Proof. Let A ∈ τ \∅. Then A = ∪B,B ∈ B, where B is a base for τ and F.
Since B ⊆ ∪B = A,B ∈ B, then A ∈ F and hence τ \∅ ⊆ F. �

The following proposition shows that the current approximations are better than
Kozae’s approximation [8] because the current approximations decrease the bound-
ary region by increasing the lower approximation and decreasing the upper approx-
imation.

Proposition 6.4. Let R be any binary relation on X. Then
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(1) Rτ (A) ⊆ RF(A)
(2) RF(A) ⊆ Rτ (A)
(3) BNF(A) ⊆ BNτ (A)

Proof. The proof is straightforward from Proposition 6.2. �

A computer virus is a piece of programming code that alters the way our computer
works without our knowledge or permission. Computer viruses do not generate by
itself [17]. They must be written by someone and with a specific purpose. In the
mid–1980s two brothers in Pakistan discovered that people were pirating their soft-
ware. They responded by writing the first computer virus, a program that would put
a copy of itself and a copyright message on any floppy disk copies their customers
made. From these simple beginnings, an entire virus counter-culture has emerged.
Computer viruses can be transmitted via a number of ways like programs and doc-
uments, internet, email, CDs and floppies [14]. There are different types of viruses
such as file viruses, boot sector viruses, multipartite viruses and typically macro
viruses [10]. An application of rough sets in different types of viruses is introduced
in the following example.

Example 6.5. Let V = {v1, v2, v3, v4} be set of four viruses and A = {A1, A2, A3}
be the attributes viruses, where
A1 = Disable computer={slow computer, run unwanted software, data theft} =
{a1, b1, c1},
A2 = Place of injury ={boot sector, executive programs, multipartite viruses}
= {a2, b2, c2},
A3 = Destroy files ={desktop files, files acrobatics, compressed files, executive
files}= {a3, b3, c3, d3}.

Table 7. Attributes of viruses

X/A A1 A2 A3

{v1} {a1, b1} {a2, b2} {a3}
{v2} {a1} {b2, c2} {b3}
{v3} {a1, c1} {a2} {b3, c3}
{v4} {c1} {b2, c2} {a3, c3}

Let R be a general relation as follows:
v1Rv2 ⇔ A(v1) ∩A(v2) 6= ∅, v1, v2 ∈ V . For the first attribute A1, we get
RA1 = 4∪ {(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v1), (v3, v2), (v3, v4), (v4, v3)},
v1RA1 = v2RA1 = {v1, v2, v3}, v3RA1 = V, v4RA1 = {v3, v4},
ξ = {V, {v3, v4}, {v1, v2, v3}},
β = {V, {v3}, {v3, v4}, {v1, v2, v3}},
τ = {V, ∅, {v3}, {v3, v4}, {v1, v2, v3}},
τ
′
= {V, ∅, {v4}, {v1, v2}, {v1, v2, v4}},

F = {V, {v3}, {v1, v3}, {v2, v3}, {v3, v4}, {v1, v2, v3}, {v1, v3, v4}, {v2, v3, v4}},
and F

′
= {∅, {v1}, {v2}, {v4}, {v1, v2}, {v1, v4}, {v2, v4}, {v1, v2, v4}}.
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7. Conclusion

The main aim of rough set is reducing the boundary region by increasing the
lower approximation and decreasing the upper approximation. In this paper, four
different methods are proposed to achieve this main aim. Comparison between the
current approximation and previous approximation [1, 2, 8, 20, 21] is presented. The
current approximations are better than the previous approximation [1, 2, 8, 20, 21]
because it reduces the boundary region by increasing the lower approximation and
decreasing the upper approximation with comparison to the previous approximation
[1, 2, 8, 20, 21]. Moreover, applications of rough sets theory in network connectivity
devices, network cables, network topologies and viruses are introduced by applying
the current methods.
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