Annals of Fuzzy Mathematics and Informatics Volume 6, No. 3, (November 2013), pp. 559–573 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Compactifying the soft fuzzy product generalized topological space

V. VISALAKSHI, M. K. UMA, E. ROJA

Received 27 December 2012; Revised 22 February 2013; Accepted 25 March 2013

ABSTRACT. In this paper, the soft fuzzy product generalized topology is introduced. Properties of product associated maps are studied. In this connection, soft fuzzy G_{δ} pre quotient product maps with relevant properties are discussed. Moreover, compactification on soft fuzzy product generalized topological space is established.

2010 AMS Classification: 54A40, 03E72

Keywords: Functor, Weakly induced soft fuzzy product G_{δ} pre structure, Soft fuzzy quotient product map, Soft fuzzy product generalized topology, Compactification on soft fuzzy product generalized topological space.

Corresponding Author: V. Visalakshi (visalkumar_cbe@yahoo.co.in)

1. INTRODUCTION

The fuzzy concept has penetrated almost all branches of Mathematics since the introduction of the concept of fuzzy set by Zadeh [8]. Fuzzy sets have applications in many fields such as information [4] and control [5]. The theory of fuzzy topological spaces was introduced and developed by C. L. Chang [2].

The idea of Fuzzy soft sets, introduced and developed by P. K. Maji, R. Biswas, A. R. Roy [3]. The notions of Soft fuzzy set over a poset I and soft fuzzy topological space was introduced by Ismail U. Tiryaki [6].

In this paper, a new class of set, called Soft fuzzy set for $\mathcal{Q}(X_1 \times X_2)$ is established. A product map which is associated with the some product map is defined and some of the properties are studied. In this connection, a compactification on the soft fuzzy product generalized topological space is established.

2. Preliminaries

Definition 2.1 ([6]). Let X be a nonempty set. Let μ be a fuzzy subset of X such that $\mu : X \to [0, 1]$ and M be any crisp subset of X. Then, the ordered pair (μ, M) is called a *soft fuzzy set* in X. The family of all soft fuzzy subsets of X, will be denoted by SF(X).

Definition 2.2 ([6]). Let X be a non-empty set. Then, the *complement* of a soft fuzzy set (μ, M) is defined as $(\mu, M)' = (1 - \mu, X|M)$

Definition 2.3 ([6]). Let X be a non-empty set and the soft fuzzy sets A and B be in the form,

$$A = \{(\mu, M) : \mu(x) \in I^X, \forall x \in X, M \subseteq X\}$$
$$B = \{(\lambda, N) : \lambda(x) \in I^X, \forall x \in X, N \subseteq X\}$$

Then.

(1) $A \sqsubseteq B \Leftrightarrow \mu(x) \le \lambda(x), \forall x \in X, M \subseteq N.$ (2) $A = B \Leftrightarrow \mu(x) = \lambda(x), \forall x \in X, M = N.$

(3) $A \sqcap B \Leftrightarrow \mu(x) \land \lambda(x), \forall x \in X, M \cap N.$

(4) $A \sqcup B \Leftrightarrow \mu(x) \lor \lambda(x), \forall x \in X, M \cup N.$

Proposition 2.4 ([6]). Let $f : X \to Y$ be a function. If (λ, N) is a soft fuzzy set in Y, then its pre-image under f, denoted $f^{-1}(\lambda, N)$ is defined as,

$$f^{-1}(\lambda, N) = (\lambda \circ f, f^{-1}(N))$$

where, $f^{-1}(N) = \{x \in X : f(x) = y, for y \in N\}.$

Proposition 2.5 ([6]). Let $f : X \to Y$ be a function. If (μ, M) is a soft fuzzy set in X, then its image under f, denoted $f(\mu, M)$ is defined as, $f(\mu, M) = (x, L)$

where,
$$\gamma(y) = f(\mu)(y) = \sup\{\mu(x) : x \in f^{-1}(y)\}\$$

 $L = \{f(x) : x \in M\}.$

Definition 2.6 ([6]). A soft fuzzy topology on a non-empty set X is a family T of soft fuzzy sets in X satisfying the following axioms:

(1) $(0, \phi), (1, X) \in T.$

(2) For any family of soft fuzzy sets $(\lambda_j, N_j) \in T, j \in J, \sqcup_{j \in J} (\lambda_j, N_j) \in T$.

(3) For any finite number of soft fuzzy sets $(\lambda_j, N_j) \in T, j = 1, 2, 3, ..., n, \prod_{j=1}^n (\lambda_j, N_j) \in T$. Then, the pair (X, T) is called a *soft fuzzy topological space* (in short, SFTS).

Any soft fuzzy set in T is said to be a *soft fuzzy open set* (in short, *SFOS*) in X. The complement of SFOS in a SFTS (X, T) is called as a *soft fuzzy closed set*, denoted *SFCS* in X.

Example 2.7. Let $X = \{a, b, c\}$ and the soft fuzzy topology on X is given by $T = \{(0, \phi), (1, X), (\mu_1, M_1), (\mu_2, M_2), (\mu_3, M_3), (\mu_4, M_4)\}$ where each $(\mu_i, M_i)(i = 1, 2, 3, 4)$ is a soft fuzzy set defined as follows $\mu_1 : X \to I \ni \mu_1(a) = 0.2, \mu_1(b) = 0.3, \mu_1(c) = 0.7$ and $M_1 = \{a\} \subset X; \mu_2 : X \to I \ni \mu_2(a) = 0.4, \mu_2(b) = 0.5, \mu_2(c) = 0.2$ and $M_2 = \{a, b\} \subset X; \mu_3 : X \to I \ni \mu_3(a) = 0.4, \mu_3(b) = 0.5, \mu_3(c) = 0.7$ and $M_3 = \{a, b\} \subset X; \mu_4 : X \to I \ni \mu_4(a) = 0.2, \mu_4(b) = 0.3, \mu_4(c) = 0.2$ and $M_4 = 560$

 $\{a\} \subset X$. The members of T are called soft fuzzy open set and their complements are called soft fuzzy closed sets. The pair (X,T) is a soft fuzzy topological space.

Definition 2.8 ([1]). The product $\lambda \times \mu$ of a fuzzy set λ of X and a fuzzy set μ of Y is a fuzzy set of $X \times Y$, defined by $(\lambda \times \mu) < x, y > = min(\lambda(x), \mu(y))$, for each $< x, y > \in X \times Y$.

Example 2.9. Let $X = \{a, b, c\}$ and λ be a fuzzy set of X which is defined by $\lambda : X \to I \ni \lambda(a) = 0.4$, $\lambda(b) = 0.7$, $\lambda(c) = 0.3$. Let $Y = \{p,q\}$ and μ be a fuzzy set of Y which is defined by $\mu : Y \to I \ni \mu(p) = 0.3$, $\mu(q) = 0.8$. Now $\lambda \times \mu$ is a fuzzy set of $X \times Y$ and is defined as follows $\lambda \times \mu : X \times Y \to I \ni (\lambda \times \mu)(\langle a, p \rangle) = \min(\lambda(a), \mu(p)) = 0.3, (\lambda \times \mu)(\langle a, q \rangle) = \min(\lambda(a), \mu(q)) = 0.4, (\lambda \times \mu)(\langle c, p \rangle) = \min(\lambda(c), \mu(p)) = 0.3, (\lambda \times \mu)(\langle c, q \rangle) = \min(\lambda(c), \mu(q)) = 0.3$.

Definition 2.10 ([1]). The product $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of mappings $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$, defined by $(f_1 \times f_2) < x_1, x_2 > = (f_1(x_1), f_2(x_2))$, for each $< x_1, x_2 > \in X_1 \times X_2$.

Definition 2.11 ([7]). Let (X,T) be a soft fuzzy topological space. Let (λ, N) be any soft fuzzy set. Then (λ, N) is said to be *soft fuzzy* G_{δ} *pre open set* if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, L) is soft fuzzy pre open set. The complement of a soft fuzzy G_{δ} pre open set is soft fuzzy F_{σ} pre closed.

Example 2.12. Let (X,T) be a soft fuzzy topological space. Let $X = \{a,b,c\}$ and $T = \{(0,\phi), (1,X), (\mu_1, M_1), (\mu_2, M_2), (\mu_3, M_3), (\mu_4, M_4)\}$ where each (μ_i, M_i) (i = 1,2,3,4) is a soft fuzzy set defined as follows $\mu_1 : X \to I \ni \mu_1(a) = 0.2, \mu_1(b) = 0.3, \mu_1(c) = 0.7$ and $M_1 = \{a\} \subset X; \mu_2 : X \to I \ni \mu_2(a) = 0.4, \mu_2(b) = 0.5, \mu_2(c) = 0.2$ and $M_2 = \{a,b\} \subset X; \mu_3 : X \to I \ni \mu_3(a) = 0.4, \mu_3(b) = 0.5, \mu_3(c) = 0.7$ and $M_3 = \{a,b\} \subset X; \mu_4 : X \to I \ni \mu_4(a) = 0.2, \mu_4(b) = 0.3, \mu_4(c) = 0.2$ and $M_4 = \{a\} \subset X$. Now (λ_1, M_1) defined by $\lambda_1 : X \to I \ni \lambda_1(a) = 0.1, \lambda_1(b) = 0.6, \lambda_1(c) = 0.4$, and $M_1 = \{a\}$ is a soft fuzzy pre open set and (μ_1, M_1) is a soft fuzzy G_δ set. Now $(\mu_1, M_1) \sqcap (\lambda_1, M_1) = (\gamma_1, M_1)$ where $\gamma_1(a) = 0.1, \gamma_1(b) = 0.3, \gamma_1(c) = 0.4$ and $M_1 = \{a\}$ is a soft fuzzy G_δ pre open set in (X, T).

Definition 2.13 ([7]). Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f : (X,T) \to (Y,S)$ is said to be *soft fuzzy* G_{δ} -pre continuous, if the inverse image of every soft fuzzy open set in (Y,S) is soft fuzzy G_{δ} pre open in (X,T).

Example 2.14. Let (X,T) be a soft fuzzy topological space. Let $X = \{a, b, c\}$ and $T = \{(0, \phi), (1, X), (\mu_1, M_1), (\mu_2, M_2), (\mu_3, M_3), (\mu_4, M_4)\}$ where each (μ_i, M_i) (i = 1,2,3,4) is a soft fuzzy set defined as follows $\mu_1 : X \to I \ni \mu_1(a) = 0.2, \ \mu_1(b) = 0.3, \ \mu_1(c) = 0.7$ and $M_1 = \{a\} \subset X; \ \mu_2 : X \to I \ni \mu_2(a) = 0.4, \ \mu_2(b) = 0.5, \ \mu_2(c) = 0.2$ and $M_2 = \{a, b\} \subset X; \ \mu_3 : X \to I \ni \mu_3(a) = 0.4, \ \mu_3(b) = 0.5, \ \mu_3(c) = 0.7$ and $M_3 = \{a, b\} \subset X; \ \mu_4 : X \to I \ni \mu_4(a) = 0.2, \ \mu_4(b) = 0.3, \ \mu_4(c) = 0.2$ and $M_4 = \{a\} \subset X$. Let (Y, S) be a soft fuzzy topological space. Let $Y = \{p, q, r\}$ and $S = \{(0, \phi), (1, Y), (\lambda_1, N_1)\}$ where (λ_1, N_1) is a soft fuzzy set defined as follows $\lambda_1 : Y \to I \ni \lambda_1(p) = 0.1, \ \lambda_1(q) = 0.6, \ \lambda_1(r) = 0.4$ and $N_1 = \{p\}$. Let $f : (X, T) \to 561$

(Y, S) defined by f(a) = p, f(b) = q, f(c) = r. Since the inverse image of every soft fuzzy open set in (Y, S) is soft fuzzy G_{δ} pre open in (X, T). Thus f is a soft fuzzy G_{δ} pre continuous.

Definition 2.15 ([7]). Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f : (X,T) \to (Y,S)$ is said to be *soft fuzzy* G_{δ} -*pre irresolute*, if the inverse image of every soft fuzzy G_{δ} pre open set in (Y,S) is soft fuzzy G_{δ} pre open in (X,T).

3. On soft fuzzy product map

Definition 3.1. Let $\langle x_1, x_2 \rangle \in X_1 \times X_2$ and $\lambda : X_1 \times X_2 \rightarrow [0, 1]$. Define,

$$\langle x_1, x_2 \rangle_{\lambda} (\langle y_1, y_2 \rangle) = \begin{cases} \lambda (0 < \lambda \le 1) & \text{if } \langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle; \\ 0 & \text{otherwise.} \end{cases}$$

Then, the soft fuzzy set $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ is called as the *soft fuzzy* point (inshort, SFP) in $SF(X_1 \times X_2)$, with support, $\langle x_1, x_2 \rangle$ and value, λ .

Definition 3.2. Soft fuzzy product set $(\lambda_1, N_1) \times (\lambda_2, N_2)$ is defined as

 $(\lambda_1, N_1) \times (\lambda_2, N_2) = (\lambda_1 \times \lambda_2, N_1 \times N_2).$

Example 3.3. Let $X = \{a, b, c\}$ and (λ, N) be a soft fuzzy set of X which is defined by $\lambda : X \to I \ni \lambda(a) = 0.4$, $\lambda(b) = 0.7$, $\lambda(c) = 0.3$ and $N = \{a, b\}$. Let $Y = \{p, q\}$ and (μ, M) be a soft fuzzy set of Y which is defined by $\mu : Y \to I \ni \mu(p) = 0.3$, $\mu(q) = 0.8$ and $M = \{p\}$. Now $(\lambda \times \mu, N \times M)$ is a soft fuzzy product set of $X \times Y$ and is defined as follows $\lambda \times \mu : X \times Y \to I \ni (\lambda \times \mu)(\langle a, p \rangle) = \min(\lambda(a), \mu(q)) = 0.4$, $(\lambda \times \mu)(\langle a, p \rangle) = \min(\lambda(b), \mu(p)) = 0.3$, $(\lambda \times \mu)(\langle b, q \rangle) = \min(\lambda(b), \mu(q)) = 0.7$, $(\lambda \times \mu)(\langle c, p \rangle) = \min(\lambda(c), \mu(q)) = 0.3$ and $N \times M = \{\langle a, p \rangle, \langle b, p \rangle\}$.

Definition 3.4. Let (X_1, T_1) and (X_2, T_2) be any two soft fuzzy topological spaces. The collection $\mathcal{B} = \{(\lambda_1 \times \lambda_2, N_1 \times N_2) : (\lambda_1, N_1) \in T_1, (\lambda_2, M_2) \in T_2 \text{ and } N_1 \times N_2 \subseteq X_1 \times X_2\}$ forms a soft fuzzy open base of a soft fuzzy topology in $X_1 \times X_2$.

The soft fuzzy topology in $X_1 \times X_2$, induced by \mathcal{B} is called as the

soft fuzzy product topology of T_1 and T_2 , denoted by $T_1 \times T_2$.

The ordered pair $(X_1 \times X_2, T_1 \times T_2)$, which means the product of (X_1, T_1) and (X_2, T_2) , is called the *soft fuzzy product topological space*.

Example 3.5. Let $X = \{a, b, c\}$ and $T = \{(\lambda_1, N_1), (\lambda_2, N_2), (\lambda_3, N_3)\}$ where (λ_i, N_i) (i=1, 2,3) is defined as follows $\lambda_1 : X \to I \ni \lambda_1(a) = 0, \lambda_1(b) = 0, \lambda_1(c) = 0$ and $N_1 = \phi; \lambda_2 : X \to I \ni \lambda_2(a) = 1, \lambda_2(b) = 1, \lambda_2(c) = 1$ and $N_2 = X; \lambda_3 : X \to I \ni \lambda_3(a) = 0.3, \lambda_3(b) = 0.4, \lambda_3(c) = 0.2$ and $N_3 = \{a, b\}$. Let $Y = \{p, q\}$ and $S = \{(\mu_1, M_1), (\mu_2, M_2), (\mu_3, M_3)\}$ where (μ_i, M_i) (i=1, 2,3) is defined as follows $\mu_1 : Y \to I \ni \mu_1(p) = 0, \mu_1(q) = 0$ and $M_1 = \phi; \mu_2 : Y \to I \ni \mu_2(p) = 1, \mu_2(q) = 1$ and $M_2 = Y; \mu_3 : Y \to I \ni \mu_3(p) = 0.4, \mu_3(q) = 0.2$ and $M_3 = Y. \mathcal{B} = \{(\lambda_1 \times \mu_1, N_1 \times M_1), (\lambda_1 \times \mu_2, N_1 \times M_2), (\lambda_1 \times \mu_3, N_1 \times M_3), (\lambda_2 \times \mu_1, N_2 \times M_1), (\lambda_2 \times \mu_3, N_3 \times M_3)\}$ where $(\lambda_1 \times \mu_1, N_1 \times M_1)$ is defined by $\lambda_1 \times \mu_1 : X \times Y \to I \ni (\lambda_1 \times \mu_1)(< a, p >) = 0, (\lambda_1 \times \mu_1)(< a, p >) = 0, (\lambda_1 \times \mu_1)(< c, p >) = 0, (\lambda_1 \times \mu_1)(< c, q >) = 0$ and $N_1 \times M_1 = \phi$. $(\lambda_1 \times \mu_2, N_1 \times M_2)$ is defined by $\lambda_1 \times \mu_2 : X \times Y \to I \ni$ $(\lambda_1 \times \mu_2)(\langle a, p \rangle) = 0, \ (\lambda_1 \times \mu_2)(\langle a, q \rangle) = 0, \ (\lambda_1 \times \mu_2)(\langle b, p \rangle) = 0,$ $(\lambda_1 \times \mu_2)(\langle b, q \rangle) = 0, \ (\lambda_1 \times \mu_2)(\langle c, p \rangle) = 0, \ (\lambda_1 \times \mu_2)(\langle c, q \rangle) = 0$ and $N_1 \times M_2 = \phi$. $(\lambda_1 \times \mu_3, N_1 \times M_3)$ is defined by $\lambda_1 \times \mu_3 : X \times Y \to I \ni$ $(\lambda_1 \times \mu_3)(\langle a, p \rangle) = 0, \ (\lambda_1 \times \mu_3)(\langle a, q \rangle) = 0, \ (\lambda_1 \times \mu_3)(\langle b, p \rangle) = 0,$ $(\lambda_1 \times \mu_3)(\langle b, q \rangle) = 0, \ (\lambda_1 \times \mu_3)(\langle c, p \rangle) = 0, \ (\lambda_1 \times \mu_3)(\langle c, q \rangle) = 0$ and $N_1 \times M_3 = \phi$. $(\lambda_2 \times \mu_1, N_2 \times M_1)$ is defined by $\lambda_2 \times \mu_1 : X \times Y \to I \ni$ $(\lambda_2 \times \mu_1)(\langle a, p \rangle) = 0, \ (\lambda_2 \times \mu_1)(\langle a, q \rangle) = 0, \ (\lambda_2 \times \mu_1)(\langle b, p \rangle) = 0,$ $(\lambda_2 \times \mu_1)(\langle b, q \rangle) = 0, \ (\lambda_2 \times \mu_1)(\langle c, p \rangle) = 0, \ (\lambda_2 \times \mu_1)(\langle c, q \rangle) = 0$ and $N_2 \times M_1 = \phi$. $(\lambda_2 \times \mu_2, N_2 \times M_2)$ is defined by $\lambda_2 \times \mu_2 : X \times Y \to I \ni$ $(\lambda_2 \times \mu_2)(\langle a, p \rangle) = 1, \ (\lambda_2 \times \mu_2)(\langle a, q \rangle) = 1, \ (\lambda_2 \times \mu_2)(\langle b, p \rangle) = 1,$ $(\lambda_2 \times \mu_2)(\langle b, q \rangle) = 1, \ (\lambda_2 \times \mu_2)(\langle c, p \rangle) = 1, \ (\lambda_2 \times \mu_2)(\langle c, q \rangle) = 1$ and $N_2 \times M_2 = X \times Y$. $(\lambda_2 \times \mu_3, N_2 \times M_3)$ is defined by $\lambda_2 \times \mu_3 : X \times Y \to I \ni$ $(\lambda_2 \times \mu_3)(\langle a, p \rangle) = 0.4, \ (\lambda_2 \times \mu_3)(\langle a, q \rangle) = 0.2, \ (\lambda_2 \times \mu_3)(\langle b, p \rangle) = 0.4,$ $(\lambda_2 \times \mu_3)(\langle b, q \rangle) = 0.2, \ (\lambda_2 \times \mu_3)(\langle c, p \rangle) = 0.4, \ (\lambda_2 \times \mu_3)(\langle c, q \rangle) = 0.2$ and $N_2 \times M_3 = X \times Y$. $(\lambda_3 \times \mu_1, N_3 \times M_1)$ is defined by $\lambda_3 \times \mu_1 : X \times Y \to I$ $\ni \ (\lambda_3 \times \mu_1)(< a, p >) = 0, \ (\lambda_3 \times \mu_1)(< a, q >) = 0, \ (\lambda_3 \times \mu_1)(< b, p >) = 0,$ $(\lambda_3 \times \mu_1)(\langle b, q \rangle) = 0, \ (\lambda_3 \times \mu_1)(\langle c, p \rangle) = 0, \ (\lambda_3 \times \mu_1)(\langle c, q \rangle) = 0$ and $N_3 \times M_1 = \phi$. $(\lambda_3 \times \mu_2, N_3 \times M_2)$ is defined by $\lambda_3 \times \mu_2 : X \times Y \to I \ni$ $(\lambda_3 \times \mu_2)(\langle a, p \rangle) = 0.3, \ (\lambda_3 \times \mu_2)(\langle a, q \rangle) = 0.3, \ (\lambda_3 \times \mu_2)(\langle b, p \rangle) = 0.4,$ $(\lambda_3 \times \mu_2)(\langle b, q \rangle) = 0.4, \ (\lambda_3 \times \mu_2)(\langle c, p \rangle) = 0.2, \ (\lambda_3 \times \mu_2)(\langle c, q \rangle) = 0.2$ and $N_3 \times M_2 = \{ \langle a, p \rangle, \langle a, q \rangle, \langle b, p \rangle, \langle b, q \rangle \} (\lambda_3 \times \mu_3, N_3 \times M_3)$ is defined by $\lambda_3 \times \mu_3 : X \times Y \to I \ni (\lambda_3 \times \mu_3) (\langle a, p \rangle) = 0.3, \ (\lambda_3 \times \mu_3) (\langle a, q \rangle) = 0.2,$ $(\lambda_3 \times \mu_3)(\langle b, p \rangle) = 0.4, \ (\lambda_3 \times \mu_3)(\langle b, q \rangle) = 0.2, \ (\lambda_3 \times \mu_3)(\langle c, p \rangle) = 0.2,$ $(\lambda_3 \times \mu_3)(\langle c, q \rangle) = 0.2$ and $N_3 \times M_3 = \{\langle a, p \rangle, \langle a, q \rangle, \langle b, p \rangle, \langle b, q \rangle\}.$ The soft fuzzy topology induced by \mathcal{B} is called as soft fuzzy product topological of T and S denoted by $T \times S$. The pair $(X \times Y, T \times S)$ is a soft fuzzy product topological space.

Definition 3.6. Let $(X_1 \times X_2, T_1 \times T_2)$ be a soft fuzzy product topological space. The family of all soft fuzzy G_{δ} pre open sets are denoted by SFG_{δ} preOS. Soft fuzzy G_{δ} pre structure $st(T_1 \times T_2)$ is the collection of all soft fuzzy G_{δ} pre open sets satisfies the following conditions:

(1) $(0, \phi), (1, X) \in st(T_1 \times T_2).$

(2) For any family of soft fuzzy sets $(\lambda_j, N_j) \in st(T_1 \times T_2), j \in J, \sqcup_{j \in J}(\lambda_j, N_j) \in st(T_1 \times T_2).$

(3) For any finite number of soft fuzzy sets $(\lambda_j, N_j) \in st(T_1 \times T_2), j = 1, 2, 3, ...n$, $\sqcap_{j=1}^n (\lambda_j, N_j) \in st(T_1 \times T_2)$. Then, the pair $(X_1 \times X_2, st(T_1 \times T_2))$ is called as a *soft fuzzy product* $G_{\delta}pre \ space$, (in short, $SFPG_{\delta}pre_{st}S$)

Definition 3.7. Let (X, τ) be a topological space. A subset A of X is said to be $G_{\delta}pre \ open$ if $A = B \cap C$ where B and C are G_{δ} and pre open set respectively.

Definition 3.8. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ be a topological space and I = [0, 1] equipped with the usual topology, a lower semi $G_{\delta} pre$ continuous^{*} pair (μ, M) , where $\mu : (X_1 \times X_2, \tau_1 \times \tau_2) \to I$ with $G_{\delta} pre$ open set $\mu^{-1}((\alpha, 1])$ and $M \subseteq X_1 \times X_2$ is a $G_{\delta} pre$ open set in $\tau_1 \times \tau_2$ for all $\alpha \in [0,1]$. **Definition 3.9.** A soft fuzzy product G_{δ} pre space $(X_1 \times X_2, st(T_1 \times T_2))$ is said to be a *weakly induced soft fuzzy product* G_{δ} pre structure, which is the soft fuzzy product G_{δ} pre space induced by a topological space $(X_1 \times X_2, \tau_1 \times \tau_2)$ if the following conditions hold :

- (a) $\tau_1 \times \tau_2 = \{A \subset X_1 \times X_2 \mid (\chi_A, A) \in st(T_1 \times T_2)\}$
- (b) Every $(\mu, M) \in st(T_1 \times T_2)$ is a lower semi G_{δ} pre continuous^{*} pair.

Definition 3.10. Let PrTop be the category of all the product topological spaces and the continuous maps. Let $SFPrG_{\delta}prest$ be the category of all the soft fuzzy product $G_{\delta}pre$ space and $SFG_{\delta}pre$ continuous maps. Define a *functor*, $\omega : PrTop \rightarrow$ $SFPrG_{\delta}prest$ which associates to any product topological space, $(X_1 \times X_2, T_1 \times T_2)$, the soft fuzzy product $G_{\delta}pre$ space $(X_1 \times X_2, \omega(T_1 \times T_2))$ where $\omega(T_1 \times T_2)$ is the totality of all lower semi $G_{\delta}pre$ continuous^{*} pair. Then, $\omega(T_1 \times T_2)$ is called as the *weakly induced soft fuzzy* $G_{\delta}pre$ structure by $(X_1 \times X_2, T_1 \times T_2)$.

Definition 3.11. Let $(X_1 \times X_2, T_1 \times T_2)$, $(Y_1 \times Y_2, S_1 \times S_2)$ be any two soft fuzzy product topological spaces. A surjective map $f:(X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is said to be a *soft fuzzy* G_{δ} pre quotient product map if the inverse image of every soft fuzzy G_{δ} pre open set in $(Y_1 \times Y_2, S_1 \times S_2)$ is soft fuzzy G_{δ} pre open in $(X_1 \times X_2, T_1 \times T_2)$.

Proposition 3.12. For mappings $f_i : X_i \to Y_i$ and soft fuzzy sets (λ_i, M_i) of Y_i , (i = 1, 2); we have $(f_1 \times f_2)^{-1}(\lambda_1 \times \lambda_2, M_1 \times M_2) = f_1^{-1}(\lambda_1, M_1) \times f_2^{-1}(\lambda_2, M_2)$.

Proof. Proof is clear.

Proposition 3.13. For mappings $f_i : X_i \to Y_i$ and soft fuzzy sets (λ_i, M_i) of Y_i , (i = 1, 2); we have $(f_1 \times f_2)(\lambda_1 \times \lambda_2, M_1 \times M_2) \sqsubseteq f_1(\lambda_1, M_1) \times f_2(\lambda_2, M_2)$.

Proof. Proof is clear.

4. Properties of the product associated map on soft fuzzy product G_{δ} pre space

Definition 4.1. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets and $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ be a product map. Then, define the soft fuzzy product associated map $f_1 \times f_2$ as $\widetilde{f_1 \times f_2}(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$, for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ in $X_1 \times X_2$.

Proposition 4.2. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two onto maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets. If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map, then for each soft fuzzy point $(< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\})$ in $X_1 \times X_2$, $\widetilde{f_1 \times f_2}(< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\})$ is the soft fuzzy point in $Y_1 \times Y_2$ that takes the value λ in $f_1 \times f_2(< x_1, x_2 >)$.

Proof. For $0 < \lambda \leq 1$,

$$f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$$
$$= (f_1 \times f_2 \langle x_1, x_2 \rangle_{\lambda}, f_1 \times f_2(\{\langle x_1, x_2 \rangle\}))$$
$$= (f_1 \times f_2 \langle x_1, x_2 \rangle_{\lambda}, \{\langle f_1(x_1), f_2(x_2) \rangle\})$$
564

where, $f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}) (\langle y_1, y_2 \rangle)$

$$= \begin{cases} sup_{\langle x,y\rangle\in(f_{1}\times f_{2})^{-1}(\langle y_{1},y_{2}\rangle)} & \langle x_{1},x_{2}\rangle_{\lambda} \ (\langle x,y\rangle) \\ & \text{if } (f_{1}\times f_{2})^{-1}(\langle y_{1},y_{2}\rangle)\neq\phi; \\ 0 & \text{otherwise.} \end{cases}$$

 $f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda})(\langle y_1, y_2 \rangle) = \begin{cases} \lambda \ (0 < \lambda \le 1) & \text{if } (f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle) \neq \phi; \\ 0 & \text{otherwise.} \end{cases}$

Then, $\widetilde{f_1 \times f_2}(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ is the soft fuzzy point in $Y_1 \times Y_2$ that takes the value λ in $f_1 \times f_2(\langle x_1, x_2 \rangle)$.

Proposition 4.3. Let $f_1 : X_1 \to Y_1$, $f_2 : X_2 \to Y_2$, $g_1 : Y_1 \to Z_1$ and $g_2 : Y_2 \to Z_2$ be any maps. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ and $g_1 \times g_2 : Y_1 \times Y_2 \to Z_1 \times Z_2$ be the two product onto maps. Then, $(g_1 \times g_2) \circ (f_1 \times f_2) = (g_1 \times g_2) \circ (f_1 \times f_2)$.

Proof. By using the Proposition 4.2, we have for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda})$ $\{\langle x_1, x_2 \rangle\}$ in $X_1 \times X_2$

$$(g_{1} \times g_{2}) \circ (f_{1} \times f_{2})(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\})$$

$$= (g_{1} \times g_{2}) \circ (f_{1} \times f_{2})(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\})$$

$$= (g_{1} \times g_{2})((f_{1} \times f_{2})(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\}))$$

$$= (g_{1} \times g_{2})(\widetilde{(f_{1} \times f_{2})}(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\}))$$

$$= (\widetilde{g_{1} \times g_{2}})(\widetilde{(f_{1} \times f_{2})}(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\}))$$

$$= (\widetilde{g_{1} \times g_{2}}) \circ (\widetilde{f_{1} \times f_{2}})(< x_{1}, x_{2} >_{\lambda}, \{< x_{1}, x_{2} >\}))$$
us, $(g_{1} \times g_{2}) \circ (f_{1} \times f_{2}) = (\widetilde{g_{1} \times g_{2}}) \circ (\widetilde{f_{1} \times f_{2}}).$

Thus, $(g_1 \times g_2) \circ (f_1 \times f_2) = (g_1 \times g_2) \circ (f_1 \times f_2).$

Proposition 4.4. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two onto maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map. If $(f_1 \times f_2)$ is the identity map, then $(f_1 \times f_2)$ is also the identity map.

Proof. Since $(f_1 \times f_2)$ is the identity map, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ $=((x_1, x_2)_{\lambda}, \{(x_1, x_2)\}), \text{ for each soft fuzzy point } (\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}). \text{ Now,}$ by the definition of the soft fuzzy product associated map, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda})$ $\{\langle x_1, x_2 \rangle\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = ((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle_{\lambda}\}) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle x_1, x_2 \rangle_{\lambda}\} = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda})$ $\{(f_1(x_1), f_2(x_2))\}\)$. This implies that, $((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle f_1(x_1), f_2(x_2) \rangle\}\)$ is the soft fuzzy point which takes the value λ in $(f_1 \times f_2) < x_1, x_2 >$ and $(< x_1, x_2 >_{\lambda})$, $\{\langle x_1, x_2 \rangle\}$ is also the soft fuzzy point which takes the value λ in $\langle x_1, x_2 \rangle_{\lambda}$. Thus, $(f_1 \times f_2)(\langle x_1, x_2 \rangle) = \langle x_1, x_2 \rangle$, for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$. Thus, $(f_1 \times f_2)$ is the identity map. \square

Proposition 4.5. Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be any two maps.

(1) If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map, then $(f_1 \times f_2)$ is also the product onto map.

(2) If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product one-to-one map, then $(f_1 \times f_2)$ is also the product one-to-one map.

 $\begin{array}{l} Proof. \ (1) \ \text{For each} \ (< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \ \text{soft fuzzy point in } Y_1 \times Y_2, \ \text{we have} \\ < y_1, y_2 \ > \in \ Y_1 \times Y_2, \ \text{then there exists at least} \ < x_1, x_2 \ > \in \ X_1 \times X_2 \ \text{such that} \\ (f_1 \times f_2) < x_1, x_2 > = \ < y_1, y_2 >. \ \text{Now}, \ (f_1 \times f_2)(< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}) = \\ (f_1 \times f_2)(< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}) = ((f_1 \times f_2)(< x_1, x_2 >_{\alpha}), (f_1 \times f_2)(\{< x_1, x_2 >\}) \\)) \ \text{which takes the value } \alpha \ \text{in } (f_1 \times f_2) < x_1, x_2 > \text{and since } (f_1 \times f_2) < x_1, x_2 > \\)) \ \text{which takes the value } \alpha \ \text{in } (f_1 \times f_2)(< x_1, x_2 >_{\alpha}), (f_1 \times f_2)(\{< x_1, x_2 >\})) \\ = (< y_1, y_2 >, \ \text{this shows that } ((f_1 \times f_2)(< x_1, x_2 >_{\alpha}), (f_1 \times f_2)(\{< x_1, x_2 >\})) \\ = (< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \ \text{Thus, } (f_1 \times f_2) \ \text{is the product onto map.} \end{array}$

(2) If $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}), (\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$ are the two soft fuzzy points in $X_1 \times X_2$ such that $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)$ $(\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$. This implies that $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$. This shows $(f_1 \times f_2) < x_1, x_2 > = (f_1 \times f_2)$ $\langle x'_1, x'_2 \rangle$ and $\alpha = \beta$. Since $(f_1 \times f_2)$ is a one-to-one map, $\langle x_1, x_2 \rangle = \langle x'_1, x'_2 \rangle$ and $\alpha = \beta$, it follows $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$. Thus, $(f_1 \times f_2)$ is one-to-one.

Proposition 4.6. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two onto maps. If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product one- to-one map, then $(f_1 \times f_2)^{-1} = (f_1 \times f_2)^{-1}$.

 $\begin{array}{l} Proof. \mbox{ For each soft fuzzy point } (< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ in } Y_1 \times Y_2 \mbox{ and by the hypothesis, there exists a unique } < x_1, x_2 > \in X_1 \times X_2 \mbox{ such that } (f_1 \times f_2) < x_1, x_2 > = < y_1, y_2 >. \mbox{ It is enough to show that } (f_1 \times f_2)^{-1}(< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) = (< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}). \mbox{ Otherwise, let } (f_1 \times f_2)^{-1}(< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) = (< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\}) \mbox{ and } \alpha \neq \lambda. \mbox{ Then, } (f_1 \times f_2)(< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\}) = (f_1 \times f_2)((f_1 \times f_2)^{-1} (< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\})) = (f_1 \times f_2)(< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}) \mbox{ is a one-to-one map, } (f_1 \times f_2)(< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}) = (< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\}). \mbox{ But, } \lambda \neq \alpha. \mbox{ Thus, } (< x_1, x_2 >_{\alpha}, \{< x_1, x_2 >\}) = (< x_1, x_2 >_{\lambda}, \{< x_1, x_2 >\}). \mbox{ But, } \lambda \neq \alpha. \mbox{ Thus, } (f_1 \times f_2)^{-1}(< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ is uniquely the soft fuzzy point in } X_1 \times X_2 \mbox{ which takes the value } \alpha \mbox{ in } f^{-1} < y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ This implies that, } (f_1 \times f_2)^{-1}(< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) = (f_1 \times f_2)^{-1}(< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ Hence, } (f_1 \times f_2)^{-1}(< (x_1, x_2 >)) = (f_1 \times f_2)^{-1}(< (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ in } f^{-1} < y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ Hence, } (f_1 \times f_2)^{-1}(< (x_1, x_2 >)) = (f_1 \times f_2)^{-1}(< (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ in } f^{-1} < y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ Hence, } (f_1 \times f_2)^{-1}(< (x_1, x_2 >)) = (f_1 \times f_2)^{-1}(< (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}). \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha}, \{< y_1, y_2 >\}) \mbox{ In } f^{-1} < (x_1, y_2 >_{\alpha},$

Proposition 4.7. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ be a product map.

- (a) If $(f_1 \times f_2)$ is onto, then $(f_1 \times f_2)$ is also onto.
- (b) If $(f_1 \times f_2)$ is one-to-one, then $(f_1 \times f_2)$ is also one-to-one.

Proof. (a) For each $\langle y_1, y_2 \rangle \in Y_1 \times Y_2$, let $(\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\})$ be the soft fuzzy point in $Y_1 \times Y_2$ which takes the value 1 in $\langle y_1, y_2 \rangle$. By the hypothesis, 566

there exists a soft fuzzy point $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\})$ in $X_1 \times X_2$ such that $\overbrace{f_1 \times f_2}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\})$. Then, $f_1 \times f_2$ $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\})$ and $(f_1 \times f_2)^{-1} (\langle y_1, y_2 \rangle) \neq \phi$. Hence, $(f_1 \times f_2)$ is a onto map. (b) Let $\langle x_1, x_2 \rangle, \langle x'_1, x'_2 \rangle \in X_1 \times X_2$ with $(f_1 \times f_2) (\langle x_1, x_2 \rangle) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = ((f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \langle f_1 \times f_2)(\langle x_1, x_2 \rangle)))$, where, for $\lambda = 1$ $(f_1 \times f_2)(\langle x_1, x_2 \rangle)(\langle y_1, y_2 \rangle)$

$$= \begin{cases} \sup_{\substack{x,y \ge (f_1 \times f_2)^{-1}(\langle y_1, y_2 \ge) \\ 0 & \text{if } (f_1 \times f_2)^{-1}(\langle y_1, y_2 \ge) \neq \phi; \\ 0 & \text{otherwise.} \end{cases}$$

=
$$\begin{cases} 1 & \text{if } \langle x, y \ge \langle x_1, x_2 > \text{and } (f_1 \times f_2)^{-1}(\langle y_1, y_2 >) \neq \phi; \\ 0 & \text{otherwise.} \end{cases}$$

=
$$\begin{cases} 1 & \text{if } (f_1 \times f_2)(\langle x'_1, x'_2 >) = \langle y_1, y_2 >; \\ 0 & \text{otherwise.} \end{cases}$$

This implies that, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2) (\langle x'_1, x'_2 \rangle_1, \{\langle x'_1, x'_2 \rangle\})$. Since $(f_1 \times f_2)$ is a one-to-one map, $(\langle x'_1, x'_2 \rangle_1, \{\langle x'_1, x'_2 \rangle\}) = (\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\})$. This implies that, $\langle x_1, x_2 \rangle = \langle x'_1, x'_2 \rangle$. Thus, $(f_1 \times f_2)$ is a one-to-one map.

Definition 4.8. Let (X, τ) and (Y, σ) be any two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $G_{\delta} pre$ *irresolute*, if the inverse image of every G_{δ} pre open set in (Y, σ) is G_{δ} pre open in (X, τ) .

Proposition 4.9. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two product topological spaces. If $f_1 \times f_2 : (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is a G_{δ} pre irresolute map iff $f_1 \times f_2 : (X_1 \times X_2, \omega(T_1 \times T_2)) \to (Y_1 \times Y_2, \omega(S_1 \times S_2))$ is a soft fuzzy G_{δ} pre irresolute.

Proof. For each soft fuzzy G_{δ} pre open set (μ, M) in $(Y_1 \times Y_2, \omega(S_1 \times S_2))$, we have $\mu^{-1}((\alpha, 1])$ is a G_{δ} pre open set in $(S_1 \times S_2)$ for all $\alpha \in [0, 1]$ and by hypothesis $(f_1 \times f_2)^{-1}(\mu^{-1}(\alpha, 1])$ is a G_{δ} pre open set in $T_1 \times T_2$. Then, $(\mu \circ (f_1 \times f_2))^{-1}(\alpha, 1]$ is a G_{δ} pre open set in $T_1 \times T_2$, and also $(f_1 \times f_2)^{-1}(M) \subseteq X_1 \times X_2$ is a G_{δ} pre open set in $T_1 \times T_2$. Therefore, $((\mu \circ (f_1 \times f_2)), (f_1 \times f_2)^{-1}(M))$ is a soft fuzzy G_{δ} pre open set in $(X_1 \times X_2, \omega(T_1 \times T_2))$. Now,

$$\widetilde{(f_1 \times f_2)}^{-1}(\mu, M) = (f_1 \times f_2)^{-1}(\mu, M)$$

= $((f_1 \times f_2)^{-1}(\mu), (f_1 \times f_2)^{-1}(M))$
= $((\mu \circ (f_1 \times f_2)), (f_1 \times f_2)^{-1}(M))$

Thus, $(\widetilde{f_1 \times f_2})^{-1}(\mu, M)$ is a soft fuzzy G_{δ} pre open set in $(X_1 \times X_2, \omega(T_1 \times T_2))$. Hence, $(\widetilde{f_1 \times f_2})$ is a soft fuzzy G_{δ} pre irresolute function. Conversely, A is a G_{δ} pre open set in $(S_1 \times S_2)$ iff (χ_A, A) is a soft fuzzy G_{δ} pre open set in $((Y_1 \times Y_2), \omega(S_1 \times S_2))$. Now,

$$\widetilde{(f_1 \times f_2)}^{-1}(\chi_A, A) = (f_1 \times f_2)^{-1}(\chi_A, A)$$

= $((f_1 \times f_2)^{-1}(\chi_A), (f_1 \times f_2)^{-1}(A))$
= $(\chi_A \circ (f_1 \times f_2), (f_1 \times f_2)^{-1}(A))$
= $(\chi_{(f_1 \times f_2)^{-1}(A)}, (f_1 \times f_2)^{-1}(A))$

That is, $(f_1 \times f_2)^{-1}(\chi_A, A) = (\chi_{(f_1 \times f_2)^{-1}(A)}, (f_1 \times f_2)^{-1}(A))$ is the soft fuzzy G_δ pre open set in $(X_1 \times X_2, \omega(T_1 \times T_2))$. Hence, $(f_1 \times f_2)^{-1}(A)$ is a soft fuzzy G_δ pre open set in $T_1 \times T_2$. Therefore, $f_1 \times f_2$ is a soft fuzzy G_δ pre irresolute map. \Box

Definition 4.10. Let $(X_1 \times X_2, T_1 \times T_2), (Y_1 \times Y_2, S_1 \times S_2)$ be any two topological spaces. A surjective map $f : (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is said to be a $G_{\delta}pre$ quotient product map if the inverse image of every $G_{\delta}pre$ open set in $(Y_1 \times Y_2, S_1 \times S_2)$ is $G_{\delta}pre$ open in $(X_1 \times X_2, T_1 \times T_2)$.

Proposition 4.11. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two product topological spaces. Then, $f_1 \times f_2 : (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is a G_{δ} pre quotient product map iff $f_1 \times f_2 : (X_1 \times X_2, \omega(T_1 \times T_2)) \to (Y_1 \times Y_2, \omega(S_1 \times S_2))$ is also a soft fuzzy G_{δ} pre quotient product map.

Proof. A is a G_{δ} pre open in $(S_1 \times S_2)$ iff (χ_A, A) is a soft fuzzy G_{δ} pre open set in $((Y_1 \times Y_2), \omega(S_1 \times S_2))$. Now,

$$\begin{aligned} (f_1 \times f_2) \quad (\chi_A, A) &= (f_1 \times f_2)^{-1} (\chi_A, A) \\ &= ((f_1 \times f_2)^{-1} (\chi_A), (f_1 \times f_2)^{-1} (A)) \\ &= (\chi_A \circ (f_1 \times f_2), (f_1 \times f_2)^{-1} (A)) \\ &= (\chi_{(f_1 \times f_2)^{-1} (A)}, (f_1 \times f_2)^{-1} (A)) \end{aligned}$$

That is, $(f_1 \times f_2)^{-1}(\chi_A, A) = (\chi_{(f_1 \times f_2)^{-1}(A)}, (f_1 \times f_2)^{-1}(A))$ is the soft fuzzy G_δ pre open set in $(X_1 \times X_2, \omega(T_1 \times T_2))$. Hence, $(f_1 \times f_2)^{-1}(A)$ is a soft fuzzy G_δ pre open in $T_1 \times T_2$. Therefore, $f_1 \times f_2$ is a G_δ pre quotient product map.

Conversely, let (μ, M) be a soft fuzzy G_{δ} pre open set in $(Y_1 \times Y_2, \omega(S_1 \times S_2))$ iff $\mu^{-1}(\alpha, 1]$ is G_{δ} pre open in $S_1 \times S_2$ and $M \subseteq Y_1 \times Y_2$ is G_{δ} pre open in $S_1 \times S_2$, for all $\alpha \in [0, 1]$. By the hypothesis, $(f_1 \times f_2)^{-1}(\mu^{-1}(\alpha, 1]) \in T_1 \times T_2$ and $(f_1 \times f_2)^{-1}(M) \in T_1 \times T_2$ $(f_1 \times f_2)^{-1}(M) \subseteq X_1 \times X_2$ for each $\alpha \in [0, 1]$. That is, $((f_1 \times f_2)^{-1}(\mu), (f_1 \times f_2)^{-1}(M)) = (f_1 \times f_2)^{-1}(\mu, M)$ is a soft fuzzy G_{δ} pre open set in $(X_1 \times X_2, \omega(T_1 \times T_2))$. Hence, $f_1 \times f_2$ is also a soft fuzzy G_{δ} pre quotient product map.

Definition 4.12. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two topological spaces. $(X_1 \times X_2, T_1 \times T_2)$ is said to be G_{δ} pre homeomorphic to $(Y_1 \times Y_2, S_1 \times S_2)$, 568 if $f: (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is one to one, onto, f and f^{-1} is G_{δ} pre irresolute.

Definition 4.13. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two soft fuzzy topological spaces. $(X_1 \times X_2, T_1 \times T_2)$ is said to be soft fuzzy G_{δ} pre homeomorphic to $(Y_1 \times Y_2, S_1 \times S_2)$, if $f : (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2)$ is one to one, onto, f and f^{-1} is soft fuzzy G_{δ} pre irresolute.

Proposition 4.14. Let $(X_1 \times X_2, \omega(T_1 \times T_2))$ and $(Y_1 \times Y_2, \omega(S_1 \times S_2))$ be two weakly induced soft fuzzy product G_{δ} pre spaces, and $(f_1 \times f_2)$ be a soft fuzzy G_{δ} pre irresolute map from $(X_1 \times X_2, \omega(T_1 \times T_2))$ onto $(Y_1 \times Y_2, \omega(S_1 \times S_2))$. If there exists a soft fuzzy G_{δ} pre irresolute map $(g_1 \times g_2)$ from $(Y_1 \times Y_2, \omega(S_1 \times S_2))$ to $(X_1 \times X_2, \omega(T_1 \times T_2))$ such that $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$, then $(Y_1 \times Y_2, \omega(S_1 \times S_2))$ is soft fuzzy G_{δ} pre homeomorphic with $(X_1 \times X_2) \mid R$, where R is the equivalence relation.

Proof. Since $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$, then by using the above propositions, we have $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$. Then, the map $h_1 \times h_2 : (X_1 \times X_2) | R \to Y_1 \times Y_2$ induced by f is a soft fuzzy G_{δ} pre homeomorphism. Finally, by the above all propositions, $h_1 \times h_2$ is clearly a soft fuzzy G_{δ} pre homeomorphism. \Box

5. Compactification on $\mathcal{Q}(X_1 \times X_2)$

Definition 5.1. Let $R_{\langle x_1, x_2 \rangle}$ be an equivalence relation. Then,

$$\begin{split} X_1 \times X_2 \mid R_{} &= \{[], [] \mid < x_1,x_2>/R < z_1,z_2>, \\ &< y_1,y_2>R < z_1,z_2>, \forall < z_1,z_2> \in X_1 \times X_2 \} \end{split}$$

is a quotient set on $X_1 \times X_2$.

Definition 5.2. Let $X_1 \times X_2$ be a product space. Let $(X_1 \times X_2) | R$ be a quotient set on $(X_1 \times X_2)$ with R, an equivalence relation. Then, the collection of all quotient sets on $X_1 \times X_2$ is denoted by $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.3. Let $(X_1 \times X_2, st(T_1 \times T_2))$ be a soft fuzzy product G_{δ} pre space and A be a subset of $X_1 \times X_2$. If χ_A is a characteristic function of A in $X_1 \times X_2$, then $st(T_1 \times T_2)_A = \{(\lambda, N) \sqcap (\chi_A, A) : (\lambda, N) \in st(T_1 \times T_2)\}$

is called as a soft fuzzy product G_{δ} pre substructure. Now, the pair $(A, st(T_1 \times T_2)_A)$ is called as a soft fuzzy product G_{δ} pre subspace.

Let $(X_1 \times X_2, T_1 \times T_2)$ be a non compact soft fuzzy product G_{δ} pre space. Associated with each $(\mu, M) \in st(T_1 \times T_2)$, we define $(\mu, M)^* = (\mu^*, M^*) \in SF(\mathcal{Q}(X_1 \times X_2))$. For each $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$, $\mu^*(X_1 \times X_2 \mid R)$

$$= \begin{cases} \mu(< x_1, x_2 >) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2, \\ & \text{with } X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{< x_1, x_2 >}; \\ \bigvee_{[] \in X_1 \times X_2 \mid R} \mu(< x_1, x_2 >) & \text{otherwise.} \end{cases}$$
$$M^* = \begin{cases} \phi & \text{if } M = \phi; \\ \mathcal{Q}(X_1 \times X_2) & \text{if } M = X_1 \times X_2; \\ X_1 \times X_2 \mid R_{< x_1, x_2 >} & \text{if } < x_1, x_2 > \in M \subset X_1 \times X_2. \end{cases}$$
$$569$$

Proposition 5.4. Under the previous conditions the following identities hold. (i) $(0, \phi)^* = (0, \phi)$.

(ii) $(1, X_1 \times X_2)^* = (1, \mathcal{Q}(X_1 \times X_2)).$

Proposition 5.5. Under the previous conditions the collection

$$\mathcal{B}^* = \{ (\mu, M)^* : (\mu, M) \in T_1 \times T_2 \}$$

is a base for some soft fuzzy product generalized topology on $\mathcal{Q}(X_1 \times X_2)$.

 $\begin{aligned} Proof. (i) \ \text{For } (\mu_i, M_i) \in T_1 \times T_2 \ \text{for all } i \in I \ \text{and } X_1 \times X_2 \mid R \in Q(X_1 \times X_2), \text{ we} \\ \text{have } (\bigsqcup_{i \in I} (\mu_i, M_i))^* &= (\bigvee_{i \in I} (\mu_i), \bigcup_{i \in I} (M_i))^* = (\bigvee_{i \in I} (\mu_i)^*, \bigcup_{i \in I} (M_i)^*) \\ (\bigvee_{i \in I} (\mu_i))^* (X_1 \times X_2 \mid R) \end{aligned} \\ = \begin{cases} \bigvee_{i \in I} (\mu_i) (< x_1, x_2 >) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \text{ with}, \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{<x_1, x_2>}; \\ \bigvee_{[<x_1, x_2>] \in X_1 \times X_2 \mid R} \left(\bigvee_{i \in I} (\mu_i) (< x_1, x_2 >) \right) & \text{otherwise.} \end{cases} \\ = \begin{cases} \bigvee_{i \in I} (\mu_i (< x_1, x_2 >)) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \text{ with}, \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{<x_1, x_2>}; \\ \bigvee_{i \in I} (\mu_i (< x_1, x_2 >)) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \text{ with}, \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{<x_1, x_2>}; \end{cases} \\ \bigvee_{i \in I} \left(\bigvee_{[<x_1, x_2>] \in X_1 \times X_2 \mid R} (x_1, x_2 >) \right), & \text{otherwise.} \end{cases} \\ = \bigvee_{i \in I} (\mu_i^* (X_1 \times X_2 \mid R)). \end{cases} \\ = \bigvee_{i \in I} (\mu_i^* (X_1 \times X_2 \mid R)). \end{cases}$

$$(\bigcup_{i \in I} M_i)^* = \begin{cases} \varphi & \text{if } \forall_{i \in I} M_i = \varphi, \\ \mathcal{Q}(X_1 \times X_2) & \text{if } \bigvee_{i \in I} M_i = X_1 \times X_2; \\ X_1 \times X_2 \mid R_{} & \text{if } < x_1, x_2 > \in \bigvee_{i \in I} M_i \subset X_1 \times X_2. \end{cases}$$

Then for some i

$$(\bigcup_{i\in I} M_i)^* = \begin{cases} \phi & \text{if } M_i = \phi;\\ \mathcal{Q}(X_1 \times X_2) & \text{if } M_i = X_1 \times X_2;\\ X_1 \times X_2 \mid R_{} & \text{if } < x_1, x_2 > \in M_i \subset X_1 \times X_2. \end{cases}$$
$$(\bigcup_{i\in I} M_i)^* = \bigcup_i M_i^*$$

Therefore $(\bigsqcup_{i \in I} (\mu_i, M_i))^* = \bigsqcup_{i \in I} ((\mu_i, M_i)^*)$. From the above Proposition \mathcal{B}^* forms a base for $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.6. The soft fuzzy generalized topology generated by the base \mathcal{B}^* is denoted by $(T_1 \times T_2)^* = T_1^* \times T_2^*$.

Definition 5.7. A soft fuzzy product generalized topology on a non-empty set $\mathcal{Q}(X_1 \times X_2)$ is a family $(T_1 \times T_2)^*$ of soft fuzzy sets in $\mathcal{Q}(X_1 \times X_2)$ satisfying the following axioms:

(1) $(0, \phi), (1, \mathcal{Q}(X_1 \times X_2)) \in (T_1 \times T_2)^*.$

(2) For any family of soft fuzzy sets $(\lambda_j, N_j) \in (T_1 \times T_2)^*, j \in J, \Rightarrow \sqcup_{j \in J} (\lambda_j, N_j) \in (T_1 \times T_2)^*$. Then, the pair $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is called as a *soft fuzzy product generalized topological space*, (in short, *SFPGTS*)

Any soft fuzzy set in $(T_1 \times T_2)^*$ is said to be a soft fuzzy product $(T_1 \times T_2)^*$ open set in $\mathcal{Q}(X_1 \times X_2)$.

The complement of SFGOS in a SFPGTS $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is called as a soft fuzzy product $(T_1 \times T_2)^*$ closed set in $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.8. Let $\mathfrak{q}: X_1 \times X_2 \to Q(X_1 \times X_2)$ defined by

$$\mathfrak{q}(\langle x_1, x_2 \rangle) = X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}$$

for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$.

Proposition 5.9. Under the previous conditions, $q(X_1 \times X_2)$ is soft fuzzy dense in $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$, that is

$$cl_{(T_1 \times T_2)^*}(\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2)) = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2)).$$

Proof. Given $(\mu, M) \in SF(X_1 \times X_2)$, we have $\mathfrak{q}(\mu, M) \in SF(\mathcal{Q}(X_1 \times X_2))$. Then for each $(\mu, M) \in SF(X_1 \times X_2)$. Now $\mathfrak{q}(\mu, M) = (\mathfrak{q}(\mu), \mathfrak{q}(M))$ $\mathfrak{q}(\mu)(X_1 \times X_2 \mid R)$

$$= \begin{cases} \sup_{\{x_1, x_2 > \in \mathfrak{q}^{-1}(X_1 \times X_2 | R) \neq (< x_1, x_2 >) & \text{if } \mathfrak{q}^{-1}(X_1 \times X_2 | R) \neq \phi; \\ 0, & \text{if } \mathfrak{q}^{-1}(X_1 \times X_2 | R) = \phi. \end{cases}$$
$$= \begin{cases} \mu(< x_1, x_2 >) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \text{ such that,} \\ X_1 \times X_2 | R = X_1 \times X_2 | R_{< x_1, x_2 >}; \\ 0, & \text{if } \forall < x_1, x_2 > \in X_1 \times X_2, \\ X_1 \times X_2 | R \neq X_1 \times X_2 | R_{< x_1, x_2 >}. \end{cases}$$

$$\begin{split} \mathfrak{q}(M) &= \{\mathfrak{q}(< x_1, x_2 >), \forall < x_1, x_2 > \in M\}.\\ \text{Now } cl_{(T_1 \times T_2)^*}(\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2)) \end{split}$$

$$= \begin{cases} cl_{(T_1 \times T_2)^*}(1_{\mathcal{Q}(X_1, X_2)}, \mathcal{Q}(X_1 \times X_2)) & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \text{ such that,} \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{}; \\ cl_{(T_1 \times T_2)^*}(0, \phi) & \text{if } \forall < x_1, x_2 > \in X_1 \times X_2, \\ X_1 \times X_2 \mid R \neq X_1 \times X_2 \mid R_{}. \end{cases}$$

Let $(\lambda, N) = \bigsqcup_{j \in J} (\mu_j, M_j)^* = cl_{(T_1 \times T_2)^*}(\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2))$. Since $\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2) \sqsubseteq (\lambda, N)$, $\mathfrak{q}(1_{X_1 \times X_2})(X_1 \times X_2 \mid R_{<x_1, x_2>}) \leq \lambda(X_1 \times X_2 \mid R_{<x_1, x_2>})$ and $\mathfrak{q}(X_1 \times X_2) \subseteq N$ for each $< x_1, x_2 > \in X_1 \times X_2$. That is $1 \leq \lambda(X_1 \times X_2 \mid R_{<x_1, x_2>})$, $\mathfrak{q}(X_1 \times X_2) \subseteq N$. Thus for each $< x_1, x_2 > \in X_1 \times X_2$, $\lambda(X_1 \times X_2 \mid R_{<x_1, x_2>}) = 1$, $\mathfrak{q}(X_1 \times X_2) \subseteq N$. For each $< x_1, x_2 > \in X_1 \times X_2$ and $j \in J$, $\mu_j^*(X_1 \times X_2 \mid R_{<x_1, x_2>}) = 1$, $\mathcal{Q}(X_1 \times X_2) \supseteq M_j^* \supseteq \mathfrak{q}(X_1 \times X_2)$. $\bigvee_{j \in J} \mu_j^*(X_1 \times X_2 \mid R_{<x_1, x_2>}) = 1$, $\bigcup_{j \in J} M_j^* = \mathcal{Q}(X_1 \times X_2)$. This implies $\mu_j(< x_1, x_2 >) = 1, M_j = X_1 \times X_2$. Thus $(\mu_j, M_j) = (1_{X_1 \times X_2}, X_1 \times X_2)$. Therefore $(\lambda, N) = \bigsqcup_{j \in J} (1_{X_1 \times X_2}, X_1 \times X_2)^* = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2))$. Hence $\mathfrak{q}(X_1 \times X_2)$ is soft fuzzy dense in $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$.

Definition 5.10. Let $(X_1 \times X_2, st(T_1 \times T_2))$ and $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ be any soft fuzzy product G_{δ} pre space and soft fuzzy product generalized topological space respectively. A function $f: (X_1 \times X_2, st(T_1 \times T_2)) \to (\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is said to be soft fuzzy * continuous, if for each $(\mu^*, M^*) \in (T_1 \times T_2)^*, f^{-1}(\mu^*, M^*) \in$ $st(T_1 \times T_2).$ **Definition 5.11.** Let $(X_1 \times X_2, st(T_1 \times T_2))$ and $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ be any soft fuzzy product G_{δ} pre space and soft fuzzy product generalized topological space respectively. A function $f: (X_1 \times X_2, st(T_1 \times T_2)) \to (\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is said to be soft fuzzy * open, if for each $(\mu, M) \in st(T_1 \times T_2), f(\mu, M) \in (T_1 \times T_2)^*$.

Proposition 5.12. The function \mathfrak{q} is a soft fuzzy embedding of $X_1 \times X_2$ into $\mathcal{Q}(X_1 \times X_2)$ X_2).

Proof. (i) q is a soft fuzzy one to one function:

If $\langle x_1, x_2 \rangle \neq \langle y_1, y_2 \rangle$, we have $R_{\langle x_1, x_2 \rangle} \neq R_{\langle y_1, y_2 \rangle}$. Let $(\langle x_1, x_2 \rangle \rangle_{\alpha}, \{\langle x_1, x_2 \rangle \}) \neq (\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle \})$ be two soft fuzzy points.

(a) If $\langle x_1, x_2 \rangle \neq \langle y_1, y_2 \rangle$ for each $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$. we have

 $\mathfrak{q}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle_{\alpha}}, \{X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}\}).$

Similarly $\mathfrak{q}(\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle\})$ and it is clear that

$$q(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) \neq \mathfrak{q}(\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle\})$$

(b) If $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$, then $\alpha \neq \beta$ and therefore

 $q(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) \neq q(\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle\})$. Hence q is soft fuzzy one to one.

(ii) q is soft fuzzy * continuous:

For each $(\mu, M)^* \in (T_1 \times T_2)^*$ and $\langle x_1, x_2 \rangle \in X_1 \times X_2$, we have

$$\begin{split} \mathbf{q}^{-1}(\mu, M)^* &= \mathbf{q}^{-1}(\mu^*, M^*) \\ &= (\mathbf{q}^{-1}(\mu^*), \mathbf{q}^{-1}(M^*)) \\ &= (\mu^* \circ \mathbf{q}, \mathbf{q}^{-1}(M^*)) \end{split}$$

where

$$\mu^* \circ \mathfrak{q}(\langle x_1, x_2 \rangle) = \mu^*(\mathfrak{q}(\langle x_1, x_2 \rangle))$$

= $\mu^*(X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle})$
= $\mu(\langle x_1, x_2 \rangle)$

and $\mathfrak{q}^{-1}(M^*) = M$. Thus $\mathfrak{q}^{-1}(\mu, M)^* = (\mu, M) \in st(T_1 \times T_2)$. Hence \mathfrak{q} is soft fuzzy * continuous. c ... O(V)

(iii) **q** is a soft fuzzy * open function on
$$\mathcal{Q}(X_1 \times X_2)$$
:
For each $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$ and $(\mu, M) \in T_1 \times T_2$.
 $(\mu^*, M^*) \sqcap (\chi_{\mathfrak{q}(X_1 \times X_2)}, {\mathfrak{q}(X_1 \times X_2)}) = (\mu^* \land \chi_{\mathfrak{q}(X_1 \times X_2)}, M^* \cap {\mathfrak{q}(X_1 \times X_2)})$
$$= (\mathfrak{q}(\mu), \mathfrak{q}(M))$$
$$= \mathfrak{q}(\mu, M) \in (T_1 \times T_2)^*$$

Thus \mathfrak{q} is a soft fuzzy \ast open function. Hence \mathfrak{q} is a soft fuzzy embedding of $X_1 \times X_2$ into $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.13. A soft fuzzy product generalized topological space is said to be a soft fuzzy product generalized compact space if whenever $\sqcup_{i \in I}(\lambda_i, M_i) = (1, \mathcal{Q}(X_1 \times \mathcal{Q}))$ (X_2)), each (λ_i, M_i) is soft fuzzy product $(T_1 \times T_2)^*$ open, $i \in I$, there is a finite subset J of I with $\sqcup_{i \in J}(\lambda_i, M_i) = (1, \mathcal{Q}(X_1 \times X_2)).$

Proposition 5.14. The soft fuzzy product generalized topological space $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is soft fuzzy product generalized compact space.

Proof. Let

$$\mathfrak{F} = \{ (\lambda_i^*, N_i^*) \in (T_1 \times T_2)^* : (\lambda_i, N_i) \in st(T_1 \times T_2) fori \in J \}$$

be a soft fuzzy product $(T_1 \times T_2)^*$ open cover of $\mathcal{Q}(X_1 \times X_2)$. That is

$$\sqcup_{i \in J}(\lambda_i^*, N_i^*) = (1, \mathcal{Q}(X_1 \times X_2)).$$

By definition of (λ_i^*, N_i^*) , $\sqcup_{i \in F}(\lambda_i^*, N_i^*) \sqsubseteq (1, \mathcal{Q}(X_1 \times X_2))$ for some finite subfamily F of J. Thus \mathfrak{F} has a soft fuzzy finite subcover. Hence $(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$ is soft fuzzy product generalized compact space.

Proposition 5.15. The soft fuzzy product generalized topological space

$$(\mathcal{Q}(X_1 \times X_2), (T_1 \times T_2)^*)$$

is a compactification of a soft fuzzy product G_{δ} pre space.

Proof. Proof of the proposition is obtained from Propositions 5.4, 5.5, 5.9, 5.12 and 5.14. $\hfill \Box$

References

- K. K. Azad, Fuzzy hausdorff spaces and fuzzy perfect mappings, J. Anal. Appl. 82 (1981) 297–305.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [3] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (3) (2001) 589-602.
- [4] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.
- [5] M. Sugeno, An introductory Survey of fuzzy control, Inform. Sci. 36 (1985) 59–83.
- [6] Ismail U. Tiryaki, Fuzzy sets over the poset I, Hacet. J. Math. Stat. 37(2) (2008) 143–166.
- [7] V. Visalakshi, M. K. Uma and E. Roja, On soft fuzzy G_{δ} pre-continuity in soft fuzzy topological Space, Ital. J. Pure Appl. Math. accepted for Vol. No. 31.
- [8] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965) 338–353.

V. VISALAKSHI (visalkumar_cbe@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

<u>M. K. UMA</u> (mathematics.org@gmail.com)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

E. ROJA (ar.udhay@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.