Annals of Fuzzy Mathematics and Informatics Volume 6, No. 3, (November 2013), pp. 545–558 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function in soft fuzzy quasi uniform topological space

V. VISALAKSHI, M. K. UMA, E. ROJA

Received 22 September 2012; Accepted 24 March 2013

ABSTRACT. In this paper the concept of soft fuzzy quasi uniform space and the topology $T_{\mathcal{U}}$ generated by the uniformity is introduced. Soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set, soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous, somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous, soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open, somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open, soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous and somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous functions are discussed and the characterizations are established. Interrelations among them are discussed with counter examples.

2010 AMS Classification: 54A40, 03E72

Keywords: Soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set, Soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set, Soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function, Soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function, Soft fuzzy quasi uniform $T_{\mathcal{U}}$ dense set, Soft fuzzy quasi uniform G_{δ} pre $T_{\mathcal{U}}$ dense set, Somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function; Somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function, Soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function, Somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function.

Corresponding Author: V. Visalakshi (visalkumar_cbe@yahoo.co.in)

1. INTRODUCTION

Zadeh introduced the fundamental concepts of fuzzy sets in his classical paper [8]. Fuzzy sets have applications in many fields such as information [5] and control [6]. In mathematics, topology provided the most natural framework for the concepts of fuzzy sets to flourish. Chang [3] introduced and developed the concept of fuzzy topological spaces. The concept of soft fuzzy topological space is introduced by Ismail U.Tiryaki [7]. G.Balasubramanian [1] introduced the concept of fuzzy G_{δ} set. The concept of fuzzy pre open set was introduced by A.S.Bin Shahana [2]. The concept of a fuzzy quasi uniformity which was introduced by Hutton [4].

In this paper soft fuzzy quasi uniform space and the topology $T_{\mathcal{U}}$ generated by the soft fuzzy quasi uniformity is introduced. Soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set, soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous, somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous, soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open, somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open, soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous and somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous functions are discussed and their characterizations are established. Interrelations are discussed with counter examples wherever necessary.

2. Preliminaries

Definition 2.1 ([1]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy G_{δ} set if $\lambda = \bigwedge_{i=1}^{\infty} \mu_i$, where each μ_i is fuzzy open set. The complement of a fuzzy G_{δ} set is fuzzy F_{σ} .

Definition 2.2 ([2]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy pre open set if $\lambda \leq int(cl(\lambda))$. The complement of a pre open set is pre closed.

Definition 2.3 ([7]). Let X be a set, μ be a fuzzy subset of X and M \subseteq X. Then, the pair (μ, M) will be called a soft fuzzy subset of X. The set of all soft fuzzy subsets of X will be denoted by SF(X).

Definition 2.4 ([7]). The relation \sqsubseteq on SF(X) is given by $(\mu, M) \sqsubseteq (\gamma, N) \Leftrightarrow (\mu(x) < \gamma(x)) or(\mu(x) = \gamma(x) and x \notin M/N), \forall x \in X and for all <math>(\mu, M), (\gamma, N) \in SF(X)$.

Proposition 2.5 ([7]). If $(\mu_j, M_j)_{j \in J} \in SF(X)$, then the family $\{(\mu_j, M_j) | j \in J\}$ has a meet, that is greatest lower bound, in $(SF(X), \sqsubseteq)$, denoted by

 $\Box_{j\in J}(\mu_j, M_j) \text{ such that } \Box_{j\in J}(\mu_j, M_j) = (\mu, M)$ where $\mu(x) = \bigwedge_{j\in J} \mu_j(x), \forall x \in X \text{ and } M = \bigcap_{j\in J} M_j.$

Proposition 2.6 ([7]). If $(\mu_j, M_j)_{j \in J} \in SF(X)$, then the family $\{(\mu_j, M_j) | j \in J\}$ has a join, that is least upper bound, in $(SF(X), \sqsubseteq)$, denoted by

 $\sqcup_{j\in J}(\mu_j, M_j) \text{ such that } \sqcup_{j\in J}(\mu_j, M_j) = (\mu, M)$

where $\mu(x) = \bigvee_{j \in J} \mu_j(x), \forall x \in X \text{ and } M = \bigcup_{j \in J} M_j.$

Definition 2.7 ([7]). Let X be a non-empty set and the soft fuzzy sets A and B be in the form,

$$\begin{aligned} A &= \{(\mu, M)/\mu(x) \in I^X, \forall x \in X, M \subseteq X\} \\ B &= \{(\lambda, N)/\lambda(x) \in I^X, \forall x \in X, N \subseteq X\} \end{aligned}$$

Then,

 $\begin{array}{l} (1) \ A \sqsubseteq B \Leftrightarrow \mu(x) \leq \lambda(x), \forall x \in X, M \subseteq N. \\ (2) \ A = B \Leftrightarrow \mu(x) = \lambda(x), \forall x \in X, M = N. \\ (3) \ A' \Leftrightarrow 1 - \mu(x), \forall x \in X, X \mid M. \\ (4) \ A \sqcap B \Leftrightarrow \mu(x) \land \lambda(x), \forall x \in X, M \cap N. \\ (5) \ A \sqcup B \Leftrightarrow \mu(x) \lor \lambda(x), \forall x \in X, M \cup N. \end{array}$

Definition 2.8 ([7]). $(0, \phi) = \{(\lambda, N) | \lambda = 0, N = \phi\}$ $(1, X) = \{(\lambda, N) | \lambda = 1, N = X\}$

Definition 2.9 ([7]). For $(\mu, M) \in SF(X)$ the soft fuzzy set $(\mu, M)' = (1 - \mu, X|M)$ is called the complement of (μ, M) .

Definition 2.10 ([7]). A subset $T \subseteq SF(X)$ is called an SF-topology on X if

(1) $(0, \phi)$ and $(1, X) \in T$.

(2) $(\mu_j, M_j) \in T, j = 1, 2, 3, ... n \Rightarrow \sqcap_{j=1}^n (\mu_j, M_j) \in T.$ (3) $(\mu_j, M_j), j \in J \Rightarrow \sqcup_{j \in J} (\mu_j, M_j) \in T.$

the elements of T are called soft fuzzy open, and those of $T' = \{(\mu, M)/(\mu, M)' \in T\}$ soft fuzzy closed.

If T is a SF-topology on X we call the pair (X,T) an SF-topological space(in short, SFTS).

3. Soft fuzzy quasi uniform topological space

Let D denote the family of all functions $f: SF(X) \to SF(X)$ with the following properties

(1) $f(0,\phi) = (0,\phi).$

(2) $(\mu, M) \sqsubseteq f(\mu, M)$, for every $(\mu, M) \in SF(X)$.

(3) $f(\sqcup_i(\mu_i, M_i)) = \sqcup_i f(\mu_i, M_i)$, for each family $\{(\mu_i, M_i) : i \in J\} \subset SF(X)$.

Definition 3.1. A soft fuzzy quasi uniformity on X is a subcollection $\mathcal{U} \subset D$ satisfying the following axioms

(i) If $f \in \mathcal{U}$, $f \sqsubseteq g$ and $g \in D$, then $g \in \mathcal{U}$.

(ii) If $f_1, f_2 \in \mathcal{U}$, then there exists $g \in \mathcal{U}$ such that $g \sqsubseteq f_1 \sqcap f_2$.

(iii) For every $f \in \mathcal{U}$ there exists $g \in \mathcal{U}$ such that $g \circ g \sqsubseteq f$.

The pair (X, \mathcal{U}) is called soft fuzzy quasi uniform space.

Definition 3.2. Let (X, \mathcal{U}) be a soft quasi uniform space. The operator Int : SF(X) \rightarrow SF(X) defined by

 $Int(\mu, M) = \sqcup \{(\lambda, N) \in SF(X) : f(\lambda, N) \sqsubset (\mu, M) for some f \in \mathcal{U} \}.$

Definition 3.3. Let (X, \mathcal{U}) be a soft fuzzy quasi uniform space. Then $T_{\mathcal{U}} =$ $\{(\mu, M) \in SF(X) : Int(\mu, M) = (\mu, M)\}$ be the soft fuzzy topology generated by \mathcal{U} . The pair $(X, T_{\mathcal{U}})$ is called soft fuzzy quasi uniform topological space. The members of $T_{\mathcal{U}}$ are called soft fuzzy $T_{\mathcal{U}}$ open set. The complement of a soft fuzzy $T_{\mathcal{U}}$ open set is soft fuzzy $T_{\mathcal{U}}$ closed.

Definition 3.4. Let $(X, T_{\mathcal{U}})$ be a soft fuzzy quasi uniform topological space. Then the interior of a soft fuzzy set (λ, M) in $(X, T_{\mathcal{U}})$ is defined as follows

 $Int_{T_{\mathcal{U}}}(\lambda, M) = \sqcup \{(\mu, N) : (\mu, N) \sqsubseteq (\lambda, M) \text{ and } (\mu, N) \text{ is soft fuzzy } T_{\mathcal{U}} \text{ open in}$ $(X, T_{\mathcal{U}})$

The closure of a soft fuzzy set (μ, M) in $(X, T_{\mathcal{U}})$ is defined as follows

 $Cl_{T_{\mathcal{U}}}(\mu, M) = \sqcap \{(\lambda, N) : (\mu, M) \sqsubseteq (\lambda, N) \text{ and } (\lambda, N) \text{ is soft fuzzy } T_{\mathcal{U}} \text{ closed in}$ $(X, T_{\mathcal{U}})\}.$

Definition 3.5. $(X, T_{\mathcal{U}})$ denote the soft fuzzy quasi uniform topological space.

(i) A soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ is said to be soft fuzzy G_{δ} $T_{\mathcal{U}}$ open if $(\lambda, N) = \prod_{i=1}^{\infty} (\lambda_i, N_i)$ where each (λ_i, N_i) is soft fuzzy $T_{\mathcal{U}}$ open sets. The complement of soft fuzzy G_{δ} $T_{\mathcal{U}}$ open is soft fuzzy F_{σ} $T_{\mathcal{U}}$ closed set.

(ii) A soft fuzzy set (λ, M) in $(X, T_{\mathcal{U}})$ is said to be soft fuzzy pre $T_{\mathcal{U}}$ open set if $(\lambda, M) \sqsubseteq Int_{T_{\mathcal{U}}}(Cl_{T_{\mathcal{U}}}(\lambda, M))$. The complement of soft fuzzy pre $T_{\mathcal{U}}$ open is soft fuzzy pre $T_{\mathcal{U}}$ closed set.

(iii) A soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ is said to be soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$ where (μ, M) is soft fuzzy G_{δ} $T_{\mathcal{U}}$ open set and (γ, L) is soft fuzzy pre $T_{\mathcal{U}}$ open set. The complement of soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set is soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set.

(iv) For any fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ the soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ int is defined as follows

 $G_{\delta}preint_{T_{\mathcal{U}}}(\lambda, N) = \sqcup \{(\mu, M)/(\mu, M) \sqsubseteq (\lambda, N) \text{ and } (\mu, M) \text{ is soft fuzzy } G_{\delta} \text{ pre } T_{\mathcal{U}} \text{ open set in } (X, T_{\mathcal{U}}) \}.$

(v) For any fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ the soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ cl is defined as follows

 $F_{\sigma}precl_{T_{\mathcal{U}}}(\lambda, N) = \sqcap \{(\mu, M)/(\mu, M) \supseteq (\lambda, N) \text{ and } (\mu, M) \text{ is soft fuzzy } F_{\sigma} \text{ pre } T_{\mathcal{U}} \text{ closed set in } (X, T_{\mathcal{U}})\}.$

Proposition 3.6. For any soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ the following hold

(i) $G_{\delta} preint_{T_{\mathcal{U}}}((1,X)-(\lambda,N)) = (1,X) - F_{\sigma} precl_{T_{\mathcal{U}}}(\lambda,N).$

(ii) $F_{\sigma}precl_{T_{\mathcal{U}}}((1,X)-(\lambda,N)) = (1,X) - G_{\delta}preint_{T_{\mathcal{U}}}(\lambda,N).$

4. Somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function

Definition 4.1. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. A function $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ is soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous if for each soft fuzzy $S_{\mathcal{V}}$ open set (λ, N) in $(Y, S_{\mathcal{V}})$, the inverse image $f^{-1}(\lambda, N)$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set in $(X, T_{\mathcal{U}})$.

Definition 4.2. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. A function $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous if (λ, N) is soft fuzzy $S_{\mathcal{V}}$ open set and $f^{-1}(\lambda, N) \neq (0, \phi)$ then there exists a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set (μ, M) such that $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f^{-1}(\lambda, N)$.

Definition 4.3. A soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ is called soft fuzzy $T_{\mathcal{U}}$ dense if there exists no soft fuzzy $T_{\mathcal{U}}$ closed set (μ, M) such that $(\lambda, N) \sqsubset (\mu, M) \sqsubset (1, X)$.

Definition 4.4. A soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ is called soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense if there exists no soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set (μ, M) such that $(\lambda, N) \sqsubset (\mu, M) \sqsubset (1, X)$.

Proposition 4.5. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be a bijective function then the following are equivalent:

(i) f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function.

(ii) If (λ, N) is soft fuzzy $S_{\mathcal{V}}$ closed set such that $f^{-1}(\lambda, N) \neq (1, X)$, then there exists a proper soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set (μ, M) such that $(\mu, M) \sqsupset f^{-1}(\lambda, N)$.

(iii) If (λ, N) is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$ then $f(\lambda, N)$ is a soft fuzzy $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$.

Proof. (i) \Rightarrow (ii) Suppose that f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous and (λ, N) is soft fuzzy $S_{\mathcal{V}}$ closed set such that $f^{-1}(\lambda, N) \neq (1, X)$. Therefore clearly $(1, Y) - (\lambda, N)$ is soft fuzzy $S_{\mathcal{V}}$ open set and $f^{-1}[(1, Y) - (\lambda, N)] = (1, X) - f^{-1}(\lambda, N) \neq (0, \phi)$. From the hypothesis, there exists a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set (μ, M) such that $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f^{-1}((1, Y) - (\lambda, N))$. Therefore $(1, X) - (\mu, M) \neq (1, X)$ is soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set. Now, $(1, X) - (\mu, M) \sqsupset$ $(1, X) - f^{-1}((1, Y) - (\lambda, N)) = f^{-1}(\lambda, N)$.

(ii) \Rightarrow (iii) Let (λ, N) be a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$. Suppose that $f(\lambda, N)$ is not a soft fuzzy $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$. Then there exists soft fuzzy $S_{\mathcal{V}}$ closed set (μ, M) such that $f(\lambda, N) \sqsubset (\mu, M) \sqsubset (1, Y)$. Since $(\mu, M) \sqsubset (1, Y)$, therefore $f^{-1}(f(\lambda, N)) \sqsubset f^{-1}(1, Y) = (1, X)$. That is $f^{-1}(\mu, M) \neq (1, X)$. By (ii), there exists a proper soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set $(\delta, L) \neq (1, X)$ such that $(\delta, L) \sqsupset f^{-1}(\mu, M) \neq (1, X)$. But $(\delta, L) \sqsupset f^{-1}(\mu, M) \sqsupset f^{-1}(f(\lambda, N)) = (\lambda, N)$. That is there exists a proper soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set (δ, L) such that $(\lambda, N) \sqsubset (\delta, L) \neq (1, X)$. Which is a contradiction. Therefore $f(\lambda, N)$ soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$.

(iii) \Rightarrow (i) Suppose that (λ, N) is a soft fuzzy $S_{\mathcal{V}}$ open set and $f^{-1}(\lambda, N) \neq (0, \phi)$. Which implies $(\lambda, N) \neq (0, \phi)$. It must be shown that G_{δ} pre $int_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \neq (0, \phi)$. On the contrary assume that G_{δ} pre $int_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) = (0, \phi)$. Then, $F_{\sigma}precl_{T_{\mathcal{U}}}[(1, X) - f^{-1}(\lambda, N)] = (1, X) - G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) = (1, X) - (0, \phi)$ = (1, X). Which implies $(1, X) - f^{-1}(\lambda, N)$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$. By hypothesis, $f[(1, X) - f^{-1}(\lambda, N)]$ is a soft fuzzy $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$. But $f((1, X) - f^{-1}(\lambda, N)) = f(f^{-1}((1, Y) - (\lambda, N))) = (1, Y) - (\lambda, N)$. Since $(1, Y) - (\lambda, N)$ is a soft fuzzy $S_{\mathcal{V}}$ closed set and $f((1, X) - f^{-1}(\lambda, N)) = (1, Y) - (\lambda, N)$. From hypothesis, $Cl_{S_{\mathcal{V}}}[f((1, X) - f^{-1}(\lambda, N))] = (1, Y)$. Therefore $(1, Y) - (\lambda, N)$. Which implies $(\lambda, N) = (0, \phi)$. Which is contradiction. Hence $G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \neq$ $(0, \phi)$. Thus f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous. \Box

Proposition 4.6. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function. Let $A \subseteq X$ such that $(1_A, A) \sqcap (\mu, M) \neq (0, \phi)$, for all soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set. Let $T_{\mathcal{U}} \mid A$ be the induced soft fuzzy quasi uniform topological space on A. Then $f \mid A : (A, T_{\mathcal{U}} \mid A) \to (Y, S_{\mathcal{V}})$ is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous.

Proof. Let (λ, N) be a soft fuzzy $S_{\mathcal{V}}$ open set such that $f^{-1}(\lambda, N) \neq (0, \phi)$. Since f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous, there exists a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f^{-1}(\lambda, N)$. Now clearly $(\mu, M) \mid A$ is soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set $(\mu, M) \mid A \neq (0, \phi)$.

Also,
$$(f \mid A)^{-1}(\lambda, N) = (\lambda \circ (f \mid A), (f \mid A)^{-1}(N))$$

$$= (\lambda(f \mid A), (f \mid A)^{-1}(N))$$

$$= (\lambda(f), f^{-1}(N))$$

$$= f^{-1}(\lambda, N)$$
Hence $f^{-1}(\lambda, N) \neq (0, \phi)$ and $f^{-1}(\lambda, N) \supseteq (\mu, M) \supseteq (\mu, M) \mid A.$

The following example shows that the above proposition is invalid if the hypothesis fails.

Example 4.7. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions $f_1, f_2 : SF(X) \to SF(X)$ is defined as follows

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi);\\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1);\\ (\lambda_2, M_2) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_2, M_2);\\ (\lambda_3, M_3) & (0, \phi) \neq (\lambda_1, M_1) \sqsubseteq (\lambda_3, M_3) or(0, \phi) \neq (\lambda_2, M_2) \sqsubseteq (\lambda_3, M_3);\\ (1, X) & \text{otherwise.} \end{cases}$$

where (λ_1, M_1) , (λ_2, M_2) , (λ_3, M_3) are defined as follows $\lambda_1(a) = 1$, $\lambda_1(b) = 0$, $\lambda_1(c) = 0$, $M_1 = \{c\}$; $\lambda_2(a) = 0$, $\lambda_2(b) = 0$, $\lambda_2(c) = 1$, $M_2 = \{c\}$, $\lambda_3(a) = 1$, $\lambda_3(b) = 0$, $\lambda_3(c) = 1$, $M_3 = \{c\} \mathcal{U}$ is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \rightarrow SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$
$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\gamma, L) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma, L); \end{cases}$$

$$(1, X), \quad (0, \varphi) \neq (X, M) \subseteq (1, X), \quad \text{otherwise.}$$

where (γ, L) is defined as follows $\gamma(p) = 0, \gamma(q) = 1, \gamma(r) = 1, L = \{p, r\}$. \mathcal{V} is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma, L)\}$ is a soft fuzzy quasi uniform topological space. Let $f: (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous. Let $A = \{a, b\}$. Since $\{\chi_A, A\} \sqcap (\lambda_2, M_2) = (0, \phi), A$ does not satisfy the hypothesis of the above property. Consider $f \mid A : (A, T_{\mathcal{U}} \mid A) \to (Y, S_{\mathcal{V}})$ defined as follows $f \mid A(a) = f(a) = p, f \mid A(b) = f(b) = q$. $T_{\mathcal{U}} \mid A = \{(0, \phi), (1, A), (\lambda_1, M_1) \mid A, (\lambda_2, M_2) \mid A, (\lambda_3, M_3) \mid A\}$. Since $f^{-1}(\gamma, L)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous.

The following example shows that an extension of somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function need not be somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous.

Example 4.8. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions $f_1, f_2 : SF(X) \to SF(X)$ is defined as follows

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi);\\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1);\\ (\lambda_2, M_2) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_2, M_2);\\ (1, X) & \text{otherwise.} \\ 550 \end{cases}$$

where (λ_1, M_1) , (λ_2, M_2) are defined as follows $\lambda_1(a) = 0, \lambda_1(b) = 1, \lambda_1(c) = 0, M_1 = \{a\}; \lambda_2(a) = 0, \lambda_2(b) = 0, \lambda_2(c) = 1, M_2 = \{c\}$, is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_{21})\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \to SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$
$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\gamma, L) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma, L); \\ (1, X) & \text{otherwise.} \end{cases}$$

where (γ, L) is defined as follows $\gamma(p) = 1, \gamma(q) = 0, \gamma(r) = 0, L = \{p, q\}$. \mathcal{V} is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma, L)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{V} . Thus $(Y, S_{\mathcal{V}})$ is a soft fuzzy quasi uniform topological space.

Let $f: (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. Since $f^{-1}(\gamma, L)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open in $(X, T_{\mathcal{U}})$. Hence f is not somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous. Let $A = \{a, b\}$. Now $f \mid A : (A, T_{\mathcal{U}} \mid A) \to (Y, S_{\mathcal{V}})$ defined as follows $f \mid A(a) = f(a) = p, f \mid A(b) = f(b) = q$. But $f \mid A$ is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous.

5. Somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function

Definition 5.1. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. A function $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ is soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function if (λ, N) is soft fuzzy $T_{\mathcal{U}}$ open set in $(X, T_{\mathcal{U}}), f(\lambda, N)$ is soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set.

Definition 5.2. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. A function $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function iff (λ, N) is soft fuzzy $T_{\mathcal{U}}$ open set and $(\lambda, N) \neq (0, \phi)$ then there exists a soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set (μ, M) such that $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f(\lambda, N)$.

Clearly every soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function but the converse need not be true as shown in the following example.

Example 5.3. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions f_1, f_2 : $SF(X) \to SF(X)$ is defined as follows

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$
$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1) \\ (1, X) & \text{otherwise.} \end{cases}$$

where (λ_1, M_1) is defined as follows $\lambda_1(a) = 0.5, \lambda_1(b) = 0.4, \lambda_1(c) = 0.4, M_1 = \{a, b\}; \mathcal{U}$ is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1)\}$ is a soft fuzzy 551

quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \to SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi);\\ (\gamma_1, L_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma_1, L_1);\\ (\gamma_2, L_2) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_2, L_2);\\ (\gamma_3, L_3) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_3, L_3);\\ (1, X) & \text{otherwise.} \end{cases}$$

where $(\gamma_1, L_1), (\gamma_2, L_2), (\gamma_3, L_3)$ are defined as follows $\gamma_1(p) = 0.4, \gamma_1(q) = 0.4, \gamma_1(r)$ = 0.4, $L_1 = \{\phi\}; \ \gamma_2(p) = 0.4, \gamma_2(q) = 0.4, \gamma_2(r) = 0.4, \ L_2 = \{r\}; \ \gamma_3(p) = 0.4, \gamma_3(q) = 0.4, \gamma_3(r) = 0.4, \ L_3 = \{p,q\}. \ \mathcal{V}$ is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma_1, L_1), (\gamma_2, L_2), (\gamma_3, L_3)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{V} . Thus $(Y, S_{\mathcal{V}})$ is a soft fuzzy quasi uniform topological space. Let $f: (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function. Since $f(\lambda_1, M_1)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function.

Proposition 5.4. Suppose $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be a bijective function. Then the following conditions are equivalent.

(i) f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function.

(ii) If (λ, N) is a soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$, then $f^{-1}(\lambda, N)$ is a soft fuzzy $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$.

Proof. (i) \Rightarrow (ii) Assume that f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function. Suppose that (λ, N) is a soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$. It must be shown that $f^{-1}(\lambda, N)$ is a soft fuzzy $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$. Suppose if it is not. Then there exists a soft fuzzy $T_{\mathcal{U}}$ closed set (μ, M) such that $f^{-1}(\lambda, N) \sqsubset (\mu, M) \sqsubset (1, X)$. That is $(\lambda, N) = f(f^{-1}(\lambda, N)) \sqsubset f(\mu, M) \sqsubset f(1, X) = (1, Y)$. Since f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function, there exists a soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set (δ, L) such that $(\delta, L) \neq (0, \phi)$ and $(\delta, L) \sqsubseteq f((1, X) - (\mu, M))$. That is $(1, Y) - (\delta, L) \sqsupset f(\mu, M) \sqsubset f(1, Y) - (\delta, L) \sqsubset (1, Y)$. Therefore $f(\mu, M) \sqsubset f_{\sigma} precl_{S_{\mathcal{V}}}((1, Y) - (\delta, L)) \sqsubset (1, Y)$. That is $(\lambda, N) \sqsubset F_{\sigma} precl_{S_{\mathcal{V}}}((1, Y) - (\delta, L)) \sqsubset (1, Y)$. That is (λ, N) is soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ dense set in $(Y, S_{\mathcal{V}})$. Hence $f^{-1}(\lambda, N)$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$.

(ii) \Rightarrow (i) Suppose $(\lambda, N) \neq (0, \phi)$ is a soft fuzzy $T_{\mathcal{U}}$ open set. We have to show that $G_{\delta}preint_{S_{\mathcal{V}}}(f(\lambda, N)) \neq (0, \phi)$. Suppose that $G_{\delta}preint_{S_{\mathcal{V}}}(f(\lambda, N)) = (0, \phi)$. Now $F_{\sigma}precl_{S_{\mathcal{V}}}((1, Y) - f(\lambda, N)) = (1, Y) - G_{\delta}preint_{S_{\mathcal{V}}}(f(\lambda, N)) = (1, Y)$. Therefore by assumption (ii) $f^{-1}((1, Y) - f(\lambda, N))$ is soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense in $(X, T_{\mathcal{U}})$. But $f^{-1}((1, Y) - f(\lambda, N)) = (1, X) - (\lambda, N)$, $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}((1, Y) - f(\lambda, N))) = (1, X) - (\lambda, N)$. Therefore $(1, X) = (1, X) - (\lambda, N)$. Which implies $(\lambda, N) = (0, \phi)$. Which is 552

a contradiction. Therefore $G_{\delta}preint_{S_{\mathcal{V}}}(f(\lambda, N)) \neq (0, \phi)$. Thus f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function.

Proposition 5.5. Suppose $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be bijective function. Then the following conditions are equivalent.

(i) f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function.

(ii) If (λ, N) is a soft fuzzy $T_{\mathcal{U}}$ closed set such that $f(\lambda, N) \neq (1, Y)$, then there exists soft fuzzy F_{σ} pre $S_{\mathcal{V}}$ closed set (μ, M) in $(Y, S_{\mathcal{V}})$ such that $(\mu, M) \neq (1, Y)$ and $(\mu, M) \supseteq f(\lambda, N)$.

Proof. (i) \Rightarrow (ii) Let (λ, N) be a soft fuzzy $T_{\mathcal{U}}$ closed set in $(X, T_{\mathcal{U}})$ such that $f(\lambda, N) \neq (1, Y)$. Then, $(1, X) - (\lambda, N)$ is a soft fuzzy $T_{\mathcal{U}}$ open set such that $f((1, X) - (\lambda, N)) = (1, Y) - f(\lambda, N) \neq (0, \phi)$. As f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function, there exists a soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set (μ, M) such that $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f[(1, X) - (\lambda, N)]$. Since (μ, M) is soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set such that $(\mu, M) \neq (0, \phi), (1, Y) - (\mu, M)$ is soft fuzzy F_{σ} pre $S_{\mathcal{V}}$ closed set in $(Y, S_{\mathcal{V}})$ such that $(1, Y) - (\mu, M) \neq (1, Y)$ and $(1, Y) - (\mu, M) \sqsupset f(\lambda, N)$.

(ii) \Rightarrow (i) Let (λ, N) be a soft fuzzy $T_{\mathcal{U}}$ open set such that $(\lambda, N) \neq (0, \phi)$. Then $(1, X) - (\lambda, N)$ is a soft fuzzy $T_{\mathcal{U}}$ closed set and $(1, X) - (\lambda, N) \neq (1, X)$. Now $f((1, X) - (\lambda, N)) = (1, Y) - f(\lambda, N) \neq (1, Y)$. Hence by hypothesis, there exists soft fuzzy F_{σ} pre $S_{\mathcal{V}}$ closed set (μ, M) in $(Y, S_{\mathcal{V}})$ such that $(\mu, M) \neq (1, Y)$ and $(\mu, M) \supset f((1, X) - (\lambda, N)) = (1, Y) - f(\lambda, N)$. Which implies $f(\lambda, N) \supseteq (1, Y) - (\mu, M)$. Clearly $(1, Y) - (\mu, M)$ is soft fuzzy G_{δ} pre $S_{\mathcal{V}}$ open set in $(Y, S_{\mathcal{V}})$ such that $(1, Y) - (\mu, M) \sqsubseteq f(\lambda, N)$ and $(1, Y) - (\mu, M) \neq (0, \phi)$. This shows that f is somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open function. \Box

6. Somewhat and soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function

Definition 6.1. Let $(X, T_{\mathcal{U}})$ be a soft fuzzy quasi uniform topological space. A soft fuzzy set (λ, N) is said to be soft fuzzy $T_{\mathcal{U}}$ regular open set in $(X, T_{\mathcal{U}})$ if $(\lambda, N) = Int_{T_{\mathcal{U}}}(Cl_{T_{\mathcal{U}}}(\lambda, N))$. The complement of a soft fuzzy $T_{\mathcal{U}}$ regular open set is soft fuzzy $T_{\mathcal{U}}$ regular open set.

Definition 6.2. Let $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. A function $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ is soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function if the inverse image of each soft fuzzy $S_{\mathcal{V}}$ regular open set in $(Y, S_{\mathcal{V}})$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set in $(X, T_{\mathcal{U}})$.

Proposition 6.3. Suppose $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be a function. Then the following conditions are equivalent.

(i) f is soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function.

(ii) $f^{-1}(\lambda, N) \sqsubseteq G_{\delta} preint_{T_{\mathcal{U}}}(f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))))$ for each soft fuzzy $S_{\mathcal{V}}$ open set (λ, N) in $(Y, S_{\mathcal{V}})$.

(iii) $F_{\sigma} precl_{T_{\mathcal{U}}}(f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\mu, M)))) \subseteq f^{-1}(\mu, M)$ for each soft fuzzy $S_{\mathcal{V}}$ closed set (μ, M) in $(Y, S_{\mathcal{V}})$.

(iv) $f^{-1}(\lambda, N)$ is a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set, for each soft fuzzy $S_{\mathcal{V}}$ regular closed set (λ, N) in $(Y, S_{\mathcal{V}})$.

Proof. (i) \Rightarrow (ii) Let (λ, N) be a soft fuzzy $S_{\mathcal{V}}$ open set in $(Y, S_{\mathcal{V}})$. Now $(\lambda, N) \sqsubseteq Cl_{S_{\mathcal{V}}}(\lambda, N)$. Which implies $(\lambda, N) = Int_{S_{\mathcal{V}}}(\lambda, N) \sqsubseteq Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))$. Therefore $f^{-1}(\lambda, N) \sqsubseteq f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N)))$. Thus $Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))$ is soft fuzzy $S_{\mathcal{V}}$ regular open set. Since f is soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous, $f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N)))$ is soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set in $(X, T_{\mathcal{U}})$. Therefore $f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))) = G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))))$. Also $f^{-1}(\lambda, N) \sqsubseteq G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}(\lambda, N))))$.

(ii) \Rightarrow (iii) Let (μ, M) be a soft fuzzy $S_{\mathcal{V}}$ closed set in $(Y, S_{\mathcal{V}})$. Therefore $(1, Y) - (\mu, M)$ is a soft fuzzy $S_{\mathcal{V}}$ open set in $(Y, S_{\mathcal{V}})$. Now by hypothesis, $f^{-1}[(1, Y) - (\mu, M)] \subseteq G_{\delta} preint_{T_{\mathcal{U}}} \{f^{-1}[Int_{S_{\mathcal{V}}}(Cl_{S_{\mathcal{V}}}((1, Y) - (\mu, M)))]\}$. This implies that $(1, X) - f^{-1}(\mu, M) \subseteq G_{\delta} preint_{T_{\mathcal{U}}} \{f^{-1}[(1, Y) - Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\mu, M))]\}$. Then $(1, X) - f^{-1}(\mu, M) \subseteq (1, X) - F_{\sigma} precl_{T_{\mathcal{U}}} \{f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\mu, M)))\}$. Therefore $f^{-1}(\mu, M) \supseteq F_{\sigma}$

 $M) \sqsubseteq (1, X) - F_{\sigma} precl_{\mathcal{I}_{\mathcal{U}}} \{f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\mu, M)))\}.$ Therefore $f^{-1}(\mu, M) \sqsupseteq \mathcal{I}_{\mathcal{I}_{\mathcal{U}}}$ $precl_{\mathcal{I}_{\mathcal{U}}} \{f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\mu, M)))\}.$ (iii) \Rightarrow (iv) Let () N) be a soft fuzzy Sy regular closed set in (V Sy). Then y

(iii) \Rightarrow (iv) Let (λ, N) be a soft fuzzy $S_{\mathcal{V}}$ regular closed set in $(Y, S_{\mathcal{V}})$. Then we have $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) = F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\lambda, N))))$. Since (λ, N) is a soft fuzzy $S_{\mathcal{V}}$ regular closed set, (λ, N) is a soft fuzzy $S_{\mathcal{V}}$ closed set. Therefore by hypothesis, $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(Cl_{S_{\mathcal{V}}}(Int_{S_{\mathcal{V}}}(\lambda, N)))) \subseteq f^{-1}(\lambda, N)$. Therefore $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \subseteq f^{-1}(\lambda, N)$. But clearly $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \supseteq f^{-1}(\lambda, N)$. Thus $F_{\sigma}precl_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) = f^{-1}(\lambda, N)$. Which implies $f^{-1}(\lambda, N)$ is a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set.

(iv) \Rightarrow (i) Let (λ, N) be a soft fuzzy $S_{\mathcal{V}}$ regular open set in $(Y, S_{\mathcal{V}})$. Then $(1, Y) - (\lambda, N)$ is a soft fuzzy $S_{\mathcal{V}}$ regular closed set in $(Y, S_{\mathcal{V}})$. Then by hypothesis, $f^{-1}((1, Y) - (\lambda, N))$ is a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set. Therefore $(1, X) - f^{-1}(\lambda, N)$ is a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set. Which implies $f^{-1}(\lambda, N)$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set. Hence f is soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function.

Definition 6.4. A soft fuzzy set (λ, N) in $(X, T_{\mathcal{U}})$ is called soft fuzzy $T_{\mathcal{U}}$ regular dense if there exists no soft fuzzy $T_{\mathcal{U}}$ regular closed set (μ, M) such that $(\lambda, N) \sqsubset (\mu, M) \sqsubset (1, X)$.

Definition 6.5. Let $(X, T_{\mathcal{U}})$ be a soft fuzzy quasi uniform topological space. Then the regular interior of a soft fuzzy set (λ, M) in $(X, T_{\mathcal{U}})$ is defined as follows

 $R-Int_{T_{\mathcal{U}}}(\lambda, M) = \sqcup \{(\mu, N) : (\mu, N) \sqsubseteq (\lambda, M) \text{ and } (\mu, N) \text{ is soft fuzzy } T_{\mathcal{U}} \text{ regular}$ open in $(X, T_{\mathcal{U}})\}$

The regular closure of a soft fuzzy set (μ, M) in $(X, T_{\mathcal{U}})$ is defined as follows

 $R - Cl_{T_{\mathcal{U}}}(\mu, M) = \sqcap \{(\lambda, N) : (\mu, M) \sqsubseteq (\lambda, N) \text{ and } (\lambda, N) \text{ is soft fuzzy } T_{\mathcal{U}} \text{ regular closed in } (X, T_{\mathcal{U}})\}.$

Proposition 6.6. Suppose $(X, T_{\mathcal{U}})$ and $(Y, S_{\mathcal{V}})$ be any two soft fuzzy quasi uniform topological spaces. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ be a bijective function. Then the following conditions are equivalent.

(i) f is somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function.

(ii) If (λ, N) is a soft fuzzy $S_{\mathcal{V}}$ regular closed set such that $f^{-1}(\lambda, N) \neq (1, X)$, then there exists a proper soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set (μ, M) such that $(\mu, M) \supseteq f^{-1}(\lambda, N)$.

(iii) If (λ, N) is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$, then $f(\lambda, N)$ is a soft fuzzy $T_{\mathcal{U}}$ regular dense set in $(Y, S_{\mathcal{V}})$.

Proof. (i) \Rightarrow (ii) Suppose f is somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous and (λ, N) is soft fuzzy $S_{\mathcal{V}}$ regular closed set in $(Y, S_{\mathcal{V}})$ such that $f^{-1}(\lambda, N) \neq (1, X)$. Therefore clearly $(1, Y) - (\lambda, N)$ is soft fuzzy $S_{\mathcal{V}}$ regular open set and $f^{-1}((1, Y) - (\lambda, N)) = f^{-1}(1, Y) - f^{-1}(\lambda, N) \neq (0, \phi)$. By (i) there exists a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set (μ, M) in $(X, T_{\mathcal{U}})$ such that $(\mu, M) \neq (0, \phi)$ and $(\mu, M) \sqsubseteq f^{-1}((1, Y) - (\lambda, N))$. That is $(1, X) - (\mu, M) \neq (1, X)$ is a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set in $(X, T_{\mathcal{U}})$ and $(1, X) - (\mu, M) \sqsupseteq (1, X) - f^{-1}((1, Y) - (\lambda, N))$. Which implies $(1, X) - (\mu, M) \sqsupseteq f^{-1}(\lambda, N)$.

(ii) \Rightarrow (iii) Let (λ, N) be a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$ and $f(\lambda, N)$ not soft fuzzy $S_{\mathcal{V}}$ regular dense set in $(Y, S_{\mathcal{V}})$. Then there exists a soft fuzzy $S_{\mathcal{V}}$ regular closed set (μ, M) such that $f(\lambda, N) \sqsubseteq (\mu, M) \sqsubseteq (1, Y)$. Since $(\mu, M) \sqsubseteq$ $(1, Y), f^{-1}(\mu, M) \neq (1, X)$ and by (ii) there exists a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set (δ, L) such that $(\delta, L) \sqsupseteq f^{-1}(\mu, M)$. But $f^{-1}(f(\lambda, N)) \sqsubseteq f^{-1}(\mu, M) \sqsubseteq (\delta, L)$. That is there exists a soft fuzzy F_{σ} pre $T_{\mathcal{U}}$ closed set such that $(1, X) \neq (\delta, L) \sqsupseteq (\lambda, N)$, which is a contradiction. Hence $f(\lambda, N)$ is a soft fuzzy $S_{\mathcal{V}}$ regular dense set in $(Y, S_{\mathcal{V}})$.

(iii) \Rightarrow (i) Suppose (λ, N) is soft fuzzy $S_{\mathcal{V}}$ regular open set and $f^{-1}(\lambda, N) \neq (0, \phi)$ and therefore $(\lambda, N) \neq (0, \phi)$. We have to show that $G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \neq (0, \phi)$. Suppose $G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) = (0, \phi)$. Thus $F_{\sigma}precl_{T_{\mathcal{V}}}((1, X) - f^{-1}(\lambda, N)) = (1, X)$. This shows that $(1, X) - f^{-1}(\lambda, N)$ is a soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ dense set in $(X, T_{\mathcal{U}})$. By (iii) $f((1, X) - f^{-1}(\lambda, N))$ is a soft fuzzy $S_{\mathcal{V}}$ regular dense set in $(Y, S_{\mathcal{V}})$. But $f((1, X) - f^{-1}(\lambda, N)) = f(f^{-1}((1, Y) - (\lambda, N)) = (1, Y) - (\lambda, N)$. Since $(1, Y) - (\lambda, N)$ is soft fuzzy $S_{\mathcal{V}}$ regular closed set and $f((1, X) - f^{-1}(\lambda, N)) = (1, Y) - (\lambda, N)$. From hypothesis $R - cl_{S_{\mathcal{V}}}(f((1, X) - f^{-1}(\lambda, N))) = (1, Y)$. Therefore $(1, Y) = (1, Y) - (\lambda, N)$. Which implies $(\lambda, N) = (0, \phi)$. Which is a contradiction. Hence $G_{\delta}preint_{T_{\mathcal{U}}}(f^{-1}(\lambda, N)) \neq (0, \phi)$.

7. INTERRELATIONS BETWEEN ABOVE DISCUSSED CONTINUOUS FUNCTIONS

From the above defined continuous functions the following interrelation obtained.

Soft fuzzy	\rightarrow	Somewhat soft fuzzy
G_{δ} pre $T_{\mathcal{U}}$ continuous function	\leftarrow	G_{δ} pre $T_{\mathcal{U}}$ continuous function
$\downarrow \gamma$		\downarrow)/
Soft fuzzy almost	\rightarrow	Somewhat soft fuzzy almost
G_{δ} pre $T_{\mathcal{U}}$ continuous function	\leftarrow	G_{δ} pre $T_{\mathcal{U}}$ continuous function

The converse of the implication need not be true shown in the following the examples.

Example 7.1. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions $f_1, f_2, f_3, f_4 : SF(X) \to SF(X)$ is defined as follows

otherwise.

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$
$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1); \end{cases}$$

555

(1,X),

$$f_{3}(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_{2}, M_{2}) & (\lambda_{1}, M_{1}) \neq (\lambda, M) \sqsubseteq (\lambda_{2}, M_{2}); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$f_{4}(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_{3}, M_{3}) & (\lambda_{1}, M_{1}) \neq (\lambda, M) \sqsubseteq (\lambda_{3}, M_{3}); \\ (1, X) & \text{otherwise.} \end{cases}$$

where (λ_1, M_1) , (λ_2, M_2) , (λ_3, M_3) are defined as follows $\lambda_1(a) = 0.4, \lambda_1(b) = 0.4, \lambda_1(c) = 0.4, M_1 = \{\phi\}; \lambda_2(a) = 0.4, \lambda_2(b) = 0.4, \lambda_2(c) = 0.4, M_2 = \{c\}; \lambda_3(a) = 0.4, \lambda_3(b) = 0.4, \lambda_3(c) = 0.4, M_3 = \{a, b\}; \mathcal{U}$ is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \to SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\gamma, L) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma, L); \\ (1, X) & \text{otherwise.} \end{cases}$$

where (γ, L) is defined as follows $\gamma(p) = 0.5$, $\gamma(q) = 0.4$, $\gamma(r) = 0.4$, $L = \{p,q\}$; \mathcal{V} is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma, L)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{V} . Thus $(Y, S_{\mathcal{V}})$ is a soft fuzzy quasi uniform topological space. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. fis somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function. Since $f^{-1}(\gamma, L)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open in $(X, T_{\mathcal{U}})$. Thus f is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function.

Example 7.2. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions $f_1, f_2 : SF(X) \to SF(X)$ is defined as follows

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1); \\ (1, X) & \text{otherwise.} \end{cases}$$

where (λ_1, M_1) is defined as follows $\lambda_1(a) = 0.6, \lambda_1(b) = 0.7, \lambda_1(c) = 0.8, M_1 = \{a, b\}; \mathcal{U}$ is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \to SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \\ 556 \end{cases}$$

$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi);\\ (\gamma_1, L_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma_1, L_1);\\ (\gamma_2, L_2) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_2, L_2);\\ (\gamma_3, L_3) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_3, L_3);\\ (1, X), & \text{otherwise.} \end{cases}$$

where $(\gamma_1, L_1), (\gamma_2, L_2), (\gamma_3, L_3)$ are defined as follows $\gamma_1(p) = 0.4, \gamma_1(q) = 0.3, \gamma_1(r)$ = 0.2, $L_1 = \{\phi\}; \gamma_2(p) = 0.4, \gamma_2(q) = 0.3, \gamma_2(r) = 0.2, L_2 = \{r\}; \gamma_3(p) = 0.5, \gamma_3(q) = 0.4, \gamma_3(r) = 0.4, L_3 = \{p,q\}.$ \mathcal{V} is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma_1, L_1), (\gamma_2, L_2), (\gamma_3, L_3)\}$ is a soft fuzzy quasi uniform topological space. Let $f: (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. f is soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function. Since $f^{-1}(\gamma_1, L_1)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function.

Example 7.3. In the same example above defined f is somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function. Since $f^{-1}(\gamma_1, L_1)$ is not soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open in $(X, T_{\mathcal{U}})$ and also there exists no soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ open set $(\mu, M) \sqsubseteq f^{-1}(\gamma_1, L_1)$. Thus f is not somewhat soft fuzzy G_{δ} pre $T_{\mathcal{U}}$ continuous function.

Example 7.4. Let $X = \{a, b, c\}$ and let D_1 denote the family of functions f_1, f_2 : $SF(X) \to SF(X)$ is defined as follows

$$f_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$

$$f_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\lambda_1, M_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\lambda_1, M_1); \\ (1, X) & \text{otherwise.} \end{cases}$$

where (λ_1, M_1) is defined as follows $\lambda_1(a) = 0.4, \lambda_1(b) = 0.3, \lambda_1(c) = 0.2, M_1 = \{\phi\};$ \mathcal{U} is a subcollection of D_1 . Thus $T_{\mathcal{U}} = \{(0, \phi), (1, X), (\lambda_1, M_1)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{U} . Thus $(X, T_{\mathcal{U}})$ is a soft fuzzy quasi uniform topological space.

Let $Y = \{p, q, r\}$ and let D_2 denote the family of functions $g_1, g_2 : SF(Y) \rightarrow SF(Y)$ is defined as follows

$$g_1(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (1, X) & \text{otherwise.} \end{cases}$$
$$g_2(\lambda, M) = \begin{cases} (0, \phi) & \text{if } (\lambda, M) = (0, \phi); \\ (\gamma_1, L_1) & (0, \phi) \neq (\lambda, M) \sqsubseteq (\gamma_1, L_1); \\ (\gamma_2, L_2) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_2, L_2) \\ (\gamma_3, L_3) & (\gamma_1, L_1) \neq (\lambda, M) \sqsubseteq (\gamma_3, L_3) \\ (\gamma_4, L_4) & (\gamma_2, L_2) \neq (\lambda, M) \sqsubseteq (\gamma_4, L_4) \\ (1, X), & \text{otherwise.} \end{cases}$$

where (γ_1, L_1) , (γ_2, L_2) , (γ_3, L_3) , (γ_4, L_4) are defined as follows $\gamma_1(p) = 0.4, \gamma_1(q) = 0.3, \gamma_1(r) = 0.2, L_1 = \{\phi\}; \gamma_2(p) = 0.4, \gamma_2(q) = 0.3, \gamma_2(r) = 0.2, L_2 = \{q\}; \gamma_3(p) = 0.5, \gamma_3(q) = 0.6, \gamma_3(r) = 0.4, L_3 = \{r\}; \gamma_4(p) = 0.5, \gamma_4(q) = 0.6, \gamma_4(r) = 0.4, L_4 = \{q, r\}$. \mathcal{V} is a subcollection of D_2 . Thus $S_{\mathcal{V}} = \{(0, \phi), (1, Y), (\gamma_1, L_1), (\gamma_2, L_2), (\gamma_3, L_3), (\gamma_4, L_4)\}$ is a soft fuzzy quasi uniform topology generated by \mathcal{V} . Thus $(Y, S_{\mathcal{V}})$ is a 557

soft fuzzy quasi uniform topological space. Let $f : (X, T_{\mathcal{U}}) \to (Y, S_{\mathcal{V}})$ defined as follows f(a) = p, f(b) = q, f(c) = r. f is somewhat soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function but f is not soft fuzzy almost G_{δ} pre $T_{\mathcal{U}}$ continuous function.

References

- [1] G. Balasubramanian, Maximal fuzzy topologies, Kybernetika (Prague) 31(5) (1995) 459-464.
- [2] A. S. Bin shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy sets and systems 44 (1991) 303-408.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977) 559-571.
- [5] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.
- [6] M. Sugeno, An introductory Survey of fuzzy control, Inform. Sci. 36 (1985) 59-83.
- [7] Ismail U. Tiryaki, Fuzzy sets over the poset I, Hacet. J. Math. Stat. 37(2) (2008) 143-166.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

V. VISALAKSHI (visalkumar_cbe@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

<u>M. K. UMA</u> (mathematics.org@gmail.com)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

E. ROJA (ar.udhay@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.