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1. Introduction

The real world is inherently uncertain, imprecise and vague. To solve com-
plex problems in economics, engineering, environment, sociology, medical science,
business management, etc. we cannot successfully use classical methods because of
various uncertainties typical for those problems. In recent years, a number of the-
ories have been proposed for dealing which such systems in an effective way. Some
of these are theory of probability, theory of fuzzy sets [24], theory of intuitionistic
fuzzy sets [3], theory of vague sets [10], theory of interval mathematics [11], theory
of rough set [21], etc. and these many be utilized as mathematical tools for dealing
with diverse types of uncertainties and imprecision embedded in a system. But all
these theories have their inherent difficulties. To overcome these kinds of difficulties,
Molodtsov [20] proposed a completely new approach, which is called soft set theory,
for modelling vagueness and uncertainty.

Soft set theory is growing very rapidly nowadays. The basic properties of the
theory may be found in [17]. Ali et al. [2] presented some new algebraic operations
on soft sets. Aktaş et al. [1] introduced the soft group and also compared soft sets
to fuzzy set and rough set. Feng et al. [7] investigated the concept of soft semirings.

Many efforts have been devoted to further generalizations and extensions of
Molodtsov’s soft sets. Maji et al. [15] presented the concept of fuzzy soft set by
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combining the fuzzy set and soft set. Ahmad and Kharal [13] revised and improved
some results in fuzzy soft set theory. Xu et al. [23] introduced vague soft sets which
is a combination of soft sets and vague sets. Feng et al. [9] defined soft rough ap-
proximations and soft rough sets. Some applications of soft sets may be found in
[6, 8, 14, 16, 18, 25].

Researches on soft set theory have been progressing in several directions. Shabir
and Naz [22] introduced the notion of soft topological spaces which are defined over
an initial universe with a fixed set of parameters. Çağman et al. [5] defined the soft
topology on a soft set, and showed its related properties. However, the notion of soft
topology in [5] is more general than in [22]. Then some authors studied some of basic
concepts and properties of soft topological spaces, see [4, 12, 19, 26]. In particular,
Zorlutuna et al. [26] showed that a fuzzy topological space is a special case of the
soft topological space. Aygünoğlu and Aygün [4] introduced the soft continuity of
soft mapping, soft product topology and studied soft compactness and generalized
Tychonoff theorem to the soft topological space.

In the present paper, firstly we give, as a preliminaries, some basis facts in soft
set theory and the properties of image and preimage of soft sets under soft mapping
as well as soft topological spaces and its properties. Secondly, we introduce concepts
of soft filter and soft ideal by using soft sets on an universal set, and give several
interesting properties. Finally, we investigate the convergence theory of soft filter in
a soft topological space.

2. Preliminaries

In this section, we give some preliminaries about soft set. We make some small
modifications to some of them in order to make theoretical study in detail.

Throughout this paper, X refers to an initial universal set, E is a set of all possible
parameters, P (X) is the power set of X, and A ⊆ E. Moreover, S (X, E) denotes
the family of all soft sets over X.

Definition 2.1 ([6, 18]). A soft set FA on the universe X is defined by the set of
ordered pairs FA = {(e, FA(e)) : e ∈ E, FA(e) ∈ P (X)}, where FA : E → P (X) is a
function such that FA(e) = ∅ if e /∈ A.

In other words, a soft set over X is a parametrized family of subsets of the universe
X. For e ∈ A, FA(e) may be considered as the set of e-approximate elements of the
soft set FA. Clearly, a soft set is not a set.

Definition 2.2 ([6]). The soft set F∅ ∈ S (X, E) is called null soft set, denoted by
Φ if F∅ (e) = ∅ for every e ∈ E.

Definition 2.3 ([6]). Let FA ∈ S (X,E) . If FA(e) = X, ∀e ∈ A, then FA is called
A−absolute soft set, denoted by Ã. If A = E, then the A−absolute soft set is called
absolute soft set and denoted by X̃.

Definition 2.4 ([6]). Let FA, GB ∈ S (X, E). FA is a soft subset of GB , denoted
FA⊆̆GB if FA (e) ⊆ GB (e), for each e ∈ E.

Definition 2.5 ([6]). Let FA, GB ∈ S (X, E). FA and GB are soft equal, denote by
FA = GB if FA⊆̆GB and GB⊆̆FA.
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Definition 2.6 ([6]). Let FA, GB ∈ S (X, E). Union of FA and GB is a soft set HC

defined by HC (e) = FA (e) ∪GB (e), ∀e ∈ E, where C = A ∪B. That is, HC = FA

∪̆ GB .

Definition 2.7 ([6]). Let FA, GB ∈ S (X, E). Intersection of FA and GB is a soft
set HC defined by HC (e) = FA (e) ∩ GB (e), ∀e ∈ E, where C = A ∩ B. That is,
HC = FA∩̆GB .

Definition 2.8 ([2]). Let FA ∈ S (X, E). Complement of FA, denoted by F c
A and

is defined by F c
A (e) = X − FA (e) for all e ∈ A.

Definition 2.9 ([12]). Difference HC of two soft sets FA and GB over X such that,
denoted by HC = FA−̆GB , is defined as HC(e) = FA(e)−GB(e) for all e ∈ E.

Definition 2.10 ([22]). Let FA be a soft set over X and x ∈ X. Then x ∈̆FA read
as x belongs to the soft set FA whenever x ∈ FA (e) for all e ∈ E.

Note that for any x ∈ X, x /̆∈FA, if x /∈ FA (e) for some e ∈ E.

Proposition 2.11 ([6]). Let FA, GB ,HC ∈ S (X,E). Then
(1) FA⊆̆X̃,
(2) FA⊆̆FA,
(3) FA⊆̆GB and GB⊆̆HC ⇒ FA⊆̆HC .

Definition 2.12 ([14]). Let S (X,E) and S (Y, K) be the families of all soft sets
over X and Y , respectively. The mapping ϕψ is called a soft mapping from X to Y ,
denoted by ϕψ : S (X, E) −→ S (Y,K) where ϕ : X −→ Y and ψ : E −→ K are two
mappings.

(1) Let FA ∈ S (X,E), then the image of FA under the soft mapping ϕψ is the
soft set over Y denoted by ϕψ (FA) and defined by

ϕψ (FA) (k) =

{ ⋃
e∈ψ−1(k)∩A

ϕ (FA (e)) , if ψ−1 (k) ∩A 6= ∅;

∅, otherwise.
(2) Let GB ∈ S (Y,K) , then the pre-image of GB under the soft mapping ϕψ is

the soft set over X denoted by ϕ−1
ψ (GB), where

ϕ−1
ψ (GB) (e) =

{
ϕ−1 (GB (ψ (e))) , if ψ (e) ∈ B;

∅, otherwise.

The soft mapping ϕψ is called injective, if ϕ and ψ are injective. The soft mapping
ϕψ is called surjective, if ϕ and ψ are surjective.

Proposition 2.13 ([14]). Let ϕψ be a soft mapping from S (X, E) to S (Y, K), where
ϕ : X −→ Y and ψ : E −→ K are two mappings. Then for soft sets (FA)1, (FA)2
over X and (GB)1, (GB)2 over Y we have:

(1) ϕ−1
ψ (ΦY ) = ΦX and ϕψ (ΦX) = ΦY ,

(2) ϕ−1
ψ

(
Ỹ

)
= X̃ and ϕψ

(
X̃

)
⊆̆Ỹ ,

(3) ϕ−1
ψ

(
(GB)1∪̆(GB)2

)
= ϕ−1

ψ ((GB)1) ∪̆ϕ−1
ψ ((GB)2) and ϕψ

(
(FA)1∪̆(FA)2

)
=

ϕψ ((FA)1) ∪̆ϕψ ((FA)2) ,

(4) ϕ−1
ψ

(
(GB)1∩̆(GB)2

)
= ϕ−1

ψ ((GB)1) ∩̆ϕ−1
ψ ((GB)2) and ϕψ

(
(FA)1∩̆(FA)2

)

⊆̆ϕψ ((FA)1) ∩̆ϕψ ((FA)2) ,
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(5) if (FA)1⊆̆(FA)2, then ϕψ ((FA)1) ⊆̆ϕψ ((FA)2) ,

(6) if (GB)1⊆̆(GB)2, then ϕ−1
ψ ((GB)1) ⊆̆ϕ−1

ψ ((GB)2).

2.1. Soft topology. In this section, we give some basic results of soft topological
spaces which we need next section.

Definition 2.14 ([22]). A soft topology T is a family of soft sets over X satisfying
the following properties.

(1) Φ, X̃ ∈ T
(2) If FA, GB ∈ T , then FA∩̆GB ∈ T
(3) If (FA)i ∈ T , ∀i ∈ I, then

⋃
i=1

(FA)i ∈ T .

The pair (X, T ) is called a soft topological space.

Definition 2.15 ([22]). Let (X, T ) be a soft topological space and E be a set of all
parameters. Then the collection Te = {FA(e) : FA ∈ T } for each e ∈ E, defines a
topology on X. It is called e−parameter topology on X.

Above definition shows that corresponding to each parameter e ∈ E, we have
a topology Te on X. Thus a soft topology on X gives a parameterized family of
topologies on X.

Definition 2.16 ([22]). Let (X, T ) be a soft topological space. Then every element
of T is called a soft open set. Clearly, Φ and X̃ are soft open sets.

Definition 2.17 ([22]). Let (X, T ) be a soft topological space and FA ∈ S (X, E).
Then FA is said to be soft closed if the soft set F c

A is soft open.

Definition 2.18 ([22]). Let (X, T ) be a soft topological space, FA be a soft set over
X and x ∈ X. Then FA is called a soft neighborhood of x if there exists a soft open
set GB such that x∈̆GB⊆̆FA.

The soft neighborhood system of a point x, denoted by N̆(x), is the family of all
its soft neighborhoods. That is, N̆(x) =

{
FA : ∃GB ∈ T , x∈̆GB⊆̆FA

}
.

We give again concept of soft limit point of Çağman et al. [5] by making some
small modifications with respect to definition of topological space in Shabir and Naz
[22] as follows:

Definition 2.19. Let (X, T ) be a soft topological space, FA be a soft set over X
and x ∈ X. If every soft open set containing x contains a point of FA different from
x, then x is called a soft limit point (or soft accumulation point) of FA. The set of
all soft accumulation points of FA is denoted by F pA.

In other words, if (X, T ) is a soft topological space, FA is a soft set over X and
x ∈ X, then x∈̆F pA ⇔ GB∩̆

(
FA−̆ {x}

) 6= Φ for all GB ∈ T such that x∈̆GB .

Definition 2.20 ([22]). Let (X, T ) be a soft topological space and FA be a soft set
over X. Then the soft closure of FA, denoted by FA is the intersection of all soft
closed super sets of FA. Clearly, FA is the smallest soft closed set over X which
contains FA. Moreover, (i) FA ⊆ FA, (ii) FA is a soft closed set if and only if
FA = FA, for FA ∈ S (X, E).
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Theorem 2.21 ([5]). Let (X, T ) be a soft topological space and FA be a soft set
over X. Then

FA∪̆F pA = FA

Definition 2.22 ([22]). Let X be an initial universal set, E a set of parameters and
Y be a non-empty classical subset of X. Then the sub-soft set of FA over Y denoted
by Y FA, is defined as follows

Y FA (e) = Y ∩ FA (e) , for all e ∈ E

In other words, Y FA = Ỹ ∩̆FA.

Definition 2.23 ([22]). Let (X, T ) be a soft topological space and Y be a non-empty
subset of X. Then

TY = {Y FA : FA ∈ T }
is said to be the soft relative topology on Y and (Y, TY ) is called a soft subspace of
(X, T ).

Definition 2.24 ([4]). Let (X, T1) and (Y, T2) be two soft topological spaces. A
soft mapping ϕψ : (X, T1) −→ (Y, T2) is called soft continuous if ϕ−1

ψ (GB) ∈ T1,
∀GB ∈ T2.

Note that the above definition can be given by means of soft closed sets instead
of soft open sets.

Definition 2.25 ([22]). Let (X, T ) be a soft topological space and x, y ∈ X such
that x 6= y. (X, T ) is called soft Hausdorff space or soft T2−space if there exist soft
open sets GB and FA such that x∈̆FA, y∈̆GB and FA∩̆GB = Φ.

Definition 2.26 ([22]). Let (X, T ) be a soft topological space, GB be a soft closed
set in X and x ∈ X such that x/̆∈GB . If there exist soft open sets FA and HC such
that x∈̆FA, GB⊆̆HC and FA∩̆HC = Φ, then (X, T ) is called a soft regular space.

Definition 2.27 ([4]). Let (X, T ) be a soft topological space.

(1) A family C = {(FA)i : i ∈ I} of open soft sets in (X, T ) is called a soft open
cover of X, if it satisfies

⋃
i∈I

(FA)i = X̃. A finite subfamily of a soft open

cover C of X is called a finite subcover of C, if it is also a soft open cover of
X.

(2) X is called soft compact if every soft open cover of X has a finite subcover.

Definition 2.28 ([26]). A family C = {(FA)i : i ∈ I} of soft sets on X has the finite
intersection property if the intersection of the members of each finite subfamily of C
is not null soft set.

Theorem 2.29 ([26]). A soft topological space is compact if and only if each family
of soft closed sets with the finite intersection property has a non null intersection.
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3. Soft filters and soft ideals

Filters and ideals play an important role in several mathematical disciplines such
as algebra, topology, logic, measure theory. In this chapter we introduce the concepts
of soft filter and soft ideal on a nonempty universal set X, and give several related
properties. Also, we investigate their relation with concepts of an ideal and filter
defined on X.

Definition 3.1. A soft filter F over X is a collection of soft sets over X which
satisfies the following properties:

(1) X̃ ∈ F and Φ /∈ F
(2) If FA ∈ F and GB ∈ F , then FA∩̆GB ∈ F
(3) If FA ∈ F and FA⊆̆GB⊆̆X̃ implies that GB ∈ F .

Example 3.2. F =
{

X̃
}

is a soft filter on X. It is called trivial soft filter.

Example 3.3. Let FA ∈ S (X, E) . Then

F =
{

GB⊆̆X̃ : FA⊆̆GB

}

is a soft filter on X. It is called principal soft filter generated by FA. Moreover, it is
clearly the least soft filter on X containing FA.

Example 3.4. Let X be an infinite set. F =
{

GB⊆̆X̃ : X̃−̆GB is finite
}

is a soft
filter on X. It is called cofinite soft filter.

Let X be an universal set and F be any collection of soft sets on X. Then the
collection Fe on X, defined as follows

Fe = {FA (e) : FA ∈ F}
for each e ∈ E, is a parameterized family of subsets of X derived from F .

Remark 3.5. Let X be an universal set and F be any collection of soft sets on X.
Then F need not to be a soft filter on X, even if Fe defines a filter in X for each
e ∈ E.

Example 3.6. Let X = {x1, x2, x3} , E = {e1, e2} and F = {X̃, (FA)1, (FA)2, (FA)3,
(FA)4} where (FA)i is a soft set over X for i ∈ I = {1, 2, 3, 4}, defined as follows

(FA)1 (e1) = {x2} (FA)1 (e2) = {x1}
(FA)2 (e1) = {x2, x3} (FA)2 (e2) = {x1, x2}
(FA)3 (e1) = {x1, x2} (FA)3 (e2) = {x1, x2}
(FA)4 (e1) = {x2} (FA)4 (e2) = {x1, x3}

Then Fe1 = {X, {x2} , {x2, x3} , {x1, x2}} and Fe2 = {X, {x1} , {x1, x3} , {x1, x2}}
are filters on X. However, the F is not a soft filter on X because (FA)2∩̆(FA)3 = GB ,
where GB (e1) = {x2}, and GB (e2) = {x1, x2} and GB /∈ F .

Remark 3.7. A soft filter F on X does not guarantee that Fe is a filter on X for
each e ∈ E, as shown below.
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Example 3.8. Let X = {x1, x2} , E = {e1, e2} and F =
{

X̃, (FA)1, (FA)2, (FA)3
}

where (FA)i is a soft set over X for i ∈ I = {1, 2, 3}, defined as follows

(FA)1 (e1) = ∅ (FA)1 (e2) = X
(FA)2 (e1) = {x1} (FA)2 (e2) = X
(FA)3 (e1) = {x2} (FA)3 (e2) = X

Then F is a soft filter on X. But Fe1 is not a filter on X because ∅ ∈ Fe1 for
e1 ∈ E, even if Fe2 defines a filter in X, for e2 ∈ E.

Theorem 3.9. Let S (X, E) and S (Y,K) be the families of all soft sets on X and
Y , respectively and ϕψ be a soft mapping from S (X, E) to S (Y, K). Suppose that
F is a soft filter on X. Then

ϕψ (F) =
{

GB : ϕ−1
ψ (GB) ∈ F

}

is a soft filter on Y .

Proof. (i) Let F be a soft filter on X. Since ϕ−1
ψ (Φ) = Φ /∈ F , we have Φ /∈ ϕψ (F) .

Moreover, ϕ−1
ψ

(
Ỹ

)
= X̃ ∈ F and hence Ỹ ∈ ϕψ (F).

(ii) Let GB , HC ∈ ϕψ (F) . Then we have ϕ−1
ψ (GB) ∈ F and ϕ−1

ψ (HC) ∈ F . Since
F is a soft filter, ϕ−1

ψ (GB) ∩̆ϕ−1
ψ (HC) = ϕ−1

ψ

(
GB∩̆HC

) ∈ F and so GB∩̆HC ∈
ϕψ (F).

(iii) Let GB ∈ ϕψ (F) and HC ∈ S (Y, K) such that GB⊆̆HC . By Proposition
2.13, ϕ−1

ψ (GB) ⊆̆ϕ−1
ψ (HC) . Since F is a soft filter and ϕ−1

ψ (GB) ∈ F , this implies
that ϕ−1

ψ (HC) ∈ F and so HC ∈ ϕψ (F) . ¤
Definition 3.10. A soft ideal I over X is a collection of soft sets over X which
satisfies the following properties:

(1) X̃ /∈ I and Φ∈̆I
(2) If FA ∈ I and GB ∈ I, then FA∪̆GB ∈ I
(3) If FA ∈ I and GB⊆̆FA⊆̆X̃ implies that GB ∈ I.

If F is a soft filter on X, then I = {X̃−̆GB : GB ∈ F} is a soft ideal on X, and
conversely, if I is a soft ideal on X, then F = {X̃−̆GB : GB ∈ I} is a soft filter on
X. In the case, we say that F and I are dual to each other.

Example 3.11. I ={Φ} is a soft ideal on X. It is called minimal soft ideal.

Remark 3.12. Let X be an universal set and I be a collection of soft sets on X.
Then I need not to be a soft ideal on X, even if Ie defines an ideal in X, for each
e ∈ E.

Example 3.13. Let X = {x1, x2, x3} , E = {e1, e2} and I = {Φ, (FA)1, (FA)2, (FA)3,
(FA)4} where (FA)i is a soft set over X for i ∈ I = {1, 2, 3, 4}, defined as follows

(FA)1 (e1) = {x2} (FA)1 (e2) = {x1}
(FA)2 (e1) = {x1, x2} (FA)2 (e2) = {x3}
(FA)3 (e1) = {x2} (FA)3 (e2) = {x1, x3}
(FA)4 (e1) = {x1} (FA)4 (e2) = {x3}
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Then Ie1 = {∅, {x1} , {x2} , {x1, x2}} and Ie2 = {∅, {x1} , {x3} , {x1, x3}} are
ideals on X. However, the I is not a soft ideal on X because (FA)1∪̆(FA)2 = GB ,
where GB (e1) = {x1, x2}, and GB (e2) = {x1, x3} and GB /∈ I.

Remark 3.14. A soft ideal I on X does not guarantee that Ie is an ideal on X for
each e ∈ E, as shown below.

Example 3.15. Let X = {x1, x2} , E = {e1, e2} and I = {Φ, (FA)1, (FA)2, (FA)3}
where (FA)i is a soft set over X for i ∈ I = {1, 2, 3}, defined as follows

(FA)1 (e1) = X (FA)1 (e2) = ∅
(FA)2 (e1) = {x1} (FA)2 (e2) = ∅
(FA)3 (e1) = {x2} (FA)3 (e2) = ∅

Then I is a soft ideal on X. However, the Ie1 is not an ideal on X because
X ∈ Ie1 for e1 ∈ E, even if Ie2 defines an ideal in X, for e2 ∈ E.

Definition 3.16. Given two soft filters F , F∗ on the same set X, F∗ is said to be
finer than F , or F is coarser than F∗ , if F ⊆ F∗. If also F 6= F∗, then F∗ is said
to be strictly finer than F , or F is said to be strictly coarser than F∗.

Two soft filter are said to be comparable if one is finer than the other. The set
of all soft filters on X is may ordered by the relation ”F is coarser than F∗”.

Recall that any subset A of some partially ordered set (X,≤) is called a chain if
it is total ordered which is x ≤ y or y ≤ x, for each x, y ∈ A. Moreover by Zorn’s
Lemma, if X is any nonempty partially ordered set in which every chain has an
upper bound, then X has a maximal element.

Proposition 3.17. Let F0 be a soft filter on X. Let P be the set of all soft filters
F on X such that F0 ⊆ F . Then (P,⊆) is a partially ordered set.

Proof. By Proposition 2.11, it is clear. ¤

Lemma 3.18. Let X be an universal set. For i ∈ I, P = {Fi : Fi is a soft filter on
X}. Then,

(1) If P is a nonempty family of soft filters on X, then
⋂

Fi∈P

Fi is a soft filter

on X.
(2) If P is a ⊆ −chain of soft filters on X, then

⋃
Fi∈P

Fi is a soft filter on X.

(3) If C is a family of soft sets with the finite intersection property, then there
is a soft filter F on X such that C ⊆ F .

Proof. (1) and (2) are easy to verify. (3) If C is a collection of elements of S (X, E)
with the finite intersection property such that for all m ∈ N and (FA)1, ..., (FA)m ∈ C,
we have

m⋂
i=1

(FA)i 6= Φ. Then F = {GB ∈ S (X, E) : ∃(FA)1, ..., (FA)m ∈ C and
m⋂

i=1

(FA)i⊆̆GB}. Thus F is a soft filter containing C. We say that the soft filter F is

generated by C. ¤
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Corollary 3.19. Let C be a collection of subsets of S (X,E). Then C generates a
soft filter if it has the finite intersection property.

Proposition 3.20. Every soft filter has the finite intersection property.

Proof. The proof is trivial. ¤

Definition 3.21. Let F be a soft filter on X. Then a subfamily C of F is called a
soft filter base for F if for any FA ∈ F there exists GB ∈ C such that GB⊆̆FA.

If C is a soft filter base for F , then it is clear that

F =
{
FA ∈ S (X, E) : ∃GB ∈ C and GB⊆̆FA

}

Definition 3.22. Let F be a soft filter on X. Then a subfamily C of F is called a
soft filter subbase for F if the family of all finite intersections of elements of C is a
soft filter base for F . We also say that C generates F .

Definition 3.23. Let F be a soft filter on X.
(1) F is a soft ultrafilter if either FA ∈ F or F c

A ∈ F , for every FA ∈ S (X, E).
(2) F is a prime soft filter if either FA ∈ F or GB ∈ F , for every FA, GB ∈

S (X, E) such that FA∪̆GB ∈ F .
(3) F is a maximal soft filter if every soft filter containing F coincides with F .

Example 3.24. If x ∈ X and F = {FA ∈ S (X, E) : x∈̆FA}, then F is a soft
ultrafilter.

Theorem 3.25. Let F be a soft filter on X. Then the properties of being soft
ultrafilter, prime soft filter and maximal soft filter are equivalent.

Proof. Suppose that F is a soft ultrafilter on X and FA, GB /∈ F for FA, GB ∈
S (X,E) . Then F c

A, Gc
B ∈ F and so their intersection X̃−̆ (

FA∪̆GB

)
is in F . However

since F is a soft ultrafilter,
(
FA∪̆GB

)
is not in F . Then F is a prime soft filter.

Suppose that F is a prime soft filter on X and GB /∈ F for some GB ∈ S (X, E).
To prove maximalty of F , we must show that F∪̆ {GB} is not a soft filter and so
it does not have the finite intersection property. Since F is a prime soft filter and
X̃ = GB∪̆

{
X̃−̆GB

}
, we have X̃−̆GB ∈ F and GB∩̆

{
X̃−̆GB

}
= Φ. This is show

that F∪̆ {GB} does not have the finite intersection, so F is a maximal soft filter.
Now, we show that a maximal soft filter on X is a soft ultrafilter. Suppose that F

is not a soft ultrafilter on X. We will show that F is not maximal. Let FA ∈ S (X, E)
be such that neither FA and F c

A is in F . Take the collection C = F∪̆ {FA}; we claim
that C has the finite intersection property. If GB ∈ F , FA∩̆GB 6= Φ, for otherwise
we would have GB⊆̆X̃−̆FA and X̃−̆FA ∈ F . Thus, if (GB)1, ..., (GB)m ∈ F , then
(GB)1∩̆...∩̆ (GB)m ∈ F and so FA∩̆(GB)1∩̆...∩̆ (GB)m 6= Φ. Hence C has the finite
intersection property, and by Lemma 3.18 (3), there is a soft filter F ′ such that C ⊆
F ′. Since FA ∈ F ′ −F , F is not maximal. ¤

Proposition 3.26. Let S (X,E) and S (Y, K) be the families of all soft sets on X
and Y , respectively and ϕψ be a soft mapping from S (X,E) to S (Y,K). If F is a
soft ultrafilter on X, then ϕψ (F) is a soft ultrafilter on Y .
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Proof. Let F be a soft ultrafilter on X. By Theorem 3.9, ϕψ (F) is a soft filter
on Y . Suppose that G is a soft filter on Y such that ϕψ (F)⊆G. We have to
show ϕψ (F) = G. Let FA ∈ G such that FA /∈ ϕψ (F). Then ϕ−1

ψ (FA) /∈ F .

By Definition 3.23, GB =
[
ϕ−1

ψ (FA)
]c

∈ F . Since GB⊆̆ϕ−1
ψ (ϕψ (GB)), we have

ϕ−1
ψ (ϕψ (GB)) ∈ F and so ϕψ (GB) ∈ ϕψ (F). By assumption, ϕψ (F)⊆G implies

that ϕψ (GB) ∈ G. Moreover, ϕψ (GB) ∩̆FA = ϕψ

([
ϕ−1

ψ (FA)
]c)

∩̆FA = Φ /∈ G.
Thus, G is not a soft filter and this is a contradiction to our assumptions. Then
FA ∈ ϕψ (F) and so ϕψ (F) = G. Hence ϕψ (F) is a soft ultrafilter on Y . ¤

Theorem 3.27. Every soft filter can be extended to a soft ultrafilter.

Proof. Suppose that F0 is a soft filter on X . (P,⊆), where P is the set of all soft
filters F on X such that F0⊆F is the partially ordered set. If C is a ⊆−chain in P
then by Lemma 3.18 (2),

⋃
C is a soft filter and so it is an upper bound of C in P .

By Zorn’s Lemma, there exists a maximal element F in P . By Theorem 3.25, this
F is a soft ultrafilter. ¤

3.1. Convergence of Soft Filters. In this section, we investigate the convergence
theory of the soft filter in a soft topological space.

Proposition 3.28. Let (X, T ) be a soft topological space and N̆(x) be the family of
all soft neighborhoods of x ∈ X, then N̆(x) is a soft filter on X. N̆(x) is called soft
neighbourhood filter of x.

Proof. It is obvious. ¤

Definition 3.29. Let (X, T ) be a soft topological space, and F be a soft filter on X

and x ∈ X. We say that F converges to x, or that x is a soft limit of F if N̆(x)⊆F .
If F converges to x, we denote by F−̆→x.

Definition 3.29 show that F converges to x if every soft neighbourhood of x is a
member of F .

Theorem 3.30. Let (X, T ) be a soft topological space. Then the following state-
ments are equivalent.

(1) X is soft Hausdorff, that is any two distinct points of X have disjoint soft
neighbourhoods.

(2) Every soft filter on X has at most one soft limit.

Proof. Let (X, T ) is soft Hausdorff and let x1, x2 ∈ X (x1 6= x2). Then there exist
soft open sets GB and FA such that x1∈̆FA, x2∈̆GB and FA∩̆GB = Φ. Thus no soft
filter contains both FA and GB , and so no soft filter can converge to both x1 and
x2. Then all soft filters have at most one soft limit.

Conversely, suppose that F is a soft filter on X, and every soft neighbourhood FA

of x1 meets every soft neighbourhood GB of x2 such that x1 6= x2. Then FA∩̆GB

form a soft filter base for the F which has both x1 and x2 as soft limits, which is
contrary to hypothesis. Hence, X is soft Hausdorff if every soft filter has at most
one soft limit. ¤
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Theorem 3.31. Let S (X, E) and S (Y, K) be the families of all soft sets on X and
Y , respectively. Suppose that ϕψ : (X, T ) −→ (Y, T ∗) is a soft mapping, where ϕ
: X −→ Y and ψ : E −→ K are two mappings. If ϕψ is a soft continuous function
and F is a soft filter on X such that F−̆→x, then we have ϕψ(F)−̆→ϕ(x).

Proof. Let GB ∈ N̆ (ϕ(x)) such that ϕ(x)∈̆GB . Then there exist a FA ∈ T ∗ such
that ϕ(x)∈̆FA⊆̆GB . Thus, we have x ∈ ϕ−1 (FA (ψ(e))) for each ψ(e) ∈ K. Since ϕψ

is a soft continuous function, then ϕ−1
ψ (FA) is soft open in X such that x∈̆ϕ−1

ψ (FA)
and hence ϕ−1

ψ (FA) ∈ F . Since FA⊆̆GB and so ϕ−1
ψ (FA) ⊆̆ϕ−1

ψ (GB), then we have
ϕ−1

ψ (GB) ∈ F . This implies that GB ∈ ϕψ (F) and so ϕ(x)∈̆GB ∈ ϕψ (F) . It follows
that ϕψ(F)−̆→ϕ(x). ¤

Theorem 3.32. Let (X, T ) be a soft topological space. Then it is soft compact if
and only if every soft ultrafilter on X converges to at least one point.

Proof. Let F be a soft ultrafilter on X. By Theorem 2.29, since X is a soft compact,
the collection of closures of elements of F satisfies the finite intersection property,
so by assumption there exists some x which is in the closure of every element of F .
For any FA ∈ N (x), the closure of F c

A does not contain x, hence F cannot contain
F c

A and must contain FA. It follows that F−̆→x.
Conversely, suppose that any collection of soft closed sets (FA)i with the finite

intersection property is contained in a soft ultrafilter F . By assumption, this soft
ultrafilter converges to some point x. Since F contains each (FA)i, it cannot contain
their complements (FA)c

i , so F cannot converge to any element of
⋃

(FA)c
i . It

follows that x∈̆⋂
(FA)i 6= Φ. By Theorem 2.29, (X, T ) is a compact soft topological

space. ¤

Let (X, T ) be a soft topological space and Y be a classical subset of X. Suppose
that F is a soft filter on Y . Then F forms a soft filter base in X, and so generates
a new soft filter F∗.
Theorem 3.33. Let (X, T ) be a soft topological space, Y a soft subspace of X and
F be a soft filter on Y . Then F converges to x in Y, for any x ∈ Y if and only if
F∗, which is generated by the soft filter F converges to x in X.

Proof. Since F forms a soft filter base for F∗, we have F∗ = {GB : ∃FA ∈ F , FA⊆̆
GB}. Let F be a soft filter converging to x in Y and GB be a soft neighbourhood of
x in X. Then there exists an open soft set FA such that x∈̆FA⊆̆GB , Since FA∩̆Ỹ is
soft open over subspace Y, it is a soft neighbourhood of x in Y and so FA∩̆Ỹ ∈ F .

Since FA∩̆Ỹ ⊆̆FA⊆̆GB , we have GB ∈ F∗. Hence F∗ converges to x in X.
Conversely, Let F∗ be a soft filter converging to x in X and GB be a soft neigh-

bourhood of x in X. Then GB ∈ F∗. By Definition 3.21, there exist FA ∈ F
such that FA⊆̆GB . Since FA⊆̆Ỹ , we have FA⊆̆GB∩̆Ỹ . Since F is a soft filter on Y ,
GB∩̆Ỹ ∈ F . Thus, every soft neighbourhood of x in Y is of the form GB∩̆Ỹ . Then
F converges to x in Y. ¤

Lemma 3.34. Let (X, T ) be a soft topological space and GB be a soft set on X.
Then the following statements are equivalent for any x∈̆X.
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(1) x ∈ GB

(2) FA∩̆GB 6= Φ, for each FA ∈ T such that x∈̆FA.

Proof. (i) ⇒ (ii) Let x∈̆GB and FA ∈ T such that x∈̆FA. Then either x∈̆GB or
x/̆∈GB . If x∈̆GB , then FA∩̆GB 6= Φ since x∈̆FA∩̆GB . If x/̆∈GB , then x∈̆GpB . Thus
we have GB∩̆

{
FA−̆ {x}

} 6= Φ for each FA ∈ T such that x∈̆FA. This implies that
FA∩̆GB 6= Φ because of x/̆∈GB .

(ii) ⇒ (i) Let FA∈̆T and x∈̆FA. Since x ∈ X, either x∈̆GB or x/̆∈GB . If x∈̆GB ,

then x∈̆GB . Suppose that x/̆∈GB . Since FA∩̆GB 6= Φ, we have GB∩
{
FA−̆ {x}

} 6= Φ.
Hence x∈̆G′B and so x∈̆GB . ¤
Proposition 3.35. Let (X, T ) be a soft topological space. Then the following state-
ments are equivalent.

(1) (X, T ) is a soft Hausdorff space.
(2) There exist a soft open set FA such that x∈̆FA and y /̆∈FA for all x, y ∈ X

(x 6= y).

Proof. (i) ⇒ (ii) Let x, y ∈ X such that x 6= y. Since (X, T ) is a soft Hausdorff space,
there exist soft open sets GB and FA such that x∈̆FA, y∈̆GB and FA∩̆GB = Φ. By
Lemma 3.34, we have y /̆∈FA.

(ii) ⇒ (i) Let FA be a soft open set and x∈̆FA and y /̆∈FA for all x, y ∈ X, (x 6= y).
Take GB = X̃−̆FA. Since y /̆∈FA, we have y∈̆GB and so FA∩̆GB = Φ. Hence, (X, T )
is a soft Hausdorff space. ¤
Definition 3.36. Let (X, T ) be a soft topological space and F be a soft ultrafilter
on X. F is said to be a soft compact if it contains some FA such that FA is soft
compact.

Theorem 3.37. Let (X, T ) be a soft Hausdorff space and F be a compact soft
ultrafilter on X. Then ⋂{

FA : FA ∈ F
}

= GB

is a singletion soft set.

Proof. Let (FA)0 ∈ F such that (FA)0 is soft compact. We show that GB contains
at least one point that is, exist at least one x ∈ X such that x ∈ GB(e) for all e ∈ E.
Suppose that GB(e) = ∅ for each e ∈ E. Then

⋃ {
X̃−̆FA : FA ∈ F

}
= X̃, so

{F c
A : FA ∈ F} covers X and hence (FA)0. Since (FA)0 is soft compact, there exist

a finite subcover (FA)1, (FA)2 , ..., (FA)m ∈ F such that (FA)0 ⊆̆ (FA)0 ⊆̆ (FA)c
1 ∪̆

(FA)c
2 ∪̆ ...∪̆ (FA)c

m, hence (FA)0 ∩̆ (FA)1 ∩̆ (FA)2 ∩̆ ... ∩̆ (FA)m = Φ ∈ F : i.e. for
each e ∈ E, {(FA)0 ∩ (FA)1 ∩ (FA)2 ∩ ... ∩ (FA)m} (e) = ∅. This contradicts with
the fact that F is a soft ultrafilter. Then GB contains at least one point.

Now we show that GB contains at most one point. Let x1, x2 ∈ X such that
x1 6= x2. Suppose that x1, x2∈̆GB : i.e. x1, x2 ∈ GB(e) for each e ∈ E. Since X
is soft Hausdorff, there exist (FA)1, (FA)2 ∈ T such that x1∈̆(FA)1, x2∈̆(FA)2 and
(FA)1∩̆ (FA)2 = Φ. Then x1 /̆∈ (FA)c

1 and by Proposition 3.35, x2 /̆∈ (FA)1. Since F
is soft ultrafilter, either (FA)1 or (FA)c

1 is in F and so either x1 or x2 is not in GB .
Hence GB contains at least one point. ¤
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Lemma 3.38. Let (X, T ) be a soft topological space and F be a soft ultrafilter
converging x with x ∈ X. If x∈̆FA ∈ T , then FA ∈ F . Moreover, if X is soft
regular, then there exists some GB ∈ F such that x∈̆GB and GB⊆̆FA.

Proof. Let F be a soft ultrafilter converging x ∈ X and x∈̆FA ∈ T . Since every soft
open set containing x is a soft neighborhood of x, we have FA ∈ F . For the second
part of the Lemma, since FA is soft open in X, F c

A is a soft closed set. There exist
GB , HC ∈ T such that x∈̆GB , F c

A⊆̆HC and GB∩̆HC = Φ, since X is soft regular.
Thus GB ⊆̆ FA and by the first claim of Lemma, GB ∈ F . ¤
Definition 3.39. Let F and F∗ be a compact soft ultrafilters on X. If FA∩GB 6= Φ
for all FA ∈ F , GB ∈ F∗, then we say F and F∗ are equivalent.

Theorem 3.40. Let (X, T ) be a Hausdorff and regular soft topological space. If F
and F∗ are compact soft ultrafilters such that converge to x and y, respectively then
x = y if and only if F and F∗ are equivalent.

Proof. The only if direction is clear. Let x 6= y for the if direction. Since X is soft
Hausdorff, there exist FA, GB ∈ T such that x∈̆FA, y∈̆GB and FA ∩̆ GB = Φ. Thus,
GB ∈ F∗ and by Lemma 3.38, there exist HC ∈ F such that HC ⊆̆ FA. Hence,
HC ∩GB = Φ contradicting the equivalence of F and F∗. Then x = y. ¤
Proposition 3.41. Let (X, T ) be a soft compact topological space and FA be a soft
closed set on X. Then FA is a soft compact set on X.

Proof. Let C = {(GB)i : i∈I} be a soft open cover of FA. Then FA⊆̆ ∪i∈I (GB)i.
Hence X̃ = ∪i∈I(GB)i ∪ F c

A, that is, C∗ = {(GB)i : i∈I} ∪̆F c
A is a soft cover of X.

But F c
A is soft open since FA is soft closed, so C∗ is a soft open cover of X. By

hypothesis, X is soft compact, there exist a finite cover of X such that

X̃ = (GB)1∪̆ · · · ∪̆(GB)m∪̆F c
A

But FA and F c
A are disjoint; hence

FA⊆̆(GB)1∪̆ · · · ∪̆(GB)m

Then any soft open cover C of FA contains a finite subcover, i.e FA is soft compact.
¤

Proposition 3.42. Let ϕψ be a soft continuous from (X, T ) to (Y, T ∗) and GB be
a soft set on Y . Then

ϕ−1
ψ (GB)⊆̆ϕ−1

ψ (GB)

Proof. Let ϕψ be a soft continuous function and GB a soft set on Y . Since GB ⊆ GB ,
we have ϕ−1

ψ (GB) ⊆ ϕ−1
ψ

(
GB

)
. Since ϕψ is a soft continuous, ϕ−1

ψ

(
GB

)
is a soft

closed set on X. Then ϕ−1
ψ (GB) = ϕ−1

ψ

(
GB

)
and so ϕ−1

ψ (GB) ⊆ ϕ−1
ψ

(
GB

)
=

ϕ−1
ψ

(
GB

)
. Hence, ϕ−1

ψ (GB) ⊆ ϕ−1
ψ (GB). ¤

Theorem 3.43. Let ϕψ be a soft continuous function from (X, T ) to (Y, T ∗) and
F , F∗ be equivalent compact soft ultrafilters on X. If (Y, T ∗) is a compact soft
topological space, then ϕψ(F) and ϕψ(F∗) are equivalent compact soft ultrafilters on
Y .
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Proof. Let F and F∗ be equivalent compact soft ultrafilters on X, and ϕψ : (X, T )
−→ (Y, T ∗) be a soft continuous. By Theorem 3.26, ϕψ (F) and ϕψ (F∗) are soft
ultrafilters on Y . Since F is compact soft ultrafilter on X, there exist a HC ∈ F
such that HC is compact soft set on X. By Proposition 3.41 , ϕψ (HC) is a compact
soft set in Y such that ϕψ (HC) ∈ ϕψ (F), since Y is soft compact. Then ϕψ (F)
(similarly, ϕψ (F∗)) is a compact soft ultrafilter on Y . Now, let FA ∈ ϕψ (F),
GB ∈ ϕψ (F∗) . Then ϕ−1

ψ (FA) ∈ F and ϕ−1
ψ (GB) ∈ F∗. Since F and F∗ are

equivalent compact soft ultrafilters on X, we have ϕ−1
ψ (FA)∩̆ϕ−1

ψ (GB) 6= Φ. Since
ϕψ is a soft continuous mapping, by Proposition 3.42

ϕ−1
ψ (FA)∩̆ϕ−1

ψ (GB)⊆̆ϕ−1
ψ

(
FA

) ∩̆ϕ−1
ψ

(
GB

) 6= Φ

and so ϕ−1
ψ

(
FA∩̆GB

) 6= Φ. Thus, FA∩̆GB 6= Φ. Then ϕψ (F) and ϕψ (F∗) are
equivalent compact soft ultrafilters on Y . ¤

4. Conclusions

The soft set theory of Molodtsov [20] offers a general mathematical tool for dealing
with uncertain, fuzzy, or vague objects. Molodtsov in [20] has give several possible
applications of soft set theory. In this paper, we define the notions of soft filter and
soft ideal by using soft sets on an universal set. Also, we investigate their relation-
ships with concepts of filter and ideal corresponding to each parameter defined on
the same universal set and support by examples and counterexamples. We hope
that the findings in this paper will help researcher enhance and promote the further
study on soft set theory to carry out a general framework for their applications.
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