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1. Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh
[27], fuzzy logic has become an important area of research in various branches of
Mathematics such as metric and topological spaces, theory of functions, approxi-
mation theory etc. Subsequently several authors have discussed various aspects of
the theory and applications of fuzzy sets. The concept of fuzziness has been ap-
plied in various fields such as Statistics, Cybernetics, Artificial intelligence, Opera-
tion research, Decision making, Agriculture, Weather forecasting, Quantum physics.
Similarity relations of fuzzy orderings, fuzzy measures of fuzzy events, fuzzy math-
ematical programming etc.

Let (xmn) be a double sequence of real or complex numbers. Then the series∑∞
m,n=1 xmn is called a double series. The double series

∑∞
m,n=1 xmnis said to be

convergent if and only if the double sequence (Smn)is convergent, where
Smn =

∑m,n
i,j=1 xij(m,n = 1, 2, 3, ...) .

We denote w2 as the class of all complex double sequences (xmn). A sequence x =
(xmn)is said to be double analytic if
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supmn |xmn|1/(m+n)
< ∞.

The vector space of all prime sense double analytic sequences are usually denoted
by Λ2. A sequence x = (xmn) is called double gai sequence if

((m + n)! |xmn|)1/(m+n) → 0 as m,n →∞.

The vector space of all prime sense double gai sequences are usually denoted by χ2.
The space Λ2 is a metric space with the metric

(1.1) d(x, y) = supmn

{
|xmn − ymn|1/(m+n) : m,n : 1, 2, 3, ...

}
,

for all x = {xmn}andy = {ymn} inΛ2. The space χ2 is a metric space with the
metric

(1.2) d(x, y) = supmn

{
((m + n)! |xmn − ymn|)1/(m+n) : m,n : 1, 2, 3, ...

}
,

for all x = {xmn}andy = {ymn} inχ2.
Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence

is defined by x[m,n] =
∑ m,n

i,j=0xijδij for all m,n ∈ N,

δmn =




0, 0, ...0, 0, ...
0, 0, ...0, 0, ...
.
.
.
0, 0, ...1, 0, ...
0, 0, ...0, 0, ...




with 1 in the (m,n)th position and zero other wise. An FK-space(or a metric space)X
is said to have AK property if (δmn) is a Schauder basis for X. Or equivalently
x[m,n] → x. We need the following inequality in the sequel of the paper:

Lemma 1.1. For a, b ≥ 0 and 0 < p < 1, we have
(a + b)p ≤ ap + bp.

Some initial works on double sequence spaces is found in Bromwich [2]. Later
on it was investigated by Hardy [6], Moricz [9], Moricz and Rhoades [12], Basarir
and Solankan [1], Tripathy [18], Colak and Turkmenoglu [3], Turkmenoglu [26], and
many others. Tripathy and Dutta [20], introduced andinvestigated different types
of fuzzy real valued double sequence spaces. Generalizing the concept of ordinary
convergence for real sequences Kostyrko et al.[8] introduced the concept of ideal
convergence which is a generalization of statistical convergence, by using the ideal I
of the subsets of the set of natural numbers. For more details of this concept we refer
to M.Mursaleen and S.A.Mohiuddine [14, 15, 16], S.A.Mohiuddine et al. [11, 10] and
references therein.

Throughout the article Λ2, χ2 denote the spaces of analytic and gai sequences
respectively and Λ2I

F and χ2I
F denote the classes of I− analytic and I−gai fuzzy real

valued double sequences, respectively.
The notion of difference sequence spaces (for single sequences) was introduced by

Kizmaz [7] as follows
Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
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for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, c0 and `∞
denote the classes of all, convergent, null and bounded scalar valued single sequences,
respectively. The above spaces are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| .
Later on the notion was further investigated by many others. The notion of difference
double sequence was introduced by Tripathy and Sarma [19] as follows

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}

where Z = Λ2 and χ2, respectively. ∆xmn = (xmn − xmn+1)−(xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N. Further generalized this notion
and introduced the following notion. For m,n ≥ 1,

Z
(
∆µ

γ

)
=

{
x = (xmn :

(
∆µ

γxmn

) ∈ Z
}

for Z = Λ2 and χ2.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞ as
x →∞. If convexity of Orlicz function M is replaced by M (x + y) ≤ M (x)+M (y) ,
then this function is called modulus function.

Remark 1.2. An Modulus function satisfies the inequality M(λx) ≤ λM(x) for all
λ with 0 < λ < 1.

2. Preliminaries

Let X be a non-empty set, then a family of sets I ⊂ 2X (the class of all subsets
of X) is called an ideal if and only if for each A,B ∈ I, we have A

⋃
B ∈ I and

for each A ∈ I and each each B ⊂ A, we have B ∈ I. A non-empty family of
sets F ⊂ 2X is a filter on X if and only if φ /∈ F, for each A,B ∈ F, we have
A

⋂
B ∈ F and each A ∈ F and each A ⊂ B, we have B ∈ F. An ideal I is

called non-trivial ideal if I 6= φ and X /∈ I. Clearly I ⊂ 2X is a non-trivial ideal
if F = F (I) = {X/A : A ∈ I} is a filter on X. A non-trivial ideal I ⊂ 2X is called
admissible if and only if {{x} : x ∈ X} ⊂ I. Further details on ideals of 2X can be
found in Kostyrko, et. al.[8]. The notion was further investigated by Salat, et. al.
and others. Throughout the ideals of 2N and 2N×N will be denoted by I and I2

respectively.
A fuzzy real number X is a fuzzy set on R, a mapping X : R → L (= [0, 1])

associating each real number t with its grade of membership X (t) . The α− level
set of a fuzzy real number X, 0 < α < 1 denoted by [X]α is defined as [X]α =
{t ∈ R : X (t) ≥ α} . A fuzzy real number X is called convex if X (t) ≥ X (s) ∧
X (r) = min (X (s) , X (r)) , where s < t < r. If there exists t0 ∈ R such that
X (t0) = 1, then the fuzzy real number X is called normal. A fuzzy real X is said to
be upper semi-continuous if for each ε > 0, X−1 ([0, a + ε)) , for all a ∈ L is open in
the usual topology of R. The set of all upper semi continuous, normal convex fuzzy
number is denoted by L (R) .

Throughout a fuzzy real valued double sequence is denoted by (Xmn) i.e a double
infinite array of fuzzy real number Xmn for all m, n ∈ N.
Every real number r can express as a fuzzy real number r as follows:

r =
{

1, if t = r;
0, otherwise
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Let D be the set of all closed bounded intervals X =
[
XL, XR

]
. Then X ≤ Y if

and only if XL ≤ Y L and XR ≤ Y R. Also
d (X, Y ) = max

(∣∣XL − Y L
∣∣ ,

∣∣XR − Y R
∣∣) .

Then (D, d) is a complete metric space. Let d : L (R)× L (R) → R be defined by
d (X, Y ) = sup0≤α≤1d ([X]α , [Y ]α) for X, Y ∈ L (R) .

Then d defined a metric on L (R) .

Definition 2.1 ([4]). Let A denote a four dimensional summability method that
maps the complex double sequences x into the double sequence. Ax where the
mn− th term to Ax is as follows

(Ax)k,` =
∑∞

m=1

∑∞
n=1 amn

k` xmn.

In [5] Hardy presented the notion of regularity of two dimensional matrix transfor-
mations. The definition is as follows: a two dimensional matrix transformation is
said to be regular if it maps every convergent sequence into a convergent sequence
with the same limit. In addition, to the numerous theorems characterizing regu-
larity. Hardy also presented the Silvermann-Toeplitz characterization of regularity
following this work Robison in 1926 presented a four dimensional analog of regularity
for double sequences in which he added an additional assumption of boundedness.
This assumption was made because a double sequence which is P−convergent is
not necessarily bounded along these same lines, Robison and Hamiltion presented a
Silverman-Toeplitz type multidimensional characterization of regularity in [17] and
[4]. The definition of regularity for four dimensional matrices will be stated next, fol-
lowed by the Robison-Hamilton characterization of the regularity of four dimensional
matrices.

Definition 2.2 ([13]). A double sequences (Xmn) is said to be convergent in Pring-
sheim’s sense to the fuzzy real number X, if for every ε > 0, there exists n0 =
n0 (ε) , k0 = k0 (ε) ∈ N such that d (Xmn, X) < ε for all n ≥ n0, k ≥ k0.

Definition 2.3 ([23]). A double sequence (Xmn) is said to be I−convergent to the
fuzzy number X0, if for all ε > 0, the set

{
(n, k) ∈ N2 : d (Xmn, X0) ≥ ε

} ∈ I2. We
write I2 − limXmn = X0. [see [23]]

Definition 2.4 ([24]). A fuzzy real-valued double sequence space EF is said to be
solid of (Ymn) ∈ EF whenever (Xmn) ∈ EF and |Ymn| ≤ |Xmn| for all m, n ∈ N.

Let K = {(mi, ni) : i ∈ N; m1 < m2 < m3 · · · andn1 < n2 < n3 · · · } ⊆ N×N and
EF be a double sequence space. A K− step space of EF is a sequence space
λE

K =
{
(xmini) ∈ w2F : (xmn) ∈ EF

}
.

A canonical pre-image of a sequence (xmini) ∈ EF is a sequence (Ymn) defined
as follows:

Ymn =
{

Xmn, if (m,n) ∈ K,
0, otherwise.

A canonical pre-image of a step space λE
K is a set of canonical pre-images of all

elements in λE
K .

Definition 2.5 ([25]). A double sequence EF is said to be monotone if EF contains
the canonical pre-image of all its step spaces.
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Definition 2.6 ([22]). A double sequence EF is said to be symmetric if
(
Xπ(m),π(n)

)
∈ EF , whenever (Xmn) ∈ EF , where π is a permutation of N ×N.

Definition 2.7 ([23]). A double sequence EF is said to be sequence algebra if
(Xmn ⊗ Ymn) ∈ EF , whenever (Xmn) , (Ymn) ∈ EF .

Definition 2.8 ([16]). A double sequence EF is said to be convergence free if
(Ymn) ∈ EF , whenever (Xmn) ∈ EF and Xmn = 0 implies Ymn = 0.

Let (Xmn) be a double sequence of fuzzy numbers and (pmn) be a double sequence
of analytic strictly positive real numbers such that 0 < pmn ≤ suppmn < ∞. We
introduce the following sequence spaces:

χ
2I(F )
f(∆,p) =

{
X = (Xmn) :

{
(m,n) ∈ N× N :

f
[
d

(
((m + n)!∆Xmn)1/(m+n)

, 0
)]pmn ≥ ε

}
∈ I2,

}

for every ε > 0.

Λ2F
f(∆,p) =

{
X = (Xmn) : supmnf

[
d

(
(∆Xmn)1/(m+n)

, 0
)]pmn

< ∞
}

.

Also we write Λ2I(F )
f(∆,p) = χ

2I(F )
f(∆,p)

⋂
Λ2F

f(∆,p)

Lemma 2.9 ([19]). If a sequence EF is solid, then it is monotone. See [12], p. 53.

3. Major section

Proposition 3.1. Let p = (pmn) be a double sequence of analytic strictly positive
numbers. Then Λ2I(F )

f(∆,p) and Λ2F
f(∆,p) are linear spaces.

Proof. This is the proof of Proposition 3.1, is easy. Therefore omit the proof. ¤

Proposition 3.2. Let the double sequence p = (pmn) be analytic. Then
χ

2I(F )
f(∆,p) ⊆ Λ2F

f(∆,p) and the inclusion are strict.

Proof. This is the proof of Proposition 3.2, the inclusion χ
2I(F )
f(∆,p) ⊆ Λ2F

f(∆,p) is obvious.
For establishing that the inclusion is proper, consider the following example.

Example: We prove the result for the case χ
2I(F )
f(∆,p) ⊆ Λ2F

f(∆,p), the other case similar.
Let f (∆X) = ∆X. Let the sequence ∆Xmn be defined by for m > n,

∆Xmn (t) =





(mt−m−1)(m+n)(m−1)−(m+n)

(m+n)! , for 1 + 1
m ≤ t ≤ 2,

(3−t)(m+n)

(m+n)! , for 2 < t ≤ 3,

0, otherwise.

and for m < n

∆Xmn (t) =





(mt−1)(m+n)(m−1)−(m+n)

(m+n)! , for 1
m ≤ t ≤ 1,

(−t+2)(m+n)

(m+n)! , for 1 ≤ t ≤ 2,

0, otherwise.
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Then, (∆Xmn) ∈ Λ2F
f(∆,p) but (∆Xmn) /∈ χ

2I(F )
f(∆,p). ¤

Proposition 3.3. The class of sequence Λ2I(F )
f(∆,p) is solid and also monotone.

Proof. This is the proof of Proposition 3.3, let (Xmn) , (Ymn) ∈ Λ2I(F )
f(∆,p) be such that

|Ymn| ≤ |Xmn| ⇒ d
(
Ymn, 0

) ≤ d
(
Xmn, 0

)
for each m, n ∈ N. Let ε > 0 be given.

Then the solidness of Λ2I(F )
f(∆,p) follows from the following relation:{

(m,n) ∈ N× N : f
[
d

(
((m + n)!∆Xmn)1/(m+n)

, 0
)]pmn ≥ ε

}
⊇{

(m,n) ∈ N× N : f
[
d

(
((m + n)!∆Ymn)1/(m+n)

, 0
)]pmn ≥ ε

}
.

Also by Lemma 2.9, it follows that the space Λ2I(F )
f(∆,p) is monotone. ¤

Proposition 3.4. The class of sequence Λ2I(F )
f(∆,p) is sequence algebra.

Proof. This is the proof of Proposition 3.4, let (Xmn) , (Ymn) ∈ Λ2I(F )
f(∆,p) and 0 < ε <

1. Then the result follows from the following inclusion relation:{
(m,n) ∈ N× N : f

[
d

(
((m + n)! (∆Xmn ⊗∆Ymn))1/(m+n)

, 0
)]pmn

< ε
}
⊇{

(m,n) ∈ N× N : f
[
d

(
((m + n)!∆Xmn)1/(m+n)

, 0
)]pmn

< ε
}

⋂ {
(m,n) ∈ N× N : f

[
d

(
((m + n)!∆Ymn)1/m+n

, 0
)]pmn

< ε
}

.

Similarly we can prove the result for other cases. ¤

Proposition 3.5. The class of sequence Λ2I(F )
f(∆,p) is complete metric space with re-

spect to the metric ρ defined by
ρ (X,Y ) = supmf

[
d

(
((m + 1)! (Xm1, Ym1))

1/m+1
, 0

)]pmn

+supnf
[
d

(
((1 + n)! (X1n, Y1n))1/1+n

, 0
)]pmn

+supmnf
[
d

(
((m + n)! (∆Xmn, ∆Ymn))1/m+n

, 0
)]pmn

where X = (Xmn) , Y = (Ymn) ∈ Λ2I(F )
f(∆,p) and ∆Xmn = (Xmn −Xmn+1) − (Xm+1n

−Xm+1n+1) = Xmn −Xmn+1 −Xm+1n + Xm+1n+1 for all m,n ∈ N.

Proposition 3.6. The class of sequence Λ2I(F )
f(∆,p) is nowhere dense subsets of Λ2F

f(∆,p).

Proof. This is the proof of Proposition 3.6, by Proposition 3.1, the sequence space
Λ2I(F )

f(∆,p) are proper subspace of Λ2F
f(∆,p). Hence by proposition 3.5 the result follows.

¤

4. Conclusions

In this article are introduce fuzzy I− convergent χ2
∆ space defined by modulus

function and disucss some topogological properties.
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