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Abstract. In this paper, the concept of extended intersection and
restricted union of intuitionistic fuzzy soft sets are introduced. Some oper-
ations on intuitionistic fuzzy soft sets are investigated, and we prove that
De Morgan’s laws hold in intuitionistic fuzzy soft sets theory. Based on
these properties, we discuss the algebraic structures of intuitionistic fuzzy
soft sets, which is lattice structures.
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1. Introduction

Most of traditional methods for formal modeling, reasoning, and computing
are crisp, deterministic, and precise in character. However, many practical problems
within the fields of economics, engineering, environmental science, medical science
and social sciences involve data that contain uncertainties. We can not use tradi-
tional methods because of various types of uncertainties present in these problems.

There are several theories: probability theory, theory of fuzzy sets [26], theory
of interval mathematics, and theory of rough sets [20], which we can consider as
mathematical tools for dealing with uncertainties. But all these theories have their
own difficulties (see [14]). To overcome these difficulties, Molodtsov [14] proposed
a completely new approach, which is called theory of soft sets, for modeling uncer-
tainty.

Presently, works on soft set theory are progressing rapidly. Maji et al. [18, 17]
further studied soft set theory and used this theory to solve some decision making
problems. Aktas and Cağman [3] defined soft groups. Jiang et al. [12] extended soft
sets with description logics. Feng et al. [7, 8] investigated the relationship among
soft sets, rough sets and fuzzy sets. Ge et al. [10] discussed the relationship between
soft sets and topological spaces. Babitha et al. [4] proposed relations on soft sets.
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Shabir et al. [23] introduced soft topological spaces over the universe with a fixed
set of parameters. Cağman et al. [5] defined topologies on soft sets.

Maji et al. [15] devoted the concept of fuzzy soft sets by combining soft sets with
fuzzy sets. Roy et al. [22] presented a fuzzy soft set theoretic approach towards
decision making problems. Jiang et al. [13] generalized the adjustable approach
to fuzzy soft sets based decision making. Feng et al. [9] proposed an adjustable
approach to (weighted) fuzzy soft set based decision making. Yang et al. [25]
introduced the concept of interval-valued fuzzy soft set. Jun et al. [11] discussed
the applications of fuzzy soft sets to study BCK/BCI-algebras. Tanay et al. [24]
investigated the topological structure of fuzzy soft sets.

K. Atanassov [1, 2] introduced the concept of intuitionistic fuzzy sets. Maji et al.
[16, 19] introduced the theory of intuitionistic fuzzy soft set. P. Rajarajeswari et al.
[21] gave the concepts of intuitionistic fuzzy contra weakly generalized continuous
map-pings in intuitionistic fuzzy topological space.

In this paper, we deal with the algebraic structures based on lattice of intuition-
istic fuzzy soft sets. Some operations on intuitionistic fuzzy soft sets are introduced.
Some lattice structures of intuitionistic fuzzy soft sets are established. The De Mor-
gan’s laws in intuitionistic fuzzy soft set theory are verified.

2. Preliminaries

In this paper, U denotes initial universe, E denotes parameter set, I denotes [0, 1]
and 2U denotes the family of all subsets of U .

Throughout this paper, we only consider the case where U and E are both
nonempty finite sets.

We briefly recall some basic concepts of soft sets, intuitionistic fuzzy sets, intu-
itionistic fuzzy soft sets and lattices.

2.1. Soft sets and intuitionistic fuzzy sets.

Definition 2.1 ([14]). A pair (f, E) is called a soft set over U , if f is a mapping
given by f : E → 2U .

Definition 2.2 ([1]). An intuitionistic fuzzy (briefly IF) set A in U is an object the
form

A = {(x, µA(x), γA(x)) : x ∈ U},
where µA : U → [0, 1] and γA : U → [0, 1] satisfying 0 ≤ µA(x) + γA(x) ≤ 1
for all x ∈ U , and µA(x) and γA(x) are, respectively, used to define the degree of
membership and the degree of non-membership of the element x to A.

Obviously, every fuzzy set has the form {(x, µA(x), 1 − µA(x)) : x ∈ U} and
is thus an IF set. Every crisp set A is still regarded as an IF set with the form
{(x, 1, 0) : x ∈ A}, and if y /∈ A, then µA(y) = 0 and γA(y) = 1.

In this paper, IF(U) denotes the family of all IF sets in U , Ũ represents the IF
set which satisfies Ũ(x) = {(x, 1, 0) : x ∈ U} and ∅̃ represents the IF set which
satisfies ∅̃(x) = {(x, 0, 1) : x ∈ U}.

If A, B ∈ IF(U), then some IF set relations and operations are given componen-
twise proposed by Atanassov [1] as follows:
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(1) A = B iff µA(x) = µB(x) and γA(x) = γB(x) for all x ∈ U .
(2) A ⊆ B iff µA(x) ≤ µB(x) and γA(x) ≥ γA(x) for all x ∈ U .
(3) A ∩B = {(x,min(µA(x), µB(x)),max(γA(x), γB(x))) : x ∈ U}.
(4) A ∪B = {(x,max(µA(x), µB(x)),min(γA(x), γB(x))) : x ∈ U}.
(5) Ac(x) = {(x, γA(x), µA(x)) : x ∈ U}.
Moreover, ⋂

α∈Γ

Aα = {(x,
∧

α∈Γ

µAα
(x),

∨

α∈Γ

γAα
(x)) : x ∈ U}.

for any x ∈ U and
⋃

α∈Γ

Aα = {(x,
∨

α∈Γ

µAα
(x),

∧

α∈Γ

γAα
(x)) : x ∈ U}

for any x ∈ U , where {Aα : α ∈ Γ} ⊆ IF(U) and Γ is an index set.
Obviously, A = B ⇐⇒ A ⊆ B and B ⊆ A.

2.2. Intuitionistic fuzzy soft sets.

Definition 2.3 ([16]). Let A ⊆ E. A pair (f,A) is called an intuitionistic fuzzy soft
(briefly IFS) set over U , if f is a mapping given by f : A → IF(U). We also denote
(f,A) by fA.

In other words, an IFS set fE over U is a parameterized family of IF sets in the
universe U .

Let A ⊆ E. Denote

S(U)A = {fA : fA is an IFS set over U},

S(U) = {fA : fA is an IFS set over U and A ⊆ E}.
Obviously,

S(U)A ⊆ S(U).

Example 2.4. Let U = {x1, x2, x3, x4, x5, x6} and E = {e1, e2, e3}. Let fE be an
IFS set over U , defined as follows

f(e1) = (0,1)
x1

+ (0.3,0.6)
x2

+ (0.8,0.1)
x3

+ (0.5,0.2)
x4

+ (0.7,0.1)
x5

+ (0.3,0.6)
x6

,

f(e2) = (0.7,0.2)
x1

+ (0.5,0.5)
x2

+ (0.1,0.8)
x3

+ (0.2,0.6)
x4

+ (0.2,0.7)
x5

+ (0.6,0.3)
x6

,

f(e3) = (0.1,0.8)
x1

+ (0.9,0.1)
x2

+ (1,0)
x3

+ (0.5,0.4)
x4

+ (0.1,0.7)
x5

+ (0.7,0.3)
x6

.
Then fE is described by the following Table 1.

Table 1. Tabular representation of the intuitionistic fuzzy soft sets fE

x1 x2 x3 x4 x5 x6

e1 (0, 1) (0.3, 0.6) (0.8, 0.1) (0.5, 0.2) (0.7, 0.1) (0.3, 0.6)
e2 (0.7, 0.2) (0.5, 0.5) (0.1, 0.8) (0.2, 0.6) (0.2, 0.7) (0.6, 0.3)
e3 (0.1, 0.8) (0.9, 0.1) (1, 0) (0.5, 0.4) (0.1, 0.7) (0.7, 0.3)
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Definition 2.5 ([16]). Let A,B ⊆ E and let fA, gB ∈ S(U). fA is called a IFS
subset of gB , if
(i) A ⊆ B,
(ii) f(e) ⊆ g(e) for any e ∈ E.
We denote it by fA ⊂̃ gB , where
f(e) = {(x, µf(e)(x), γf(e)(x)) : x ∈ U} and g(e) = {(x, µg(e)(x), γg(e)(x)) : x ∈ U}.
Definition 2.6 ([16]). Let A,B ⊆ E and let fA, gB ∈ S(U). fA and gB are called
IFS equal, if fA ⊂̃ gB and gB ⊂̃ fA. We denote it by fA = gB .

Definition 2.7 ([16]). Let A,B ⊆ E and let fA, gB ∈ S(U). The intersection of
them is the IFS set hC where C = A∩B, and h(e) = f(e)∩ g(e) for any e ∈ C. We
denote it by fA ∩̃ gB = hC .

Definition 2.8 ([16]). Let A,B ⊆ E and let fA, gB ∈ S(U). The union of them is
the IFS set hC where C = A ∪B, and for any e ∈ C,

h(e) =





f(e), e ∈ A−B,
g(e), e ∈ B −A,
f(e) ∪ g(e), e ∈ A ∩B.

We denote it by fA ∪̃ gB = hC .

Definition 2.9 ([16]). Let A ⊆ E and let fA ∈ S(U). The relative complement of
fA is denoted f ′A, where f ′ : A → IF(U) is a mapping given by f ′(e) = f c(e) for
any e ∈ A.

2.3. Lattices.

Definition 2.10 ([6]). Let (L,≤) be a poset and a, b ∈ L.
(1) a is called a top (or maximal) element of L, if x ≤ a for any x ∈ L.
(2) b is called a bottom (or minimal) element of L, if b ≤ x for any x ∈ L.

If a poset L has top elements a1, a2 (resp. bottom elements b1, b2), then a1 = a2

(resp. b1 = b2). We denote this sole top element (resp. this sole bottom element)
by 1L (resp. 0L).

Definition 2.11 ([6]). Let (L,≤) be a poset, S ⊆ L and a, b ∈ L.
(1) a is called a above boundary in S, if x ≤ a for any x ∈ S.
(2) b is called a under boundary in S, if b ≤ x for any x ∈ S.
(3) a = sup S or ∨ S, if a is a minimal above boundary in S.
(4) b = inf S or ∧ S, if b is a maximal under boundary in S.

Let (L,≤) be a poset, S ⊆ L. If S has ∨S (resp. ∧S), then ∨S (resp. ∧S) is sole.
But we can not claim that ∨S ∈ S (resp. ∧S ∈ S) although ∨S ∈ L (resp. ∧S ∈ L).

We stipulate that ∨ ∅ = 0L and ∧ ∅ = 1L. If S = {a, b}, then we denote
∨S = a ∨ b and ∧S = a ∧ b.

Remark 2.12 ([6]). Let (L,≤) be a poset and a, b, c ∈ L. Then
(1) a = a ∧ b ⇐⇒ a ≤ b ⇐⇒ b = a ∨ b.
(2) a ≤ b =⇒ a ∧ c ≤ b ∧ c; a ≤ b =⇒ a ∨ c ≤ b ∨ c.
(3) “ a ≤ b and b < a ” can not be simultaneously true.
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Definition 2.13 ([6]). Let (L,≤) be a poset.
(1) L is called a lattice, if a ∨ b ∈ L, a ∧ b ∈ L for any a, b ∈ L.
(2) L is called a complete lattice, if ∨ S ∈ L, ∧ S ∈ L for any S ⊆ L.
(3) L is called a distributive lattice, if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L.

Definition 2.14 ([6]). Let L be a lattice with 1L and 0L and a, b ∈ L. b is called a
complement element of a, if a ∨ b = 1L, a ∧ b = 0L.

If L is a distributive lattice and a ∈ L has complement elements b1, b2, then
b1 = b2. We denote the complement element of a by a′.

Example 2.15. Let L = [0, 1]. For any a, b ∈ L, we define a ≤ b by b − a ≥ 0.
Obviously, 1L = 1, 0L = 0. It is easily proved that L is a complete distributive
lattice.

3. The properties of IFS sets

In this section, we introduce some operations on IFS sets and investigate their
related properties.

Theorem 3.1. Let fA, gB ∈ S(U). Then
(1) (fA ∪̃ gB) ∩̃ fA = fA,
(2) (fA ∩̃ gB) ∪̃ fA = fA.

Proof. Put (fA ∪̃ gB) ∩̃ fA = m(A∪B)∩B . For any e ∈ A ∪B.
i) If e ∈ B −A, then m(e) = g(e) ∩ f(e) = ∅̃ = f(e).
ii) If e ∈ A−B, then m(e) = f(e) ∩ f(e) = f(e).
iii) If e ∈ A ∪B, then m(e) = (f(e) ∪ g(e)) ∩ f(e) = f(e).

Thus (fA ∪̃ gB) ∩̃ fA = fA.
(2) This is similar to the proof of (1). ¤

Proposition 3.2. Let fA, gB , hC ∈ S(U). Then
(1) fA ∪̃ fA = fA,
(2) fA ∪̃ gB = gB ∪̃ fA,
(3) (fA ∪̃ gB) ∪̃ hC = fA ∪̃ (gB ∪̃ hC).

Proof. (1) and (2) are trivial. We only prove (3). Put

(fA ∪̃ gB) ∪̃ hC = kA∪B∪C , fA ∪̃ (gB ∪̃ hC) = lA∪B∪C .

For any e ∈ A ∪B ∪C, it follows that e ∈ A, or e ∈ B, or e ∈ C. Without losing
of generality, we can suppose that e ∈ C.

i) If e 6∈ A ∪B, then k(e) = h(e) = l(e).
ii) If e ∈ B −A, then k(e) = g(e) ∪ h(e) = l(e).
iii) If e ∈ A−B, then k(e) = f(e) ∪ h(e) = l(e).
iv) If e ∈ A ∩B, then k(e) = (f(e) ∪ g(e)) ∪ h(e) = f(e) ∪ (g(e) ∪ h(e)) = l(e).

Thus (fA ∪̃ gB) ∪̃ hC = fA ∪̃ (gB ∪̃ hC). ¤
Proposition 3.3. Let fA, gB , hC ∈ S(U). Then

(1) fA ∩̃ fA = fA,
(2) fA ∩̃ gB = gB ∩̃ fA,
(3) (fA ∩̃ gB) ∩̃ hC = fA ∩̃ (gB ∩̃ hC).
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Proof. (1) and (2) are trivial. We only prove (3). Put

(fA ∩̃ gB) ∩̃ hC = kA∩B∩C , fA ∩̃ (gB ∩̃ hC) = lA∩B∩C .

For any e ∈ A ∩B ∩ C, it follows that e ∈ A, e ∈ B and e ∈ C. Since

k(e) = (f(e) ∩ g(e)) ∩ h(e) = f(e) ∩ (g(e) ∩ h(e)) = l(e),

then (fA ∩̃ gB) ∩̃ hC = fA ∩̃ (gB ∩̃ hC). ¤
Proposition 3.4. Let fA, gB , hC ∈ S(U). Then

(1) (fA ∪̃ gB) ∩̃ hC = (fA ∩̃ hC) ∪̃ (gB ∩̃ hC),
(2) (fA ∩̃ gB) ∪̃ hC = (fA ∪̃ hC) ∩̃ (gB ∪̃ hC).

Proof. (1) Put
(fA ∪̃ gB) ∩̃ hC = k(A∪B)∩C ,

(fA ∩̃ hC) ∪ (gB ∩̃ hC) = l(A∩C)∪(B∩C).

Obviously, (A∪B)∩C = (A∩C)∪ (B ∩C). For any e ∈ (A∪B)∩C, it follows
that e ∈ A ∩ C, or e ∈ B ∩ C.

i) If e 6∈ A ∩ C and e ∈ B ∩ C, then e 6∈ A, e ∈ B and e ∈ C. So k(e) =
g(e) ∩ h(e) = l(e).

ii) If e ∈ A ∩ C and e 6∈ B ∩ C, then e ∈ A, e 6∈ B and e ∈ C. So k(e) =
f(e) ∩ h(e) = l(e).

iii) If e ∈ A ∩ C and e ∈ B ∩ C, then e ∈ A, e ∈ B and e ∈ C. So k(e) =
(f(e) ∪ g(e)) ∩ h(e) = (f(e) ∩ h(e)) ∪ (g(e) ∩ h(e)) = l(e).

Thus
(fA ∪̃ gB) ∩̃ hC = (fA ∩̃ gB) ∪ (gB ∩̃ hC).

(2) This is similar to the proof of (1). ¤
Definition 3.5. Let A,B ⊆ E and let fA, gB ∈ S(U). The extended intersection of
them is the IFS set hC where C = A ∪B, and for any e ∈ C,

h(e) =





f(e), e ∈ A−B,
g(e), e ∈ B −A,
f(e) ∩ g(e), e ∈ A ∩B.

We denote it by fA u gB = hC .

Definition 3.6. Let A,B ⊆ E and let fA, gB ∈ S(U). The restricted union of them
is the IFS set hC where C = A∩B, and h(e) = f(e)∪g(e) for any e ∈ C. We denote
it by fA t gB = hC .

Theorem 3.7. Let fA, gB , hC ∈ S(U). Then
(1) fA t fA = fA,
(2) fA t gB = gB t fA,
(3) (fA t gB) t hC = fA t (gB t hC).

Proof. This is obvious. ¤
Theorem 3.8. Let fA, gB , hC ∈ S(U). Then

(1) fA u fA = fA,
(2) fA u gB = gB u fA,
(3) (fA u gB) u hC = fA u (gB u hC).
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Proof. This is obvious. ¤

Theorem 3.9. Let fA, gB ∈ S(U). Then
(1) (fA t gB) u fA = fA,
(2) (fA u gB) t fA = fA.

Proof. Let (fA t gB) = hA∩B . For any e ∈ E,
i) If e ∈ A−B, then e 6∈ A ∩B and h(e) = ∅̃. Thus (hA∩B u fA)(e) = f(e).
ii) If e ∈ B−A, then e 6∈ A∩B and h(e) = ∅̃. Thus (hA∩B ufA)(e) = ∅̃ = f(e).
iii) If e ∈ A ∩B, then h(e) = f(e) ∪ g(e). Thus (hA∩B u fA)(e) = (f(e) ∪ g(e)) ∩

f(e) = f(e).
Hence (fA t gB) u fA = fA.
(2) This is similar to (1). ¤

Theorem 3.10. Let fA, gB , hC ∈ S(U). Then
(1) fA t (gB u hC) = (fA t gB) u (fA t hC),
(2) fA u (gB t hC) = (fA u gB) t (fA u hC).

Proof. (1) Let fAt(gBuhC) = mA∩(B∪C) and (fAtgB)u(fAthC) = n(A∩B)∪(A∩C) =
nA∩(B∪C).

For any e ∈ A ∩ (B ∪ C), this implies e ∈ A and e ∈ B ∪ C.
i) If e ∈ B − C, then m(e) = f(e) ∪ g(e) = n(e).
ii) If e ∈ C −B, then m(e) = f(e) ∪ h(e) = n(e).
iii) If e ∈ B∩C, then m(e) = f(e)∪ (g(e)∩h(e)) = (f(e)∪ g(e))∩ (f(e)∪h(e)) =

n(e).
Thus fA t (gB u hC) = (fA t gB) u (fA t hC).
(2) This proof is similar to (1). ¤

Theorem 3.11. Let fA, gB ∈ S(U). Then
(1) (fA ∪̃ gB)′ = f ′A u g′B,
(2) (fA u gB)′ = f ′A ∪̃ g′B.

Proof. Let fA ∪̃ gB = hA∪B and f ′A u g′B = lA∪B . For any e ∈ E,
i) If e 6∈ A ∪B, then h′(e) = ∅̃ = l(e).
ii) If e ∈ B −A, then h′(e) = g′(e) = l(e).
iii) If e ∈ A−B, then h′(e) = f(e) = l(e).
iv) If e ∈ A ∩B, then h′(e) = (f(e) ∪ g(e))′ = f(e)′ ∩ g(e)′ = l(e).
Thus (fA ∪̃ gB)′ = f ′A u g′B .
(2) This is similar to the proof of (1). ¤

Theorem 3.12. Let fA, gB , hC ∈ S(U). Then
(1) fA ∩̃ (gB t hC) = (fA ∩̃ gB) t (fA ∩̃ hC),
(2) fA t (gB ∩̃ hC) = (fA t gB) ∩̃ (fA t hC).

Proof. (1) Let fA ∩̃ (gBthC) = hA∩(B∩C) and (fA ∩̃ gB)t(fA ∩̃ hC) = l(A∩B)∩(A∩C).
Then for any e ∈ A ∩ (B ∩ C), we have e ∈ A, e ∈ B and e ∈ C.

Thus h(e) = f(e) ∩ (g(e) ∪ h(e)) = (f(e) ∩ g(e)) ∪ (f(e) ∩ h(e)) = l(e).
(2) This is similar to the proof of (1). ¤
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Theorem 3.13. Let fA, gB ∈ S(U). Then
(1) (fA ∪̃ gB) u fA = (fA u gB) ∪̃ fA,
(2) (fA t gB) ∩̃ fA = (fA ∩̃ gB) t fA.

Proof. (1) Let (fA ∪̃ gB) u fA = mA∪B and (fA u gB) ∪̃ fA = nA∪B . For any
e ∈ A ∪B,

(i) If e ∈ A−B, then m(e) = f(e) = n(e).
(ii) If e ∈ B −A, then m(e) = g(e) = n(e).
(iii) If e ∈ A∩B, then m(e) = (f(e)∪ g(e))∩ f(e) = f(e) = (f(e)∩ g(e))∪ f(e) =

n(e).
Thus (fA ∪̃ gB) u fA = (fA u gB) ∪̃ fA.
(2) Let (fA t gB) ∩̃ fA = mA∩B and (fA ∩̃ gB)tfA = nA∩B . For any e ∈ A∩B,
m(e) = (f(e) ∪ g(e)) ∩ f(e) = f(e) = (f(e) ∩ g(e)) ∪ f(e) = n(e). ¤

Example 3.14. Let U = {x1, x2, x3, x4} and E = {e1, e2, e3}. Let fA, gB ∈ S(U),
where A = {e1, e2} and B = {e2, e3}.

Let fA ∪̃ gB = hA∪B and hA∪B u fA = mA∪B . Then

h(e1) = f(e1), h(e2) = f(e2) ∪ g(e2), h(e3) = g(e3)

and

m(e1) = h(e1) ∩ f(e1) = f(e1), m(e2) = h(e2) ∩ f(e2) = (f(e2) ∪ g(e2)) ∩ f(e2).

Note that
m(e3) = g(e3) 6= f(e3) = ∅̃.

Thus (fA ∪̃ gB) u fA 6= fA.
Let fA t gB = lA∩B and lA∩B ∩̃ fA = nA∩B . Then

l(e1) = ∅̃, l(e2) = f(e2) ∪ g(e2), l(e3) = ∅̃
and

n(e1) = ∅̃ 6= f(e1), n(e3) = ∅̃ 6= f(e3).
Thus (fA t gB) ∩̃ fA 6= fA.

This example shows that

(fA ∪̃ gB) u fA = fA and (fA t gB) ∩̃ fA = fA

are do not hold in general.

4. Lattice structures of IFS sets

Theorem 4.1. For any fA, gB ∈ S(U), define

fA ≤ gB ⇔ fA ⊂̃ gB ,

fA ∨ gB = fA ∪̃ gB ,

fA ∧ gB = fA ∩̃ gB .

Then (S(U), ∪̃, ∩̃) is a complete distributive lattice with top element and bottom
element.
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Proof. Denote
∑

= S(U). It is easily proved that

0∑ = ∅̃ and 1∑ = Ũ .

By Proposition 3.4, S(U) is a distributive lattice with 1∑ and 0∑. ¤

Theorem 4.2. For any fA, gA ∈ S(U)A, define

fA ≤ gA ⇔ fA ⊂̃ gA,

fA ∨ gA = fA ∪̃ gA,

fA ∧ gA = fA ∩̃ gA.

Then (S(U)A, ∪̃, ∩̃) is a distributive lattice.

Proof. This is obvious. ¤

Corollary 4.3. (S(U)A, ∪̃, ∩̃) is a sublattice of (S(U), ∪̃, ∩̃).

Theorem 4.4. Let fA, gB ∈ S(U), define

fA ≤ gB ⇔ fA ⊂̃ gB ,

fA ∨ gB = fA t gB ,

fA ∧ gB = fA u gB .

Then (S(U),t,u) is a complete distributive lattice with top element and bottom
element.

Proof. By Theorem 3.10, this is straightforward. ¤

Theorem 4.5. Let fA, gA ∈ S(U)A, define

fA ≤ gA ⇔ fA ⊂̃ gA,

fA ∨ gA = fA t gA,

fA ∧ gA = fA u gA.

Then (S(U)A,t,u) is a distributive lattice.

Proof. This is obvious. ¤

Corollary 4.6. (S(U)A,t,u) is a sublattice of (S(U),t,u).
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Theorem 4.7. Let fA, gB ∈ S(U), define

fA ≤ gB ⇔ fA ⊂̃ gB ,

fA ∨ gB = fA t gB ,

fA ∧ gB = fA ∩̃ gB .

Then (S(U),t, ∩̃) is a distributive lattice with top element and bottom element.

Proof. By Theorem 3.12, this is obvious. ¤

Similarly, by the definition of Theorem 4.7, we can have that (S(U)A,t, ∩̃) is a
distributive lattice.

5. Conclusions

In this paper, we study the lattice structures of intuitionistic fuzzy soft sets. Based
on intersection (extended intersection) and union (restricted union) of intuitionistic
fuzzy sets, five lattice structures of intuitionistic fuzzy soft sets are established and
several related properties are investigated. We prove that De Morgan’s laws hold in
intuitionistic fuzzy soft set theory.
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