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Abstract. Energy of a simple graph has been defined and many of
its properties have been studied. In this paper, the concept of energy is
extended to fuzzy graphs. Adjacency matrix of a fuzzy graph is defined
and energy of a fuzzy graph is defined as the sum of absolute values of the
eigenvalues of the adjacency matrix of the fuzzy graph. Some bounds on
energy of fuzzy graphs are also obtained.
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1. Introduction

Many real world systems can be modelled using graphs. Graphs represent the
connections between the entities in these systems. The connections may be physical
as in electrical networks and computer networks or relationships as in ecosystems.
Graphs are abstractions of networks.

The foundation for graph theory was laid in 1735 by Euler when he solved the
Konigsberg bridges’ problem. Conclusions he made on studying the problem were
some of the fundamental properties of graphs. Attempts to solve diagram tracing
puzzles in which one has to draw the given diagram connecting the given points
in fewest number of connected strokes also led to the discovery of principles later
recognized as the properties of certain classes of graphs. The connection between
diagram tracing puzzles and the Konigsberg bridges’ problem was recognized only
at the end of nineteenth century by Rouse Ball in Mathematical Recreations and
Problems. It was the interest and attempts to solve puzzles during 18th and 19th

centuries that uncovered majority of concepts and results related to graphs. In
1878, Sylvester wrote a short note in Nature about the possible connection between
chemical molecules and binary quantics. The term graph was used in the graph
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theoretic sense for the first time in this note. One can refer [27] to know more about
the history of graph theory.

The pictorial representation of a graph consists of a set of points joined by arcs.
To make use of computers to solve problems on graphs, they had to be stored in
the memory of computers. This is done using matrices. Many kinds of matrices
are associated with a graph. The spectrum of one such matrix, adjacency matrix
is called the spectrum of the graph. The properties of the spectrum of a graph is
related to the properties of the graph. The area of graph theory that deals with this
is called spectral graph theory. The spectrum of a graph first appeared in a paper by
Collatz and Sinogowitz in 1957. At present, it is widely studied owing to its appli-
cations in physics, chemistry, computer science and other branches of mathematics.
In chemistry, it has applications in the theory of unsaturated conjugated molecular
hydrocarbons called Huckel molecular orbital theory. Graph spectrum appears in
problems in statistical physics and in combinatorial optimization problems in math-
ematics. Spectrum of a graph also plays an important role in pattern recognition,
modelling virus propagation in computer networks and in securing personal data in
databases. Cvetkovic and I. Gutman have discussed these applications in detail in
[5].

A concept related to the spectrum of a graph is that of energy. As its name
suggests, it is inspired by energy in chemistry. The study of π-electron energy in
chemistry dates back to 1940’s but it is in 1978 that I. Gutman defined it math-
ematically for all graphs. Organic molecules can be represented by graphs called
molecular graphs. In case of unsaturated conjugated hydrocarbons, the energy of
π electrons of the molecule is approximately the energy of its molecular graph [4].
Energy of graphs has many mathematical properties which are being investigated.
The nature of values it takes are discussed in [2] and [21]. Certain bounds on energy
are studied in [3], [13] and [8]. Different classes of graphs namely hyperenergetic,
hypoenergetic and equienergetic based on their energy are identified and one can
know more about them from [3], [5], [1, 22] and [10]. Energy of different graphs
including regular [9], non-regular [11], circulant [24] and random graphs [6] is also
under study.

The physical meaning and application of energy of a graph may not be known
exactly at present but the properties it is found to possess are of interest to a
mathematician. Energy is defined for signed graphs in [7] and for weighted graphs
by I. Gutman and Shao in 2011. In this paper, we extend the definition of energy
to fuzzy graphs. Fuzzy graphs are generalizations of graphs. Our intension is the
generalization of energy. Intuition that the results known so far on energy of a graph
might be a particular case of more general results on fuzzy graphs is the motivation
behind this paper.

Fuzzy graphs are encountered in fuzzy set theory. A fuzzy set was defined by
Zadeh in 1965. His purpose was to develop a theory for sets which are ambiguous
and imprecise in definition, a characteristic of most of the sets found in the real
world. Every element in the universal set is assigned a grade of membership, a value
in [0, 1]. The elements in the universal set along with their grades of membership
form a fuzzy set. It is called a fuzzy subset of the universal set. It is a generalization
of usual sets also called crisp sets. A grade of membership of 1 to some elements and
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0 to all others in the universal set gives a crisp set. Fuzzy sets are representations of
how a human brain perceives the objects in the world. Hence, fuzzy set theory has
applications in those areas where machine replacements are sought for humans for
instance control engineering, artificial intelligence, expert systems, robotics, pattern
recognition and so on. As in case of crisp sets, relations are defined for fuzzy subsets
called fuzzy relations. Graphs are representations of binary relations. Similarly,
fuzzy binary relations are represented by graphs called fuzzy graphs. Rosenfeld
introduced the theory for fuzzy graphs in 1975. Complement [26], fuzzy line graph
[17], fuzzy cycle [19], fuzzy tree [25], operations on fuzzy graph [18], connectivity
[14, 16, 15] and much more have been defined and studied. The results obtained are
applied in clustering analysis and modelling information networks [28]. [20] explains
fuzzy subsets, fuzzy relations and fuzzy graphs with applications.

Section 2 consists of preliminaries and definition of energy of a fuzzy graph. In
Section 3, we present some results on energy of a fuzzy graph.

2. Preliminaries

An ordered pair of sets G = (V, E) where V is a nonempty finite set and E
consisting of two element subsets of elements of V is called a graph. It is denoted
by G = (V, E). V is called the vertex set and E, the edge set. The elements in V
and E are called vertices and edges respectively. If elements of E are ordered pairs,
then G is called a directed graph or digraph [4]. The vertices between which an edge
exists are called endpoints of the edge. An edge whose endpoints are the same is
called a loop. A graph without loops is called a simple graph.

Let G = (V, E) be a simple graph with n vertices and m edges. Let v1, v2, ..., vn

represent the vertices of G. It can be represented by an n × n matrix giving the
adjacency between all vertices. This matrix is called adjacency matrix and let us
denote it by A. An element aij of A gives the number of edges between vertices vi

and vj for vi, vj ∈ V . In a simple graph, there can be atmost 1 edge between two
vertices. So, the entries in A are either 0 or 1. The diagonal is zero since there are
no loops. A is symmetric and so the spectrum of A is real. The eigenvalues of A
are called eigenvalues of G [3] and the spectrum of A is called the spectrum of G.
Energy of a simple graph G = (V, E) with adjacency matrix A is defined as the sum
of absolute values of eigenvalues of A [1]. It is denoted by E(G).

E(G) =
n∑

i=1

|λi|

where λi is an eigenvalue of A, i = 1, 2, . . . , n. Suppose k eigenvalues are positive.
Then,

(2.1) E(G) = 2
k∑

i=1

λi

Also,

(2.2)
∑

1≤i<j≤n

λiλj = −2m
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Hence,

(2.3)
n∑

i=1

λ2
i = 2m

The energy of a graph is zero iff it is trivial. Using (2.1) it is proved that the energy
of a nontrivial graph is an even number if it is rational [2]. Suppose G is a simple
graph with n vertices and m edges. Let A be its adjacency matrix. The following
are some of the bounds on energy [3, 8]. Applying Cauchy Schwarz inequality for
(1, . . . , 1) and (|λ1|, . . . , |λn|) and using (2.3)

(2.4) E(G) ≤
√

2mn

Expanding [E(G)]2 and using the following results
(1) The sum of k real numbers is k times their arithmetic mean.
(2) The geometric mean of non negative numbers cannot exceed their arithmetic

mean.
(3) {GM |λiλj |} = |A| 2n , 1 ≤ i < j ≤ n
we get,

(2.5)
√

2m + n(n− 1)|A| 2n ≤ E(G)

Combining (2.4) and (2.5)
√

2m + n(n− 1)|A| 2n ≤ E(G) ≤
√

2mn

Suppose G is a simple graph. Then applying Cauchy Schwarz inequality for
(1, . . . , 1) and |λ2|, . . . , |λn|, we get

E(G) ≤ λ1 +
√

(n− 1)(2m− λ2
1)

where λ1 is the largest eigenvalue of G. If G has no isolated vertices, we have
n ≤ 2m. Then, 2m/n and λ1 lies in an interval in which the function F (x) =
x +

√
(n− 1)(2m− x2) is decreasing. Since λ1 ≥ 2m/n, we get

E(G) ≤ 2m

n
+

√√√√(n− 1)

{
2m−

(
2m

n

)2
}

Let V be a nonempty set. A fuzzy subset of V is a function σ : V → [0, 1]. σ
is called the membership function and σ(v) is called the membership of v where
v ∈ V . Let V1 and V2 be nonempty sets. σ1 and σ2 be fuzzy subsets of V1 and V2

respectively. Define a fuzzy subset µ of V1 × V2 as µ(vi, vj) ≤ min{σ1(vi), σ2(vj)}.
Then, µ is called a fuzzy relation from σ1 to σ2 . Suppose σ1(x) = 1, ∀ x ∈ V1 and
σ2(y) = 1, ∀ y ∈ V2. Then µ is called a fuzzy relation from V1 into V2. µ(vi, vj) is
interpreted as the strength of relation between vi and vj [12]. Suppose V1 = V2 = V
and σ1 = σ2 = σ. Then, µ is called a fuzzy relation on σ. Suppose V1 = V2 = V and
σ1(x) = 1,∀ x ∈ V1 and σ2(y) = 1, ∀ y ∈ V2. Then, µ is called a fuzzy relation
on V . From definition, it follows that binary relations on crisp sets are particular
cases of fuzzy relations. Let V be a nonempty set and σ, a fuzzy subset of V . Let
µ be a fuzzy relation on σ. µ is said to be symmetric, if µ(vi, vj) = µ(vj , vi) for
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vi, vj ∈ V . A fuzzy relation can also be expressed by a matrix called fuzzy relation
matrix M = [mij ] [12] where

mij = µ(vi, vj)
A fuzzy graph G = (V, σ, µ) is a nonempty set V together with a pair of functions
(σ, µ) where σ is a fuzzy subset of V and µ is a fuzzy relation on σ. G considered
hereafter is undirected and without loops [20].

For a graph G with adjacency matrix A = [aij ], aij gives the number of vertices
between vi and vj . aij can also be interpreted as the strength of relation between
vi and vj . This interpretation can be extended to fuzzy graphs. Then, the fuzzy
relation matrix becomes the adjacency matrix.

Definition 2.1. The adjacency matrix A of a fuzzy graph G = (V, σ, µ) is an n× n
matrix defined as A = [aij ] where aij = µ(vi, vj). Note that A becomes the usual
adjacency matrix when all the nonzero membership values are 1. ie; when the fuzzy
graph becomes a crisp graph.

xx

xx

0.1

0.4

0.2

0.60.9

0.9 0.7

10.6

Figure 1. G1, A fuzzy graph

Example 2.2. Adjacency matrix of the fuzzy graph G1 ( Fig. 1) is

A=




0 0.1 0.9 0.4
0.1 0 0.6 0
0.9 0.6 0 0.2
0.4 0 0.2 0


.

Definition 2.3. Let G = (V, σ, µ) be a fuzzy graph and A be its adjacency matrix.
The eigenvalues of A are called eigenvalues of G. The spectrum of A is called the
spectrum of G. It is denoted by Spec G.

Example 2.4. For the graph in Fig. 1, spec G1={−1.0464,−0.3164, 0.1174, 1.2454}.
Definition 2.5. Let G = (V, σ, µ) be a fuzzy graph and A be its adjacency matrix.
Energy of G is defined as the sum of absolute values of eigenvalues of G.

Example 2.6. For the graph in Fig. 1, E(G1) = 1.0464+0.3164+0.1174+1.2454 =
2.7256.

3. Results

The energy of a nontrivial simple graph is always greater than 1 [1]. But, this
result is not true for a fuzzy graph as seen from the following example.
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xx

xx

0.3

0.1

0.1

0.2
0.1

0.5 0.35

0.20.3

Figure 2. G2, A fuzzy graph with energy < 1

Example 3.1. For G2 (Fig. 2), adjacency matrix is B=




0 0.1 0 0.1
0.1 0 0.2 0.1
0 0.2 0 0.3

0.1 0.1 0.3 0


.

Spec G2={−0.3442,−0.1, 0.0066, 0.4376}. E(G2) = 0.8884 < 1.

Some bounds for energy of fuzzy graphs are given below.

Theorem 3.2. ([23]) Let G be a weighted graph of order n each of whose edges has
nonzero weight and e1, . . . , em be all the edges of G. Then

E(G) ≤ 2
m∑

i=1

|w(ei)|

where equality holds iff each of the connected component of G has atmost two vertices.

The above theorem is for a weighted graph. Here, w(ei) denotes the weight of an
edge ei, i = 1, . . . , m. Considering a fuzzy graph as a weighted graph with weights
in the interval [0, 1], Theorem 3.2 can be restated as follows:

Theorem 3.3. Let G = (V, σ, µ) be a fuzzy graph with |V | = n and µ∗ = {e1, . . . , em}.
Then,

E(G) ≤ 2
m∑

i=1

µ(ei)

Using Theorem 3.3, upper bounds for energy of a fuzzy graph can be obtained in
terms of membership values of its vertices.

Proposition 3.4. Let G = (V, σ, µ) be a fuzzy graph with |V | = n and µ∗ =
{e1, . . . , em}. Then,

E(G) ≤ (n− 1)
n∑

i=1

σ(vi)

Proof. From Theorem 3.3,

E(G) ≤ 2
m∑

i=1

µ(ei) = 2

n(n−1)
2∑

i=1

µ(ei)

where µ(ei) = 0, ∀i > m.
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We have µ(ei) = min{σ(vi), σ(vj)} for some vi, vj ∈ V . Hence,

E(G) ≤ 2

n(n−1)
2∑

i=1

µ(ei)

=

n(n−1)
2∑

i=1

µ(ei) + µ(ei)

≤
∑

1≤i<j≤n

σ(vi) + σ(vj)

= (n− 1)
n∑

i=1

σ(vi)

¤

Proposition 3.5. Let G = (V, σ, µ) be a fuzzy graph with |V | = n, G∗ a cycle and
µ∗ = {e1, . . . , en}. Then,

E(G) ≤ 2
n∑

i=1

σ(vi)

where vi ∈ V, i = 1, . . . , n.

Proof. From Theorem 3.3,

(3.1) E(G) ≤ 2
n∑

i=1

µ(ei)

ei =
{

vivi+1, i = 1, . . . , n− 1
vnv1, i = n

Each edge in G = (V, σ, µ) can be uniquely mapped to a vertex by a map, defined
as

f(ei) = vi, i = 1, . . . , n

Therefore, (3.1) can be expressed in terms of membership values of vertices of G as

E(G) ≤ 2
n∑

i=1

σ(vi)

since µ(ei) ≤ σ(vi), i = 1, . . . , n by definition of a fuzzy graph. ¤

Next we have a result giving a lower bound and an improved upper bound for
energy of a fuzzy graph.

Theorem 3.6. Let G = (V, σ, µ) be a fuzzy graph with |V | = n vertices and µ∗ =
{e1, . . . , em}. If mi = µ(ei) is the strength of the relation associated with the ith

edge, then √
2

∑m
i=1 m2

i + n(n− 1)|A| 2n ≤ E(G) ≤
√

2 (
∑m

i=1 m2
i )n
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Proof. Upper bound
Applying Cauchy Schwarz inequality to the n numbers (1, . . . , 1) and (|λ1|, . . . , |λn|),

n∑

i=1

|λi| ≤ √
n

√√√√
n∑

i=1

|λi|2(3.2)

(
n∑

i=1

λi

)2

=
n∑

i=1

|λi|2 + 2
∑

1≤i<j≤n

λiλj(3.3)

By comparison of coefficients of
n∏

i=1

(λ− λi) = |A− λI|

We get
∑

1≤i<j≤n

λiλj = −
m∑

i=1

m2
i

Substituting in (3.3),

(3.4)
n∑

i=1

|λi|2 = 2
m∑

i=1

m2
i

Substituting (3.4) in (3.2),

n∑

i=1

|λi| ≤
√

n

√√√√2
m∑

i=1

m2
i =

√√√√2

(
m∑

i=1

m2
i

)
n

E(G) ≤
√√√√2

(
m∑

i=1

m2
i

)
n

Lower bound

[E(G)]2 =

(
n∑

i=1

|λi|
)2

=
n∑

i=1

|λi|2 + 2
∑

1≤i<j≤n

|λiλj |

= 2
m∑

i=1

m2
i + 2

n(n− 1)
2

AM{|λiλj |}

AM{|λiλj |} ≥ GM{|λiλj |}, 1 ≤ i < j ≤ n

E(G) ≥
√√√√2

m∑

i=1

m2
i + n(n− 1)GM(|λiλj |
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GM{|λiλj |} =


 ∏

1≤i<j≤n

|λiλj |



2
n(n−1)

=

(
n∏

i=1

|λi|n−1

) 2
n(n−1)

=

(
n∏

i=1

|λi|
) 2

n

= |A| 2n

E(G) ≥
√√√√2

m∑

i=1

m2
i + n(n− 1)|A| 2n

Therefore,
√

2
∑m

i=1 m2
i + n(n− 1)|A| 2n ≤ E(G) ≤

√
2 (

∑m
i=1 m2

i ) n ¤

Example 3.7. (Illustration to Theorem 1) For the graph in Fig. 1, E(G1) = 2.7256
Lower bound = 2.3238
Upper bound = 3.3226
We have 2.3238 < 2.7256 < 3.322.

Now, we have another result giving an upper bound for energy of a fuzzy graph
which has less number of vertices.

Theorem 3.8. Let G = (V, σ, µ) be a fuzzy graph |V | = n and µ∗ = {e1, . . . , em}.
Let A be its adjacency matrix. If mi = µ(ei) and n ≤ 2

∑m
i=1 m2

i , then

E(G) ≤ 2
∑m

i=1 m2
i

n
+

√√√√(n− 1)

{
2

m∑

i=1

m2
i −

(
2

∑m
i=1 m2

i

n

)2
}

Proof. If A = [aij ]n×n is a symmetric matrix with zero diagonal, then

λmax ≥
2

∑
1≤i<j≤n aij

n

where, λmax is the maximum eigenvalue of A. If A is the adjacency matrix of G,
then λ1 ≥ (2

∑m
i=1 mi)/n where λ1 ≥ λ2 ≥ · · · ≥ λn.

n∑

i=1

|λi|2 = 2
m∑

i=1

m2
i

(3.5)
n∑

i=2

|λi|2 = 2
m∑

i=1

m2
i − λ2

1

Using Cauchy Schwarz inequality,

(3.6) E(G)− λ1 =
n∑

i=2

|λi| ≤
√√√√(n− 1)

n∑

i=2

|λi|2
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Substituting (3.5) in (3.6),

E(G)− λ1 ≤
√√√√(n− 1)

(
2

m∑

i=1

m2
i − λ2

1

)

E(G) ≤ λ1 +

√√√√(n− 1)

(
2

m∑

i=1

m2
i − λ2

1

)

F (x) = x +
√

(n− 1) (2
∑m

i=1 m2
i − x2) is decreasing in the interval(√

2
∑m

i=1 m2
i

n ,
√

2
∑m

i=1 m2
i

]
. Since, n ≤ 2

∑m
i=1 m2

i , 1 ≤ (2
∑m

i=1 m2
i )/n. Therefore,

(3.7)

√
2

∑m
i=1 m2

i

n
≤ 2

∑m
i=1 m2

i

n
≤ 2

∑m
i=1 mi

n
≤ λ1 ≤

√√√√2
m∑

i=1

m2
i

We have

E(G) ≤ λ1 +

√√√√(n− 1)

(
2

m∑

i=1

m2
i − λ2

1

)

Applying (3.7), we get

E(G) ≤ 2
∑m

i=1 m2
i

n
+

√√√√(n− 1)

{
2

m∑

i=1

m2
i −

(
2

∑m
i=1 m2

i

n

)2
}

¤

Example 3.9. (Illustration to Theorem 2) The energy bound for the graph in Fig.
1 as per the previous theorem is 3.3075 while energy is 2.7256.

4. Conclusion

Adjacency matrix and energy for a fuzzy graph are defined. Some results on
energy bounds for weighted and simple graphs are extended to fuzzy graphs. Further
study on energy and the spectra of fuzzy graphs may reveal more analogous results
of these kind and will be discussed in the forthcoming papers.
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