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Abstract. In this paper, an attempt has been made to solve fuzzy
multi-criteria quadratic programming problems. A new fuzzy inequality
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been developed. Using proposed fuzzy inequality relation, fuzzy decision
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1. Introduction

In decision making problems, a major concern is that most of them involve mul-
tiple criteria which are usually conflicting in nature. Since innovation of Pareto
set (1896), study on multiple-criteria optimization problems (MOPs) eventually in-
volves analyzing trade-off between the criteria on a set of efficient solutions or on
a set of satisficing solutions to decision maker (DM). In last few decades, there has
been many classical methods—like weighted sum, ε-constraint, normal boundary
intersection, normal constraint, direct search domain, etc.—to obtain Pareto set of
MOPs. All these classical methods try to capture entire Pareto set of MOPs. How-
ever, classical methods are not enough to tackle all practical problems, since often
real-world situations cannot be modeled precisely [15].

To deal with imprecise nature of multiple criteria decision making problems, fuzzy
multi-criteria optimization problems (FMOPs) are being studied since 1970, after the
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seminal work by Bellman and Zadeh [4] on decision-making in a fuzzy environment.
A particular area of FMOPs is fuzzy multi-criteria quadratic programming problems
(FMQPPs) where fuzzy criteria have fuzzy quadratic expressions with an addition
of fuzzy linear term. It may be noticed that there is a vast literature on formulation
and solution procedures in fuzzy multi-criteria linear programming problems, but
the studies on FMQPPs have been rather scarce until very recently. Though fuzzy
quadratic programming problems (FQPPs) is studied by several authors [3, 5, 6, 7,
14, 16, 17, 18, 20, 23, 25], but fuzzy multi-criteria quadratic programming problems
have not yet been focused extensively. Very few partial works on FQPPs may be
obtained in [1, 2]. In the literature on solving FMQPPs, usually, DM end up with a
conventional MOP to get a compromise solution or most preferable solution to DM.

In this paper, an attempt has been made to obtain fuzzy Pareto set of FMQPPs.
On solving FMQPPs, here, first the fuzzy decision feasible region has been con-
structed under the concept of ‘same points’ [12] in fuzzy geometry. As, irrespective
of nature of the problems whether crisp or fuzzy, usually final decision of any decision
making problem has to be crisp, we have considered decision variables as crisp in our
problem. To simplify our discussion in this introductory paper of our methodology
on solving FMQPPs, we have also taken criteria as crisp. Under these considera-
tions, fuzzy decision feasible region is transformed to criterion space through vector
criteria mapping. As decision feasible region is fuzzy, criteria feasible region must
also be fuzzy. A most promising and simple approach to make a bridge between
fuzzy set and crisp set is the use of α-cut. In the proposed methodology, we will
obtain entire fuzzy Pareto set of FMQPPs using α-cuts of criteria feasible region.
Delineation of the presented work in this paper is as follows.

Preliminaries on multi-criteria quadratic programming problems (MQPPs) and
fuzzy set theory are given in the next section. A simple technique to obtain Pareto
set of MQPPs is studied in Section 3. Section 4 includes construction procedure of
fuzzy decision and criteria feasible region under the concept of ‘same points’. The
Section 4 also provides definitions of fuzzy Pareto point and generalized fuzzy Pareto
point in FMQPPs. A method to obtain fuzzy Pareto set of FMQPPs has also been
given in Section 4. One numerical example, to illustrate proposed methodology, is
presented in the Section 5. Section 6 includes conclusion and future work of the
proposed study.

2. Preliminaries

In this section, necessary definitions and terminologies which are used throughout
this paper are studied.

2.1. Fuzzy set.

Definition 2.1. (Fuzzy set [24]). Let X be a classical set of elements which must
be evaluated with regard to a fuzzy statement. Then the set of order pairs

Ã = {(x, µ(x|Ã)) : x ∈ X}, where µ : X → [0, 1],

is called a fuzzy set in X. The evaluation function µ(x|Ã) is called the membership
function or the grade of membership of x in Ã.
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Definition 2.2. (α-cut of a fuzzy set [12]). For a fuzzy set Ã of R, an α-cut of Ã

is denoted by Ã(α) and is defined by:

Ã(α) =

{
{x : µ(x|Ã) ≥ α} if 0 < α ≤ 1
closure{x : µ(x|Ã) > 0} if α = 0.

The set {x : µ(x|Ã) > 0} is called support of the fuzzy set Ã.

To represent the construction of membership function of a fuzzy set Ã, the nota-
tion

∨
{x : x ∈ Ã(0)} is frequently used, which means µ(x|Ã) = sup{α : x ∈ Ã(α)}.

Definition 2.3. (Fuzzy number [12]). A fuzzy set Ã of R is called a fuzzy number
if its membership function µ has the following properties:

(i) µ(x|Ã) is upper semi-continuous,
(ii) µ(x|Ã) = 0, outside some interval [a, d], and
(iii) there exist real numbers b and c, a ≤ b ≤ c ≤ d such that µ(x|Ã) is increasing

on [a, b], decreasing on [c, d], and µ(x|Ã) = 1 for each x in [b, c].

For b = c, letting f(x) = µ(x|Ã) for all x in [a, b] and g(x) = µ(x|Ã) for all x in
[c, d], in this paper the notation (a/c/d)fg is used to represent above defined fuzzy
number. In particular, if f(x) and g(x) are linear functions, then the fuzzy number
is called as triangular fuzzy number and is denoted by (a/c/d).

Definition 2.4. (Same points [12]). Let x and y be two numbers belong to supports
of two continuous fuzzy numbers ã and b̃ respectively. The numbers x and y are
said to be same points with respect to ã and b̃ if:

(i) µ(x|ã) = µ(y|̃b), and
(ii) x ≤ a and y ≤ b, or x ≥ a and y ≥ b, where a, b are mid points of ã(1), b̃(1)

respectively.

Now let us give a brief idea on MQPPs.

2.2. Classical MQPPs.

In mathematical notions, MQPPs are defined in the following way

(2.1) min
x∈X

f(x) =
(1

2
xtQ1x + ct

1x,
1
2
xtQ2x + ct

2x, . . . ,
1
2
xtQkx + ct

kx
)t

, k ≥ 2,

where X = {x ∈ Rn : Ax ≤ b, l ≤ x ≤ u} is the feasible set, A is an m× n matrix, b
is an m-vector; each Qi is an n×n matrix, each ci is an n-vector (i = 1, 2, . . . , k); the
vectors l, u ∈ (R ∪ {∞})n are respectively lower and upper bounds of the decision
vector x = (x1, x2, . . . , xn)t.

We denote the image of the decision feasible set X under the vector mapping
f by Y := f(X ). Therefore, Y is the feasible set in the criterion space. Let
fi(x) = 1

2xtQix + ct
ix, i = 1, 2, . . . , k. If for each individual i in {1, 2, . . . , k}, x∗i

is the point of global minima of the function fi, the point y∗i := f(x∗i ) = f∗i say (for
435
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i = 1, 2, ..., k) in the criterion space is said to be an anchor point. Again, the point
f∗ = (f∗1 , f∗2 , . . . , f∗k )t is called as ideal point or utopia point. Without loss of gen-
erality, let us consider all the criteria are positive valued and their global minimum
value is zero. Usually MQPPs may not qualify this consideration, and thus we will
redefine f(x) as f(x)− f∗. Therefore, under this consideration, the criteria feasible
set Y must be a subset of non-negative hyper-octant of Rk. Origin of Rk is the
ideal point and anchor points corresponding to k-th criterion must lie on the plane
perpendicular to the axis of fk. As in general ideal point f∗ is not attainable by f ,
thus the notion of Pareto optimality is being introduced as follows. The definitions
of weak Pareto optimality is also given subsequently.

Definition of Pareto optimality depends on a dominance structure or componen-
twise order in the space Rk. To represent dominance structure on Rk, the follow-
ing subsets are usually used. The non-negative orthant of Rk is represented by
Rk

= := {y ∈ Rk : y = 0}. The notation y = 0 implies yi ≥ 0 for each i = 1, 2, ..., k.

The set Rk
≥ is defined by {y ∈ Rk : y ≥ 0} where y ≥ 0 means y = 0 but y 6= 0. The

notation Rk
> := {y ∈ Rk : y > 0} indicates the positive orthant of Rk. Here, y > 0

stands for yi > 0 for each i = 1, 2, ..., k. For x̂, x̄ in X , the vector f(x̄) is said to be
dominated by another vector f(x̂) if f(x̂) ≤ f(x̄).

Definition 2.5. (Pareto optimality [9]). A feasible point x̂ in X is called efficient
or Pareto optimal point, if there is no other x in X such that f(x) ≤ f(x̂). If x̂ is
efficient point, f(x̂) is called non-dominated point. The set of all efficient points is
denoted by XE and the collection of all non-dominated points is denoted by YN .

Definition 2.6. (Weak Pareto optimality [9]). A feasible point x̂ in X is called
weakly Pareto optimal if there is no x in X such that f(x) < f(x̂). The point
ŷ = f(x̂) is then called weakly non-dominated.

In the following section, a classical method [11] to obtain entire Pareto set of a
MQPP (2.1) is presented. Presented method may be appeared as a restriction of
Pascoletti-Serafini scalarization [19] with a = 0 (the ideal point). In the literature,
there are some other [8, 10, 13, 21, 22] restriction of Pascoletti-Serafini scalarization.
However, we may note that presented method [11], in the next section, attempted to
search Pareto points in each and every possible directions from the ideal point, and
thus generated Pareto set obviously maintains an approximately uniform diversity
throughout the Pareto surface. In contrast, other methods in [8, 10, 13, 21, 22] start
from a reference point which is restricted to lie on a plane and then search Pareto
points along the normal to the considered plane, i.e., those methods search Pareto
points along a particular direction. Thus, unless the Pareto surface is approximately
parallel to that plane, generated Pareto set by those methods trivially cannot main-
tain equal diversity over the entire Pareto set. Moreover, parameter restriction of
these methods depends on criteria feasible set and they cannot work efficiently for
more than two objectives [10, 22]. More importantly, through solution set of the
presented technique [11] we can easily get positions of weak Pareto points, knee
regions of the Pareto set and region of unbounded trade-offs of the objectives. This
information may facilitate DM’s final selection of solution. But no such information
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can be extracted from solution set of the above mentioned other existing methods
in [8, 10, 13, 21, 22].

3. A method to obtain Pareto set in classical MQPPs

In this section we present a technique to obtain Pareto points of MQPP (2.1). The
technique is confined under the following three noteworthy observations on Pareto
optimality—

• a point x̂ in X is a Pareto optimal point if and only if f(X )∩
(
f(x̂)−Rk

=

)
= {f(x̂)},

• a point x̂ in X is weakly Pareto optimal if and only if f(X ) ∩
(
f(x̂) − Rk

>

)
= ∅

and
• sets of non-dominated and weakly non-dominated points must be subsets of the

boundary of the criterion feasible region, bd(Y).

Geometrically, first observation means that – if criterion feasible region and trans-
lated non-positive orthant −Rk

= whose vertex is being shifted from origin to the point
f(x̂) have intersection only the single point f(x̂), then x̂ is a Pereto optimal solution.
Thus, to get a Pareto optimal solution, we may translate the cone of non-positive
orthant of the criterion space along a particular direction β̂ in Rk

= until this cone

does not touch the criterion feasible region. Translation of the cone −Rk
= along a

particular direction β̂ in Rk
= means that the vertex of the cone is retained on the

line zβ̂, for z in R. Now if the cone −Rk
= is being translated along β̂ in Rk

=, then
it can touch the boundary of the criterion feasible region Y in two possible ways:
either the vertex of the cone touches first or one boundary plane of the cone touches
first. If the first case happens, the point where the cone touches the criterion feasible
region is certainly be a globally non-dominated point. If the latter case happens, it
is possible in two different ways: touch portion is either a single point or a set of
points. In the first subcase, the touch point is a Pareto optimal point. In the second
subcase, it can be easily perceived that all the points except the extreme points of
the touch portion are weakly Pareto optimal solutions.

Let us illustrate how the above said touch portion of (zβ̂ −Rk
=) and bd(Y), for a

particular direction β̂ in Rk
=, can be found. To demonstrate, let us take a graphical

illustration for a bi-criteria optimization problem. Figure 1 portrays the criterion
feasible region Y = f(X ) for a generic bi-criteria problem and the cone zβ̂−R2

= for a

specific value of z = OA. Let us now consider the set
{
y : zβ̂ = f(x), y = f(x), x ∈

X
}
, z ∈ R. For each specific value of z ∈ R, this set represents the intersecting

region of (zβ̂ − Rk
=) and f(X ). Now for generic z in R let us try to minimize the

intersecting region between (zβ̂ −Rk
=) and f(X ) by translating the cone (zβ̂ −Rk

=)

along β̂ such a way that the cone does not leave f(X ). In the optimum situation if
the intersection (zβ̂−Rk

=)
⋂

f(X ) contains only one point, then that singleton point
indeed be a non-dominated point. We note that minimizing the intersecting region
(zβ̂−Rk

=)
⋂

f(X ) eventually involves minimizing the value of z with the constraints
437
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Figure 1. Illustration of CM(β̂) for a bi-criteria problem

zβ̂ = f(x) and x ∈ X . It is worthy to note that above discussions do not depend
on the number of criteria. Therefore, to get a non-dominated solution of the MQPP
(2.1) we may solve the following minimization problem:

(3.1) CM(β̂)


min z

subject to zβ̂ = f(x),
x ∈ X .

Solving (3.1) for various values of β̂ in Rk
= ∩ Sk−1, whole non-dominated set

(eventually weakly non-dominated set) of the considered MQPP can be generated;
here Sk−1 represents unit (k − 1)-sphere. The abbreviation CM in (3.1) refers to
Cone Method, since the closed convex cone Rn

= facilitate us to capture Pareto set
of MQPPs. It is to observe that any non-dominated point is attainable by above
constructed minimization problem (3.1). For instance, if y0 belongs to YN , then
solution of CM(β̂) corresponding to β̂ = y0

||y0|| is x0 for which y0 = f(x0). In the

Figure 1 we note that solution of CM(β̂) corresponding to β̂ =
−−→
OA
||OA|| in R2

= ∩ S1 is
the point A which is a Pareto optimal solution of the considered problem. Varying
β̂ for all possible values on R2

= ∩ S1, all the points in the dark portion of bd(Y) can
be obtained. Collection of all the points on the dark portion is the whole Pareto
set/non-dominated set of the problem. Now a study on FMQPPs and finding their
fuzzy Pareto set has been performed in the next section.
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4. Solving FMQPPs

A general model of a fuzzy multi-criteria quadratic programming problem is de-
scribed by the following system:
(4.1)

min f(x; Q̃1, . . . , Q̃k; c̃1, . . . , c̃k) =
(1

2
xtQ̃1x + c̃t

1x, . . . ,
1
2
xtQ̃kx + c̃t

kx
)t

, k ≥ 2

subject to C̃i : ãt
i x ≤̃ b̃i, i = 1, 2, . . . ,m,

x = (x1, x2, . . . , xn)t ∈ Rn
=,

where Q̃j is a fuzzy matrix
(
q̃j
st

)
n×n

, c̃j =
(
c̃j1, c̃j2, . . . , c̃jn

)t for each j = 1, 2, . . . , k,

(s, t ∈ {1, 2, . . . , n}) and ãi =
(
ãi1, ãi2, . . . , ãin

)t for i = 1, 2, . . . ,m. Here, each
of c̃jr, ãil are fuzzy sets (r, l ∈ {1, 2, . . . , n}). In this paper, investigation has been
made on FMQPPs where all ãil, b̃i fuzzy sets are fuzzy numbers and c̃jr, q̃j

st are crisp
numbers. Under these assumptions all the criteria are continuous crisp functions. It
may be noted that fuzzy inequality ≤̃ in each C̃i eventually depends on ordering of
two fuzzy numbers corresponding to each x in Rn

=.

Here we will take a new definition of fuzzy inequality ≤̃ using the concept of ‘same
points’ [12] as follows:

(4.2) C̃i : ãt
i x ≤̃ b̃i ⇐⇒

∨
α∈[0,1]

{
x : at

iαx ≤ biα

}

where biα, aiα =
(
ai1α, ai2α, . . . , ainα

)t are same points with respect to b̃i and ãi =(
ãi1, ãi2, . . . , ãin

)t respectively (co-ordinate wise). Therefore, entire fuzzy constraint
set of FMQPP (4.1), X̃ say, can be represented by collection of crisp points x in Rn

=

with varied membership values as follows:

(4.3) X̃ =
m⋂

i=1

C̃i

⋂
Rn

= =
m⋂

i=1

∨
α∈[0,1]

{
x ∈ Rn

= : at
iαx ≤ biα

}
.

Here on the decision space Rn, the fuzzy set X̃ is fuzzy constraint of FMQPP
(4.1). If we denote the image of the fuzzy constraint set X̃ under the vector mapping
f by Ỹ := f(X̃ ), then on the criterion space Rk, constraint set of the optimization
problem (4.1) will be Ỹ. Geometrically, X̃ is collection of points on Rn with varied
membership value and hence this collection of points will determine a fuzzy region on
Rn. This region is known as fuzzy feasible set/region of FMQPP (4.1) and each point
on this set/region is known as feasible point. In this paper, since an attempt has
been made to capture entire fuzzy Pareto set of FMQPP (4.1) through geometrical
aspect of the problem, we may refer the fuzzy constraint X̃ as fuzzy feasible region.
Similarly, Ỹ may be said as fuzzy feasible region on the criterion space Rk.

In formation of fuzzy decision feasible region X̃ , following result may be useful.
We skip the proof which includes a straightforward calculation.
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Theorem 4.1. Let C̃: ã1f1(x) + ã2f2(x) + · · · + ãpfp(x) ≤̃ b̃, x ∈ Rn be a fuzzy
inequality, where ãi = (ai−γi/ai/ai +δi)fg, i = 1, 2, . . . , p and b̃ = (b−γ/b/b+δ)fg.
If for each i, b−γ

ai−γi
< b

ai
< b+δ

ai+δi
or b−γ

ai−γi
> b

ai
> b+δ

ai+δi
and 0 6∈ ãi(0), b̃(0), then

(i) the fuzzy set determined by
∨

α∈[0,1]{
bα

aiα
}, where aiα and bα are same points

with respect to ãi and b̃ respectively, is a fuzzy number for each i = 1, 2, . . . , p,
and

(ii) the set representing α-cut of C̃
⋂

Rn
=, for each α ∈ [0, 1], can be expressed by{

x ∈ Rn
= : f1(x)

bα
a1α

+ f2(x)
bα

a2α

+ · · ·+ fp(x)
bα

apα

≤ 1
}
.

Now after the construction of fuzzy decision feasible region X̃ , let us try to for-
mulate fuzzy criteria feasible region of the FMQPP (4.1). Let us note that X̃ is the
collection of crisp points x in Rn with varied membership values and the criteria are
considered as crisp functions. Thus, if x belongs to Rn is a decision feasible point
with membership value α on X̃ , then f(x) must be a criteria feasible point and,
by the supremum composition of fuzzy set, membership value of f(x) on the fuzzy
criteria feasible region Ỹ = f(X̃ ) must be at least α. Here supremum composition
is taken, since Ỹ is the collection (union) of all the points y = f(x) where x lies in
X̃ . Thus, Ỹ =

∨
α∈[0,1]{f(x) : x ∈ X̃ (α)}. Membership function of fuzzy criteria

feasible region may be obtained by µ(y|Ỹ) = sup{α : y = f(x), µ(x|X̃ ) = α}.
Here due to continuity of each fj we obtain f(X̃ (α)) = f(X̃ )(α) = Ỹ(α). Thus

corresponding to each α in [0, 1], defining a crisp MQPP, FMQPPα say, as follows:

(4.4) FMQPPα

 min
(1

2
xtQ1x + ct

1x, . . . ,
1
2
xtQkx + ct

kx
)T

, k ≥ 2

subject to x ∈ X̃ (α),

we must get that fuzzy decision/criteria feasible region of FMQPP (4.1) is exactly
equal to union (by supremum composition) of all decision/criteria feasible region of
FMQPPαs.

Let us now give definition fuzzy non-dominated point or fuzzy Pareto optimality.

Definition 4.1. (Fuzzy Pareto optimal point). A fuzzy set P̃ of Ỹ(0) is said to be
a fuzzy Pareto optimal point of FMQPP (4.1) if:

(i) P̃ is a normal fuzzy set, i.e., there exists p0 in P̃ such that µ(p0|P̃ ) = 1,
(ii) µ(p|P̃ ) is upper semi-continuous, and
(iii) for any p in P̃ , there exists α in [0, 1] such that p is a Pareto optimal point of

FMQPPα.

Note 4.1. Core of a fuzzy Pareto optimal point is a Pareto optimal point of FMQPP1.

Example 4.1. In the Figure 2, a typical fuzzy criteria feasible region Ỹ = f(X̃ )

is depicted. The fuzzy arc
_

AB, (rectangle #1) is a fuzzy Pareto optimal point.

Membership value of any point on the fuzzy arc
_

AB is same as that on the fuzzy
set f(X̃ ). Similarly the fuzzy arc in the rectangle #3 is a Pareto optimal point.
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Figure 2. Explaining fuzzy Pareto point and generalized fuzzy
Pareto point

However, we observe that the fuzzy arc
_

EF , though meets (ii) and (iii) conditions
of the Definition 4.1, but it does not meet the normality condition (i). Hence, fuzzy

arc
_

EF is not a fuzzy Pareto point. We may say this type of fuzzy arc as generalized
fuzzy Pareto optimal point. Mathematically generalized fuzzy Pareto point may be
defined as follows.

Definition 4.2. (Generalized fuzzy Pareto optimal point). A fuzzy set G̃P of Ỹ(0)
is said to be a generalized fuzzy Pareto optimal point of FMQPP (4.1) if:

(i) µ(p|G̃P ) is upper semi-continuous, and
(ii) for any p in G̃P , there exists α in [0, 1] such that p is a Pareto optimal point

of FMQPPα.

Note 4.2. Here we note that a normal generalized fuzzy Pareto optimal point is a
fuzzy Pareto optimal point. This concept is analogous to the concept of generalized
fuzzy number and fuzzy number—generalized fuzzy number differs from fuzzy number
in the condition of normality.

Example 4.2. In the Figure 2, the fuzzy arc
_

EF (rectangle #2) is a generalized
fuzzy Pareto optimal point.

Now to get whole fuzzy Pareto set or non-dominated set of a FMQPP, it is natu-
ral to take union of its all possible fuzzy Pareto points and generalized fuzzy Pareto
points. However it can be easily perceived that if ỸN is the set of all the Pareto
points and ỸGN is the set of all generalized fuzzy Pareto points, then ỸGN ⊆ ỸN

(for two fuzzy sets Ã and B̃ in X, the relation Ã ⊆ B̃ holds when µ(x|Ã) ≤ µ(x|B̃)
441
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for all x in X). Obviously, X̃GE = f−1(ỸGN ) ⊆ f−1(ỸN ) = X̃E . Thus, to find whole
non-dominated points in a FMQPP, we only have to obtain X̃E .

Again if XEα is the set of Pareto points of FMQPPα, then according to the
mathematical formulation of FMQPPα, following result holds true

(4.5) X̃E =
∨

α∈[0,1]

XEα.

Therefore, evaluating each XEα, by solving FMQPPα (using the classical method
given in the Section 3) and then applying relation (4.5), compete fuzzy Pareto set
of the FMQPP (4.1) can be obtained.

Note 4.3. We note that some methods are already available to solve fuzzy multi-
criteria decision making problems. Now question may arise: how the proposed tech-
nique is different from these available methods? In what way this is an improved
version? To answer these questions, we note that all the existing methods in the
literature give only a single solution of the problem with a measure of satisfaction of
the DM [3] and do not attempt to capture complete set of fuzzy efficient solutions.
On the other hand, proposed method intended to generate entire set of fuzzy efficient
points and, as solutions of the existing methods are appeared to be a single Pareto
optimum point, solutions of existing methods are subset of the complete fuzzy Pareto
set obtained by our method.

Note 4.4. One another question may also arise that any quadratic programming
problem can be made linear and thereafter it can be solved by the linear programming
methods, then why do we need a new method to solve FMQPP? To address this
question, we note that a single criteria optimization problem whose objective function
is quadratic can be solved by linear programming method, but if we apply this method
for multi-criteria quadratic optimization problem, then only a single Pareto optimum
solution of the problem will be obtained. Owing to this fact, the technique studied
in the Section 3 is applied in the proposed method to obtain complete Pareto set of
MQPPs and the same technique is applied to obtain fuzzy Pareto set of FMQPPs.

To illustrate the proposed method, one numerical example is given in the next
section.

5. Numerical illustration

Example 5.1. Let us consider the following fuzzy bi-criteria quadratic programming
problem:

min
(

1
4 (−3x2

1 − 4x2
2 + x1 + 18x2 + 14)

1
5 (−3x2

1 − 12x2
2 − 1

2x1 − 4x2 + 40)

)
subject to C̃1 : (0.5/1/1.5)x1 + (1/3/4)x2 ≤̃ (1/3/6),

C̃2 : (2/2.5/3)x1 + (0.5/1/2)x2 ≤̃ (2/2.5/6),
x1 ≥ 0, x2 ≥ 0.
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First let us determine the fuzzy decision feasible set X̃ = C̃1

⋂
C̃2

⋂
R2

= using
(4.3).

Fuzzy constraint set C̃1 is determined by (according to Equation 4.2)

C̃1 ≡
∨

α∈[0,1]

{
x ∈ R2 :

1 + α

2
x1+(1+2α)x2 ≤ (1+2α) or

3− α

2
x1+(4−α)x2 ≤ 3(2−α)

}
.

Supports of x1 and x2-intercept of C̃1 are
⋃

α∈[0,1]

{
2(1+2α)

1+α , 6(2−α)
3−α

}
= [2, 4] and⋃

α∈[0,1]

{
1, 3(2−α)

4−α

}
= [1, 3

2 ] respectively.

Similarly, fuzzy constraint sets C̃2 is determined by (according to Equation 4.2)

C̃2 ≡
∨

α∈[0,1]

{
x ∈ R2 :

4 + α

2
x1+

1 + α

2
x2 ≤

4 + α

2
or

6− α

2
x1+(2−α)x2 ≤

12− 7α

2

}
.

Supports of x1 and x2-intercept of C̃2 are
⋃

α∈[0,1]

{
1, 12−7α

6−α

}
= [1, 2] and

⋃
α∈[0,1]{

4+α
1+α , 12−7α

2(2−α)

}
= [ 52 , 3] respectively.

Entire decision feasible region X̃ = C̃1

⋂
C̃2

⋂
R2

= has been displayed in the Figure

3. For each α in [0, 1], the α-cut of the decision constraint set, i.e., X̃ (α) is the set{
x ∈ R2

= :
3− α

2
x1+(4−α)x2 ≤ 3(2−α)

}⋂ {
x ∈ R2

= :
4 + α

2
x1+

1 + α

2
x2 ≤

4 + α

2

}
.

Figure 3. Fuzzy decision feasible region X̃ of the Example 5.1
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Figure 4. Fuzzy criteria feasible region Ỹ of the Example 5.1

Therefore, according to the formulation of FMQPPα (Problem 4.4), we get

FMQPPα



min
(

1
4 (−3x2

1 − 4x2
2 + x1 + 18x2 + 14)

1
5 (−3x2

1 − 12x2
2 − 1

2x1 − 4x2 + 40)

)
subject to

3− α

2
x1 + (4− α)x2 ≤ 3(2− α),

4 + α

2
x1 +

1 + α

2
x2 ≤

4 + α

2
,

x1 ≥ 0, x2 ≥ 0.

Applying presented classical method in the Section 3, Pareto set XEα of FMQPPα

will be obtained. Taking union, by supremum composition, of all the Pareto set XEα

(for all α in [0, 1]) we obtain the fuzzy Pareto set X̃E . Image of the set X̃E by the
vector mapping f is the fuzzy non-dominated set ỸN . The fuzzy criteria feasible
region Ỹ and the fuzzy non-dominated set ỸN are shown in the Figure 4. ỸN is
the interior and boundary of the region bounded by ABCDEFA on the Figure 4.
Its core is the arc DE

⋃
EF . Coordinates of the points A, B, C, D, E and F are

(1, 5.4), (6.006, 3.606), (8, 1.4), (7, 4.8), (5.762, 6.122) and (3.012, 7.313) respectively.

6. Conclusion

In this paper, we have studied a method to obtain fuzzy Pareto set in FMQPPs.
The technique essentially depends on a classical method to capture Pareto set of
MQPPs. By the classical method, first we obtain Pareto solutions of each FMQPPα,
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i.e., the set XEα, for each α in [0, 1]. Then taking union, by the supremum composi-
tion, of all XEα sets, the method has obtained entire fuzzy Pareto set of FMOQPPs.

As number of points in the fuzzy Pareto set may be huge, it may be very difficult
to DM to pick best solution(s) out of this large set of alternatives in the support of
fuzzy Pareto set. The selection would become more difficult for large number of fuzzy
criteria. A proper mathematical construction of DM’s preferences while dealing with
large number of imprecise criteria and a huge set of imprecise alternatives seems to
be really complex. In this situation, the fuzzy knees of the fuzzy Pareto optimal set
are likely to be more relevant to the DM. Thus, finding fuzzy knees may reduce the
final selection procedure on a smaller number of potentially more relevant solutions
on fuzzy Pareto set. Future research work may be focused on this topic.

In this introductory work on our methodology to solve FMQPPs, the proposed
study has been made on the FMQPPs where decision variables and criteria are crisp.
Investigation on more generalized FMOPs may be obtained in our future research.
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