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1. Introduction

Molodtsov [17] initiated the theory of soft sets as a new mathematical tool for
dealing with uncertainties. He has shown several applications of this theory in solving
many practical problems in economics, engineering, social science, medical science,
etc. Research works in soft set theory and its applications in various fields have
been progressing rapidly since Maji et al. ([14], [15]) introduced several operations
on soft sets and applied it to decision making problems. In the line of reduction
and addition of parameters of soft sets some works have been done by Chen [3],
Pei and Miao [18] , Kong et al. [13] , Zou and Xiao [21]. Aktas and Cagman [1]
introduced the notion of soft group and discussed various properties. Jun ([11], [12])
investigated soft BCK/BCI – algebras and its application in ideal theory. Feng et
al. [9] worked on soft semirings, soft ideals and idealistic soft semirings. Ali et
al. [2] and Shabir and Irfan Ali ([2], [19]) studied soft semigroups and soft ideals
over a semi group which characterize generalized fuzzy ideals and fuzzy ideals with
thresholds of a semigroup. The idea of soft topological spaces was first given by M.
Shabir, M. Naz [20] and mappings between soft sets were described by P. Majumdar,
S. K. Samanta [16]. Feng et al. [10] worked on soft sets combined with fuzzy sets
and rough sets. Recently in ([4], [5]) we have introduced a notion of soft real sets,
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soft real numbers, soft complex sets, soft complex numbers and some of their basic
properties have been investigated. Some applications of soft real sets and soft real
numbers have been presented in real life problems. In ([6], [7], [8]) we introduced
the concepts of ‘soft metric’ over an absolute soft set and ‘soft norm’, ‘soft inner
product’ over ‘soft linear spaces’. Various properties of ‘soft metric spaces’, ‘soft
linear spaces’, ‘soft normed linear spaces’ and ‘soft inner product spaces’ have been
investigated with examples and counter examples.

In fact, in this paper we have introduced a notion of soft linear operator over soft
linear spaces and studied some of their properties. In section 2 some preliminary
results are given. In section 3, a notion of ‘soft linear operator’ over a ‘soft linear
space’ is given and some properties of such operators are studied. It has been shown
that every bounded soft linear operator is also a continuous soft linear operator; the
converse of which holds under some further considerations. In section 4, the spaces
of continuous soft linear operators are studied. In that section it has been shown that
the set of all continuous soft linear operators can be identified as to form an absolute
soft vector spece L(X̌, Y̌ ). It has been also established that L(X̌, Y̌ ) is a soft normed
linear space with respect to a suitable soft norm and with the completeness of Y̌ it
is a soft Banach space under certain restrictions. In section 5, inverse of a soft linear
operator is defined and its various properties are also studied. Section 6 concludes
the paper.

2. Preliminaries

Definition 2.1 ([17]). Let U be an universe and E be a set of parameters. Let
P(U) denote the power set of U and A be a non-empty subset of E. A pair (F, A)
is called a soft set over U , where F is a mapping given by F : A → P(U). In other
words, a soft set over U is a parametrized family of subsets of the universe U . For
ε ∈ A, F (ε) may be considered as the set of ε – approximate elements of the soft
set (F, A).

Definition 2.2 ([10]). For two soft sets (F, A) and (G, B) over a common universe
U , we say that (F,A) is a soft subset of (G,B) if

(1) A ⊆ B and
(2) for all e ∈ A, F (e) ⊆ G(e). We write (F, A)⊂̃ (G,B).

(F, A) is said to be a soft superset of (G,B), if (G,B) is a soft subset of (F, A). We
denote it by(F, A)⊃̃ (G,B).

Definition 2.3 ([10]). Two soft sets (F, A) and (G,B) over a common universe U
are said to be equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of
(F, A).

Definition 2.4 ([15]). The union of two soft sets (F, A) and (G,B) over the common
universe U is the soft set
(H, C) , where C = A ∪B and for all e ∈ C,

H (e) =





F (e) if e ∈ A−B
G (e) if e ∈ B −A
F (e) ∪G (e) if e ∈ A ∩B.

We express it as (F,A) ∪̃ (G,B) = (H,C).
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The following definition of intersection of two soft sets is given as that of the bi-
intersection in [9].

Definition 2.5 ([9]). The intersection of two soft sets (F,A) and (G,B) over the
common universe U is the soft set (H, C) , where C = A ∩ B and for all e ∈ C,
H (e) = F (e) ∩G(e). We write (F,A) ∩̃ (G,B) = (H,C).

Let X be an initialuniversal set and A be the non-empty set of parameters. In
the above definitions the set of parameters may vary from soft set to soft set, but in
our considerations, throught this paper all soft sets have the same set of parameters
A. The above definitions are also valid for these type of soft sets as a particular case
of those definitions.

Definition 2.6 ([10]). The complement of a soft set (F, A) is denoted by (F, A)c =
(F c, A), where F c : A → P(U) is a mapping given by F c (α) = U − F (α), for all
α ∈ A.

Definition 2.7 ([15]). A soft set (F,A) over U is said to be an absolute soft set
denoted by Ǔ if for all ε ∈ A, F (ε) = U .

Definition 2.8 ([15]). A soft set (F, A) over U is said to be a null soft set denoted
by Φ if for all ε ∈ A, F (ε) = ∅.

Definition 2.9 ([20]). The difference (H, A) of two soft sets (F, A) and (G, A) over
X, denoted by (F, A) \(G, A), is defined by H (e) = F (e)\G(e) for all e ∈ A.

Proposition 2.10 ([20]). Let (F, A) and (G,A) be two soft sets over X. Then
(i) ((F, A)∪̃(G,A))c = (F, A)c∩̃(G,A)c

(ii) ((F, A)∩̃(G,A))c = (F, A)c∪̃(G,A)c
.

Definition 2.11 ([4]). Let X be a non-empty set and A be a non-empty parameter
set. Then a function ε : A → X is said to be a soft element of X. A soft element
ε of X is said to belongs to a soft set B of X, which is denoted by ε∈̃B, if ε (e) ∈
A (e) , ∀e ∈ A. Thus for a soft set A of X with respect to the index set A, we have
B (e) =

{
ε (e) , ε∈̃B

}
, e ∈ A.

It is to be noted that every singleton soft set (a soft set (F, A) for which F (e) is
a singleton set, ∀e ∈ A) can be identified with a soft element by simply identifying
the singleton set with the element that it contains ∀e ∈ A.

Definition 2.12 ([4]). Let R be the set of real numbers and B(R) the collection
of all non-empty bounded subsets of R and A taken as a set of parameters. Then a
mapping F : A → B(R) is called a soft real set. It is denoted by (F, A). If specifically
(F, A) is a singleton soft set, then after identifying (F,A) with the corresponding
soft element, it will be called a soft real number.

The set of all soft real numbers is denoted by R(A) and the set of all non-negative
soft real numbers by R (A)∗.

Definition 2.13 ([5]). Let C be the set of complex numbers and ℘(C)be the col-
lection of all non-empty bounded subsets of the set of complex numbers.A be a set
of parameters. Then a mapping

F : A → ℘(C)
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is called a soft complex set. It is denoted by (F, A).
If in particular (F, A) is a singleton soft set, then identifying (F, A) with the

corresponding soft element, it will be called a soft complex number.
The set of all soft complex numbers is denoted by C (A) .

Definition 2.14 ([5]). Let (F, A) be a soft complex set. Then the complex conjugate
of (F, A) is denoted by (F, A)and is defined by F (λ) = {z : z ∈ F (λ)}, ∀λ ∈ A ,
where z is complex conjugate of the ordinary complex number z. The complex
conjugate of a soft complex number (F,A) is F (λ) = z; z ∈ F (λ),∀λ ∈ A.

Definition 2.15 ([5]). Let (F,A), (G,A) ∈ C (A) . Then the sum, difference, prod-
uct and division are defined by

(F + G) (λ) = z + w; z ∈ F (λ) , w ∈ G(λ),∀λ ∈ A;
(F −G) (λ) = z − w; z ∈ F (λ) , w ∈ G(λ),∀λ ∈ A;
(FG) (λ) = zw; z ∈ F (λ) , w ∈ G(λ), ∀λ ∈ A;
(F/G) (λ) = z/w; z ∈ F (λ) , w ∈ G(λ), ∀λ ∈ A; provided G(λ) 6= ∅, ∀λ ∈ A.

Definition 2.16 ([5]). Let (F,A) be a soft complex number. Then the modulus of
(F, A) is denoted by (|F |, A)and is defined by |F | (λ) = |z|; z ∈ F (λ), ∀λ ∈ A, where
z is an ordinary complex number.

Since the modulus of each ordinary complex number is a non-negative real number
and by definition of soft real numbers it follows that (|F |, A)is a non-negative soft
real number for every soft complex number (F, A).

Let X be a non-empty set. Let X̌ be the absolute soft set i.e., F (λ) = X, ∀λ ∈ A,
where (F,A) = X̌. Let S(X̌) be the collection all soft sets (F, A) over X for which
F (λ) 6= ∅, for all λ ∈ A together with the null soft set Φ.

Let (F, A)( 6= Φ) ∈ S(X̌), then the collection of all soft elements of (F,A) will
be denoted by SE (F, A) . For a collection B of soft elements of X̌, the soft set
generated by B is denoted by SS(B).

Definition 2.17 ([6]). A mapping d : SE(X̌) × SE(X̌) → R (A)∗ , is said to be a
soft metric on the soft set X̌ if d satisfies the following conditions:

(M1). d (x̃, ỹ) ≥̃0, for all x̃, ỹ∈̃X̌.
(M2). d (x̃, ỹ) = 0, if and only if x̃ = ỹ.
(M3). d (x̃, ỹ) = d (ỹ, x̃) for all x̃, ỹ∈̃X̌.
(M4). For all x̃, ỹ, z̃∈̃X̌, d (x̃, z̃) ≤̃d (x̃, ỹ) + d (ỹ, z̃)
The soft set X̌ with a soft metric d on X̌ is said to be a soft metric space and is

denoted by (X̌, d, A) or (X̌, d).

Definition 2.18 ([7]). Let V be a vector space over a field K and let A be a
parameter set. Let G be a soft set over (V,A). Now G is said to be a soft vector
space or soft linear space of V over K if G(λ) is a vector subspace of V, ∀λ ∈ A.

Definition 2.19 ([7]). Let F be a soft vector space of V over K. Let G : A → ℘(V )
be a soft set over (V, A). Then G is said to be a soft vector subspace of F if

(i) for each λ ∈ A, G(λ) is a vector subspace of V over K and
(ii) F (λ) ⊇ G (λ) , ∀λ ∈ A.
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Definition 2.20 ([7]). Let G be a soft vector space of V over K. Then a soft
element of G is said to be a soft vector of G. In a similar manner a soft element of
the soft set (K, A) is said to be a soft scalar, K being the scalar field.

Definition 2.21 ([7]). Let x̃, ỹ be soft vectors of G and k̃ be a soft scalar. Then
the addition x̃ + ỹ of x̃, ỹ and scalar multiplication k̃. x̃ of k̃ and x̃ are defined by
(x̃ + ỹ) (λ) = x̃ (λ) + ỹ (λ) ,

(
k̃. x̃

)
(λ) = k̃ (λ) .x̃ (λ) , ∀λ ∈ A. Obviously, x̃ + ỹ,

k̃. x̃ are soft vectors of G.

Definition 2.22 ([7]). Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X,
∀λ ∈ A. Then a mapping ‖.‖ : SE(X̌) → R (A)∗ is said to be a soft norm on the
soft vector space X̌ if ‖.‖ satisfies the following conditions:

(N1). ‖x̃‖ ≥̃0, for all x̃ ∈̃ X̌;
(N2). ‖x̃‖ = 0 if and only if x̃ = Θ;
(N3). ‖α̃.x̃‖ = |α̃| ‖x̃‖ for all x̃∈̃ X̌ and for every soft scalar α̃;
(N4). For all x̃, ỹ∈̃ X̌, ‖x̃ + ỹ‖ ≤̃ ‖x̃‖+ ‖ỹ‖.
The soft vector space X̌ with a soft norm ‖.‖ on X̌ is said to be a soft normed

linear space and is denoted by (X̌, ‖.‖ , A) or (X̌, ‖.‖). (N1), (N2), (N3) and (N4)
are said to be soft norm axioms.

Theorem 2.23 ([7]). Suppose a soft norm ‖.‖ satisfies the condition
(N5). For ξ ∈ X, and λ ∈ A, {‖x̃‖ (λ) : x̃ (λ) = ξ} is a singleton set.

Then for each λ ∈ A, the mapping ‖.‖λ : X → R+ defined by ‖ξ‖λ = ‖x̃‖ (λ), for
all ξ ∈ X and x̃ ∈̃ X̌ such that x̃ (λ) = ξ, is a norm on X.

Definition 2.24 ([7]). A sequence of soft elements {x̃n} in a soft normed linear space
(X̌, ‖.‖ , A) is said to be convergent and converges to a soft element x̃ if ‖x̃n − x̃‖ → 0
as n → ∞. This means for every ε̃>̃0, chosen arbitrarily, ∃ a natural number
N = N(ε̃), such that 0≤̃ ‖x̃n − x̃‖ <̃ε̃ , whenever n > N .
i.e., n > N =⇒ x̃n ∈ B(x̃, ε̃). We denote this by x̃n → x̃ as n → ∞ or by
limn→∞ x̃n = x̃. x̃ is said to be the limit of the sequence x̃n as n →∞.

Definition 2.25 ([7]). A sequence {x̃n} of soft elements in a soft normed linear
space (X̌, ‖.‖ , A) is said to be a Cauchy sequence in X̌ if corresponding to every
ε̃>̃0, ∃ m ∈ N such that ‖x̃i − x̃j‖ ≤̃ε̃, ∀ i, j ≥ m i.e., ‖x̃i − x̃j‖ → 0 as i, j →∞.

Definition 2.26 ([7]). Let (X̌, ‖.‖ , A) be a soft normed linear space. Then X̌ is
said to be complete if every Cauchy sequence in X̌ converges to a soft element of X̌
. Every complete soft normed linear space is called a soft Banach Space.

Theorem 2.27 ([7]). Every Cauchy sequence in R(A), where A is a finite set of
parameters, is convergent, i.e., the set of all soft real numbers with its usual modulus
soft norm with respect to a finite set of parameters, is a soft Banach space.

Proposition 2.28 ([7]). A set S = {α̃1, α̃2, . . . , α̃n} of soft vectors in a soft vector
space G over V is linearly independent if and only if the sets

S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)}
are linearly independent in V, ∀λ ∈ A.
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Proposition 2.29 ([7]). A set S = {α̃1, α̃2, . . . , α̃n} of soft vectors in a soft vector
space G over V is linearly dependent if and only if the sets

S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)},
are linearly dependent in V for some λ ∈ A.

Definition 2.30 ([7]). A soft linear space X̌ is said to be of finite dimensional if
there is a finite set of linearly independent soft vectors in X̌ which also generates X̌,
i.e., any soft element of X̌ can be expressed as a linear combination of those linearly
independent soft vectors.

The set of those linearly independent soft vectors is said to be the basis for X̌
and the number of soft vectors of the basis is called the dimension of X̌.

Lemma 2.31 ([7]). Let x̃1, x̃2, . . . .., x̃n be a linearly independent set of soft vectors
in a soft linear space X̌, satisfying (N5). Then there is a soft real number c̃>̃0 such
that for every set of soft scalars α̃1, α̃2, . . . .., α̃n we have

‖α̃1x̃1 + α̃2x̃2 + · · ·+ α̃nx̃n‖ ≥̃c̃ (|α̃1|+ |α̃2|+ · · ·+ |α̃n|) .

Theorem 2.32 ([7]). Every finite dimensional soft normed linear space which sat-
isfies (N5) and have a finite set of parameters, is complete.

Theorem 2.33 ([7]). Every Cauchy sequence in R(A), where A is a finite set of
parameters, is convergent, i.e., the set of all soft real numbers with respect to a finite
set of parameters and with its usual modulus soft norm is a soft Banach space.

Definition 2.34 ([8]). Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X,
∀λ ∈ A. Then a mapping 〈.〉 : SE(X̌) × SE(X̌) → C (A) is said to be a soft inner
product on the soft vector space X̌ if 〈.〉 satisfies the following conditions:

(I1). 〈x̃, x̃〉 ≥̃0, for all x̃ ∈̃ X̌ and 〈x̃, x̃〉 = 0 if and only if x̃ = Θ;
(I2). 〈x̃, ỹ〉 = 〈ỹ, x̃〉 where bar denote the complex conjugate of soft complex

numbers;
(I3). 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for all x̃, ỹ∈̃ X̌ and for every soft scalar α̃;
(I4). For all x̃, ỹ∈̃ X̌, 〈x̃ + ỹ, z̃〉 = 〈x̃, z̃〉+ 〈ỹ, z̃〉.
The soft vector space X̌ with a soft inner product 〈.〉 on X̌ is said to be a soft

inner product space and is denoted by (X̌, 〈.〉 , A) or (X̌, 〈.〉). (I1), (I2), (I3) and
(I4) are said to be soft inner product axioms.

Theorem 2.35 ([8]). (Decomposition Theorem). Suppose a soft inner product 〈.〉
satisfies the condition

(I5). For (ξ, η) ∈ X ×X and λ ∈ A,{〈x̃, ỹ〉 (λ) : x̃, ỹ∈̃X̌ such that x̃ (λ) = ξ, ỹ (λ) = η
}

is a singleton set. Then for each λ ∈ A, the mapping 〈.〉λ : X ×X → C defined by
〈ξ, η〉λ = 〈x̃, ỹ〉 (λ), for all (ξ, η) ∈ X ×X, and x̃, ỹ∈̃X̌ such that x̃ (λ)= ξ, ỹ (λ) = η,
is an inner product on X.

Theorem 2.36 ([8]). (Schwarz inequality). Let (X̌, 〈.〉 , A) be a soft inner product
space satisfying (I5). Let x̃, ỹ, ∈̃ X̌. Then |〈x̃, ỹ〉| ≤̃ ‖x̃‖ . ‖ỹ‖.
Theorem 2.37 ([8]). Let (X̌, 〈.〉 , A) be a soft inner product space satisfying (I5).
Let us define ‖.‖ : X̌ → R (A)∗ by ‖x̃‖ =

√
〈x̃, x̃〉, for all x̃∈̃ X̌. Then ‖.‖ is a soft

norm on X̌ satisfying (N5).
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We now establish the following lemma regarding dimension of soft vector spaces.

Lemma 2.38. The dimension of an absolute soft vector space X̌ is n if and only if
dimension of X̌ (λ) = X is n for each λ ∈ A.

Proof. Let dimension of X̌ be n. Then there is n linearly independent soft vectors
S = {α̃1, α̃2, . . . , α̃n} which also generates X̌. Then by Proposition 2.28, S (λ) =
{α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)} is linearly independent, ∀λ ∈ A. Again since S generates
G, S (λ) generates X, ∀λ ∈ A. Thus S (λ) form a basis for X, ∀λ ∈ A. Hence
dimension of X is n for each λ ∈ A.

Conversely, let dimension of X be n for each λ ∈ A. Then for each λ ∈ A,
there are n linearly independent vectors Sλ = {αλ1, αλ2, αλ3, . . . . . . , αλn} which
also generates X. Let us consider soft vectors S = {α̃1, α̃2, . . . , α̃n} by α̃i (λ) = αλi,
for each λ ∈ A, and for each i = 1, 2, . . . , n. Then S (λ) = Sλ, ∀λ ∈ A and hence
by Proposition 2.28, it follows that S = {α̃1, α̃2, . . . , α̃n} is linearly independent.
Again since S (λ) = Sλ generates X, ∀λ ∈ A; obviously S generates X̌. Hence
S = {α̃1, α̃2, . . . , α̃n} form a basis for X̌ and dimension of X̌ is n. ¤

3. Soft linear operators

Let X, Y be two vector spaces over a field K, A be a non-empty set of parameters.
Let X̌, Y̌ be the corresponding absolute soft vector spaces i.e., X̌ (λ) = X, Y̌ (λ) =
Y , ∀λ ∈ A. We use the notation x̃, ỹ, z̃ to denote soft vectors of a soft vector space.

Definition 3.1. Let T : SE(X̌) → SE(Y̌ ) be an operator. Then T is said to be
soft linear if

(L1). T is additive, i.e., T (x̃1 + x̃2) = T (x̃1) + T (x̃2) for every soft elements
x̃1, x̃2∈̃X̌,

(L2). T is homogeneous, i.e. for every soft scalar c̃, T (c̃x̃) = c̃T (x̃), for every soft
element x̃∈̃X̌.

The properties (L1) and (L2) can be put in a combined form T (c̃1x̃1 + c̃2x̃2) =
c̃1T (x̃1) + c̃2T (x̃2) for every soft elements x̃1, x̃2∈̃X̌ and every soft scalars c̃1, c̃2.

Definition 3.2. The operator T : SE(X̌) → SE(Y̌ ) is said to be continuous at
x̃0∈̃X̌ if for every sequence {x̃n} of soft elements of X̌ with x̃n → x̃0 as n →
∞, we have T (x̃n) → T (x̃0) as n → ∞ i.e., ‖x̃n − x̃0‖ → 0 as n → ∞ implies
‖T (x̃n)− T (x̃0)‖ → 0 as n →∞. If T is continuous at each soft element of X̌, then
T is said to be a continuous operator.

Example 3.3. If X̌ be a soft normed linear space. Then the identity operator
I : SE(X̌) → SE(X̌) such that I (x̃) = x̃, for every soft element x̃∈̃X̌, is a continuous
soft linear operator.

Example 3.4. If X̌, Y̌ be two soft normed linear spaces. Then the zero operator
O : SE(X̌) → SE(Y̌ ) such that O (x̃) = Θ, for every soft element x̃∈̃G. The zero
operator is a continuous soft linear operator.

Example 3.5. Let R (A) be the set of all soft real numbers defined over the param-
eter set A. Let an operator T : R (A) → R (A) be defined by T (x̃) = 2.x̃, for every
soft real number x̃. Then T is a continuous soft linear operator.
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Theorem 3.6. Let X̌, Y̌ be two soft normed linear spaces. If T : SE(X̌) → SE(Y̌ )
be a soft linear operator, then

(i) T (x̃− ỹ) = T (x̃)− T (ỹ) ;
(ii) T (Θ) = Θ;
(iii) T (−x̃) = −T (x̃) ;
(iv) T (

∑n
k=1 c̃kx̃k) =

∑n
k=1 c̃kT (x̃k), c̃k are soft scalars.

Proof. (i) Let x̃ = ỹ + z̃, then z̃ = x̃− ỹ and we obtain

T (x̃) = T (ỹ + z̃) = T (ỹ) + T (z̃) = T (ỹ) + T (x̃− ỹ).

This implies T (x̃− ỹ) = T (x̃)− T (ỹ).
(ii) In (i), put x̃ = ỹ, then T (Θ) = Θ.
(iii) In (i), put x̃ = Θ, then T (−ỹ) = T (Θ)− T (ỹ) = −T (ỹ).
(iv) We prove this by induction. For n = 1 the result is obvious. We suppose

that the result is true for (n− 1) i.e.,

T

(
n−1∑

k=1

c̃kx̃k

)
=

n−1∑

k=1

c̃kT (x̃k).

Then T (
∑n

k=1 c̃kx̃k) = T
(∑n−1

k=1 c̃kx̃k + c̃nx̃n

)
= T

(∑n−1
k=1 c̃kx̃k

)
+ T (c̃nx̃n) =

∑n−1
k=1 c̃kT (x̃k) + c̃nT (x̃n) =

∑n
k=1 c̃kT (x̃k). ¤

Theorem 3.7. Let T : SE(X̌) → SE(Y̌ ) be a soft linear operator, where X̌, Y̌ are
soft normed linear spaces. If T is continuous at some soft element x̃0∈̃X̌ then T is
continuous at every soft element of X̌.

Proof. Let x̃∈̃X̌ be an arbitrary soft element of and let x̃n → x̃ as n → ∞. Then
x̃n − x̃ + x̃0 → x̃0 as n →∞. Since T is continuous at x̃0, we have

T (x̃n − x̃ + x̃0) → T (x̃0).

But, T (x̃n − x̃ + x̃0) = T (x̃n)− T (x̃) + T (x̃0). Therefore,

limn→∞T (x̃n)− T (x̃) + T (x̃0) = T (x̃0) , i.e., limn→∞T (x̃n) = T (x̃).

This shows that T is continuous at x̃. Since x̃ is an arbitrary soft element of X̌, T
is continuous at every soft element of X̌. ¤

Definition 3.8. Let T : SE(X̌) → SE(Y̌ ) be a soft linear operator, where X̌, Y̌
are soft normed linear spaces. The operator T is called bounded if there exists some
positive soft real number M̃ such that for all x̃∈̃X̌, ‖T (x̃)‖ ≤̃M̃ ‖x̃‖ .

Theorem 3.9. Let T : SE(X̌) → SE(Y̌ ) be a soft linear operator, where X̌, Y̌ are
soft normed linear spaces. If T is bounded then T is continuous.

Proof. Suppose that T is bounded. Then there exists a positive soft real number M̃
such that for all x̃∈̃X̌, ‖T (x̃)‖ ≤̃M̃ ‖x̃‖ . Let x̃n → x̃ as n → ∞ i.e., ‖x̃n − x̃‖ → 0
as n →∞. Then

‖T (x̃n)− T (x̃)‖ = ‖T (x̃n − x̃)‖ ≤̃M̃ ‖x̃n − x̃‖ → 0 as n →∞.
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Therefore T (x̃n) → T (x̃) and so T is continuous at x̃∈̃X̌. Since x̃∈̃X̌ is arbitrary, T
is continuous. ¤

Theorem 3.10. (Decomposition Theorem). Suppose a soft linear operator
T : SE(X̌) → SE(Y̌ ), where X̌, Y̌ are soft vector spaces, satisfies the condition

(L3). For ξ ∈ X, and λ ∈ A,{
T (x̃) (λ) : x̃ ∈̃X̌ such that x̃ (λ) = ξ

}

is a singleton set. Then for each λ ∈ A, the mapping Tλ : X → Y defined by
Tλ(ξ) = T (x̃) (λ), for all ξ ∈ X and x̃∈̃X̌ such that x̃ (λ) = ξ, is a linear operator.

Proof. Clearly ∀λ ∈ A, Tλ : X → Y is a rule that assigns an element of Y cor-
responding to each element of X. Now the well defined property of Tλ , ∀λ ∈ A
follows from the condition (L3). The conditions (L1), (L2) of T resulted the linear-
ity property of Tλ, ∀λ ∈ A. Thus the soft linear operator T satisfying (L3) gives
a parameterized family of crisp linear operators. With this point of view, it also
follows that, a soft linear operator T satisfying (L3), is a particular ‘soft mapping’
as defined by P. Majumdar et al. in [16], where T : A → (Y )X . ¤

The converse of the above theorem is also true. In this regard, we have the
following theorem:

Theorem 3.11. Let {Tλ : X → Y, λ ∈ A} be a family of crisp linear operators from
the vector space X to the vector space Y , and X̌, Y̌ be the corresponding absolute soft
vector spaces. Then there exists a soft linear operator T : SE(X̌) → SE(Y̌ ), defined
by T (x̃) (λ) = Tλ (ξ) if x̃ (λ) = ξ, λ ∈ A; which satisfies (L3) and T (λ) = Tλ, for
all λ ∈ A.

Proof. Let x̃ ∈̃X̌. We define T : SE(X̌) → SE(Y̌ ), by T (x̃) (λ) = Tλ (ξ) if x̃ (λ) = ξ;
for each λ ∈ A. Let x̃1, x̃2 ∈̃X̌, be any two soft elements, λ ∈ A be arbitrary and
x̃1 (λ) = ξ, x̃2 (λ) = η. Then ξ, η ∈ X and we have

T (x̃1 + x̃2) (λ) = T (x̃1 (λ) + x̃2 (λ))

= Tλ (ξ + η) = Tλ (ξ) + Tλ (η)

= T (x̃1) (λ) + T (x̃2) (λ)

= (T (x̃1) + T (x̃2)) (λ) .

This is true for all λ ∈ A and for all x̃1, x̃2. Hence T (x̃1 + x̃2) = T (x̃1) + T (x̃2) .
Again, for every soft scalar c̃, we have

T (c̃x̃) (λ) = T (c̃ (λ) .x̃ (λ))

= Tλ (c̃ (λ) .ξ)

= c̃ (λ) .Tλ (ξ)

= c̃ (λ) .T (x̃) (λ)

= (c̃.T (x̃)) (λ) .

This is true for all λ ∈ A and for all x̃. Hence T (c̃x̃) = c̃T (x̃). Thus the operator
T : SE(X̌) → SE(Y̌ ), is a soft linear operator. It is obvious from the above definition
of the soft linear operator T that, for ξ ∈ X, and λ ∈ A,
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{
T (x̃) (λ) : x̃ ∈̃X̌ such that x̃ (λ) = ξ

}

is a singleton set. Thus the operator T : SE(X̌) → SE(Y̌ ), satisfies (L3). From the
above theorem it is obvious that T (λ) = Tλ, for all λ ∈ A. ¤

Theorem 3.12. Let X̌ and Y̌ be soft normed linear spaces which satisfy (N5) and
T : SE(X̌) → SE(Y̌ ) be a soft linear operator satisfying (L3). If T is continuous
then T is bounded.

Proof. If possible, assume that T is not bounded. Then there exists a sequence {x̃n}
of soft elements of X̌ such that for each n = 1, 2, . . . . . . ., there exists at least one
µn ∈ A such that

(3.1) ‖T (x̃n)‖ (µn) > (n. ‖x̃n‖) (µn)

Clearly x̃n (µn) 6= θ, for any n. Because, if x̃n (µn) = θ, for some µn ∈ A and for
some n, then since X̌ satisfies (N5), ‖x̃n (µn)‖µn

= 0 and since T satisfies (L3),
T (x̃n) (µn) = Tµn

(x̃n(µn)) = θ, also since Y̌ satisfies (N5), ‖T (x̃n) (µn)‖µn
= 0.

This contradicts (3.1). Let us consider a sequence {ỹn} of soft elements of X̌ such
that for n = 1, 2, . . . . . . ., ỹn (λ) = x̃n (µn) , ∀λ ∈ A. Then ‖ỹn‖ >̃0. Let ỹ

/
n = ỹn

n.‖ỹn‖ .

Then
∥∥∥ỹ

/
n

∥∥∥ = 1
n → 0. So ỹ

/
n → Θ as n → ∞. Since T is continuous at x̃ = Θ,

T
(
ỹ

/
n

)
→ T (Θ)=Θ i.e.,

∥∥∥T (ỹ/
n)

∥∥∥ → 0 as n →∞. In particular,

(3.2)
∥∥∥T (ỹ/

n)
∥∥∥ (µn) =

∥∥∥T (ỹ/
n) (µn)

∥∥∥
µn

→ 0

as n →∞. On the other hand,
∥∥∥T (ỹ/

n)
∥∥∥ =

∥∥∥T ( ỹn

n.‖ỹn‖ )
∥∥∥ =

∥∥∥ 1
n.‖ỹn‖T (ỹn)

∥∥∥ = 1
n.‖ỹn‖ ‖T (ỹn)‖

So,
∥∥∥T

(
ỹ

/
n

)∥∥∥ (µn) =
(

1
n.‖ỹn‖

)
(µn) . ‖T (ỹn)‖ (µn) =

(
1

n.‖ỹn‖
)

(µn) .‖[T (ỹn)] (µn)‖µn

=
(

1
n.‖ỹn‖

)
(µn) ‖[T (x̃n)] (µn)‖µn

=
(

1
n.‖ỹn‖

)
(µn) . ‖T (x̃n)‖ (µn) >[(

1
n.‖ỹn‖

)
(µn)

]
. [(n. ‖x̃n‖) (µn)] =

[(
1

n.‖ỹn‖
)

(n. ‖x̃n‖)
]
(µn) =

(
‖x̃n‖
‖ỹn‖

)
(µn)

= ‖x̃n‖(µn)
‖ỹn‖(µn) =

‖x̃n(µn)‖µn

‖ỹn(µn)‖µn

=
‖ỹn(µn)‖µn

‖ỹn(µn)‖µn

= 1. Therefore,

(3.3)
∥∥∥T

(
ỹ/

n

)∥∥∥ (µn) > 1,

for n = 1, 2, ... The relations (3.2) and (3.3) are contradictory. Therefore T must be
bounded. ¤

Theorem 3.13. Let X̌ and Y̌ be soft normed linear spaces which satisfy (N5) and
T : SE(X̌) → SE(Y̌ ) be a soft linear operator satisfying (L3). If X̌ is of finite
dimension, then T is bounded and hence continuous.

Proof. Let the dimension of X̌ be n and {ẽ1, ẽ2, . . . .., ẽn} be a basis of a soft linear
space X̌. Let us consider a soft real number D̃ such that

D̃ (λ) = max {‖T (ẽ1)‖ (λ) , ‖T (ẽ2)‖ (λ) , . . . , ‖T (ẽn)‖ (λ)} , ∀λ ∈ A.
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Let x̃ =
∑n

i=1 γ̃iẽi be any soft element of X̌, then because T is soft linear,

‖T (x̃)‖ = ‖T (
∑n

i=1 γ̃iẽi)‖ = ‖∑n
i=1 γ̃iT (ẽi)‖ ≤̃

∑n
i=1 |γ̃i| ‖T (ẽi)‖ ≤̃D̃

∑n
i=1 |γ̃i|.

By Lemma 2.31, there exists a soft real number c̃>̃0, such that

‖x̃‖ =

∥∥∥∥∥
n∑

i=1

γ̃iẽi

∥∥∥∥∥ ≥̃c̃.

n∑

i=1

|γ̃i|.

So,
∑n

i=1 |γ̃i|≤̃ 1
c̃ . ‖x̃‖ . Therefore, ‖T (x̃)‖ ≤̃D̃. 1

c̃ . ‖x̃‖ = M̃. ‖x̃‖, where M̃ = D̃
c̃ . So,

T is bounded and hence continuous. ¤

4. Spaces of continuous soft linear operators

Throughout this section we shall assume that X̌, Y̌ are soft normed linear spaces
and S, T etc. are continuous soft linear operators each mapping SE(X̌) into
SE

(
Y̌

)
.

Definition 4.1. Let T be a bounded soft linear operator from SE(X̌) into SE
(
Y̌

)
.

Then the norm of the operator T denoted by ‖T‖, is a soft real number defined as
the following: For each λ ∈ A,

‖T‖ (λ) = inf {t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for each x̃ ∈̃X̌}.
Theorem 4.2. Let X̌, Y̌ be soft normed linear spaces which satisfy (N5) and T
satisfy (L3). Then for each λ ∈ A, ‖T‖ (λ) = ‖Tλ‖λ, where ‖Tλ‖λ is the norm of
the linear operator Tλ : X → Y.

Proof. By definition of norm of bounded linear operators over crisp normed linear
spaces we have,

‖Tλ‖λ = inf {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X}.

We shall now prove that for each λ ∈ A,
{t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for all x̃ ∈̃X̌} =

{t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X}.
Let r ∈ {t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for all x̃ ∈̃X̌}. Then ‖T (x̃)‖ (λ) ≤ r. ‖x̃‖ (λ) ,
for all x̃ ∈̃X̌. Let y ∈ X. Choose an x̃ ∈̃X̌ such that x̃ (λ) = y. Then

‖Tλ(y)‖λ = ‖Tλx̃ (λ)‖λ = ‖T (x̃)‖ (λ) ≤ r. ‖x̃‖ (λ) = r.‖x̃ (λ)‖λ = r.‖y‖λ.

So, r ∈ {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X}. Thus

{t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , ∀x̃ ∈̃X̌}
⊂ {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, ∀x ∈ X}(4.1)

Conversely, let s ∈ {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X}. Then ‖Tλ(x)‖λ ≤
s.‖x‖λ, for all x ∈ X. Then for x̃∈̃X̌, x̃ (λ) ∈ X,

‖T (x̃)‖ (λ) = ‖Tλx̃ (λ)‖λ ≤ s.‖x̃ (λ)‖λ = s. ‖x̃‖ (λ).
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So, considering all the elements of X we see that ‖T (x̃)‖ (λ) ≤ s. ‖x̃‖ (λ) , for all
x̃ ∈̃X̌. So, s ∈ {t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for all x̃ ∈̃X̌}. Thus

{t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, ∀x ∈ X}
⊂ {t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , ∀x̃ ∈̃X̌}(4.2)

From (4.1) and (4.2) it follows that

{t ∈ R; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for all x̃ ∈̃X̌}
= {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X}.

Then, For each λ ∈ A,

‖T‖ (λ) = inf {t ∈ R; ; ‖T (x̃)‖ (λ) ≤ t. ‖x̃‖ (λ) , for all x̃ ∈̃X̌}
= inf {t ∈ R; ‖Tλ(x)‖λ ≤ t.‖x‖λ, for all x ∈ X} = ‖Tλ‖λ.

¤

Theorem 4.3. ‖T (x̃)‖ ≤̃ ‖T‖ ‖x̃‖, for all x̃∈̃X̌.

Proof. For arbitrary ε̃>̃0, it follows from the definition that

(4.3) ‖T (x̃)‖ (λ) ≤ (‖T‖ (λ) + ε̃ (λ)) . ‖x̃‖ (λ)

for each λ ∈ A, for all x̃∈̃X̌. If possible suppose that there exists x̃1∈̃X̌ and µ ∈ A
such that ‖T (x̃1)‖ (µ) > ‖T‖ (µ) . ‖x̃1‖ (µ). Then for some εµ > 0,

‖T (x̃1)‖ (µ) > ‖T‖ (µ) . ‖x̃1‖ (µ) + εµ ‖x̃1‖ (µ) = (‖T‖ (µ) + εµ) ‖x̃1‖ (µ)
= (‖T‖ (µ) + ε̃ (µ)) ‖x̃1‖ (µ), taking ε̃>̃0 with ε̃ (µ) = εµ.

This contradicts (4.3). Hence ‖T (x̃)‖ ≤̃ ‖T‖ ‖x̃‖, for all x̃∈̃X̌. ¤

Lemma 4.4. Let X̌ and Y̌ be soft normed linear spaces which satisfy (N5) and
T : SE(X̌) → SE(Y̌ ) be a soft linear operator satisfying (L3). Then

{‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1} =
{
‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1

}
.

Proof. Let r ∈ {‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1}. Then ∃ x̃∈̃X̌ with ‖x̃‖ ≤̃1 such that
‖T (x̃)‖ (λ) = r. Now ‖x̃‖ ≤̃1 implies ‖x̃‖ (λ) = ‖x̃ (λ)‖λ ≤ 1 and r = ‖T (x̃)‖ (λ) =
‖Tλx̃ (λ)‖λ. So, r ∈ {‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1} . Thus

(4.4) {‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1} ⊂ {‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1}
Conversely, let s ∈ {‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1}. Then ∃ y ∈ X such that

‖Tλ (y)‖λ = s and ‖y‖λ ≤ 1. Since SE(X̌) is the collection of all soft elements of X̌

and SS
(
SE(X̌)

)
= X̌, ∃ x̃∈̃X̌ with x̃ (λ) = y such that ‖x̃‖ ≤̃1 and s = ‖Tλ(y)‖λ =

‖Tλx̃ (λ)‖λ = ‖T (x̃)‖ (λ). So, s ∈ {‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1}. Thus

(4.5) {‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1} ⊂ {‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1}.
From (4.4) and (4.5) it follows that

{‖Tλ (x)‖λ : x ∈ X, ‖x‖λ ≤ 1} =
{
‖T (x̃)‖ (λ) : x̃∈̃X̌, ‖x̃‖ ≤̃1

}
.

¤
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Theorem 4.5. Let X̌ and Y̌ be soft normed linear spaces which satisfy (N5) and
T : SE(X̌) → SE(Y̌ ) be a soft linear operator satisfying (L3). Then

(i) ‖T‖ (λ) = sup
{
‖T (x̃)‖ (λ) : ‖x̃‖ ≤̃1

}
= ‖Tλ‖λ, for each λ ∈ A;

(ii) ‖T‖ (λ) = sup
{‖T (x̃)‖ (λ) : ‖x̃‖ = 1

}
= ‖Tλ‖λ, for each λ ∈ A;

(iii) ‖T‖ (λ) = sup
{
‖T (x̃)‖
‖x̃‖ (λ) : ‖x̃‖ (µ) 6= 0, for all µ ∈ A

}
= ‖Tλ‖λ, for each

λ ∈ A.

Proof. We prove only (i). The relations (ii) and (iii) can be proved similarly. Since
X̌, Y̌ satisfy (N5) and T satisfy (L3), we have for each λ ∈ A,

‖T‖ (λ) = ‖Tλ‖λ = sup {‖Tλ (x)‖λ : ‖x‖λ ≤ 1} = sup {‖T (x̃)‖ (λ) : ‖x̃‖ ≤̃1}

by using Lemma 4.4. ¤

Example 4.6. For the identity operator I : SE(X̌) → SE
(
Y̌

)
, ‖I‖ = 1, and for

the zero operator O : SE(X̌) → SE
(
Y̌

)
, ‖O‖ = 0.

Theorem 4.7. Let X̌ and Y̌ be a soft normed linear spaces which satisfy (N5). Let
T : SE(X̌) → SE(Y̌ ) be a continuous soft linear operator satisfying (L3). Then Tλ

is continuous on X for each λ ∈ A.

Proof. Let T be continuous. Then T is continuous at each soft element of X̌. Let
λ ∈ A, x ∈ X be arbitrary. Let {xn} be any sequence in X such that xn →
x as n → ∞. Let us consider any soft element x̃∈̃ X̌ such that x̃ (λ) = x and
any sequence {x̃n} of soft elements of X̌ such that x̃n → x̃ as n → ∞. We now
construct a sequence {ỹn} of soft elements of X̌ such that ỹn (µ) = xn if µ = λ
and ỹn (µ) = x̃n (µ) if µ ∈ A\λ. Let ε̃>̃0 be arbitrary, since x̃n → x̃ as n → ∞
there exists a positive integer N1 such that ‖x̃n − x̃‖ <̃ε̃, for all n ≥ N1. Then
‖x̃n − x̃‖ (µ) < ε̃ (µ) , i.e., ‖x̃n (µ)− x̃ (µ)‖µ < ε̃ (µ) , for all µ ∈ A and n ≥ N1.
Then we have ‖ỹn (µ)− x̃ (µ)‖µ < ε̃ (µ) , i.e., ‖ỹn − x̃‖ (µ) < ε̃ (µ) , for all µ ∈ A\λ
and n ≥ N1. Also, since xn → x as n → ∞, there exists a positive integer N2

such that ‖xn − x‖λ ≤ ε̃ (λ) , i.e., ‖ỹn (λ)− x̃ (λ)‖λ < ε̃ (λ) for all n ≥ N2. Let
N = max? {N1, N2}. Then ‖ỹn (µ)− x̃ (µ)‖µ < ε̃ (µ) , i.e., ‖ỹn − x̃‖ (µ) < ε̃ (µ) , for
all µ ∈ A and n ≥ N . Thus ‖ỹn − x̃‖ <̃ε̃, for all n ≥ N . So, ỹn → x̃ as n → ∞.
Since T is continuous, T (ỹn) → T (x̃) as n →∞. Let ε > 0 be arbitrary, then for any
ε̃>̃0 with ε̃ (λ) = ε, there exists a positive integer M such that ‖T (ỹn)− T (x̃)‖ <̃ε̃,
for all n ≥ M . So ‖T (ỹn)− T (x̃)‖ (µ) < ε̃ (µ) , i.e., ‖T (ỹn) (µ)− T (x̃) (µ)‖µ < ε̃ (µ) ,

for all µ ∈ A and n ≥ M . Thus in particular, ‖T (ỹn) (λ)− T (x̃) (λ)‖λ < ε̃ (λ) , i.e.,
‖T (xn)− T (x)‖λ < ε̃ (λ) = ε for all n ≥ M . Proving that Tλ is continuous at x.
Since λ ∈ A, x ∈ X are arbitrary, it follows that Tλ is continuous on X for each
λ ∈ A. ¤

Theorem 4.8. Let X̌ and Y̌ be a soft normed linear spaces which satisfy (N5)
over a finite set of parameters A. Let {Tλ; λ ∈ A} be a family of continuous linear
operators such that Tλ : X → Y for each λ. Then the operator T : SE(X̌) → SE(Y̌ )
defined by T (λ) = Tλ, ∀λ ∈ A; is a continuous soft linear operator satisfying (L3).
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Proof. Let Tλ be continuous on X for each λ ∈ A. Let us consider the operator
T : SE(X̌) → SE(Y̌ ) defined by T (λ) = Tλ, ∀λ ∈ A. From Theorem 3.11, it follows
that T is soft linear and T satisfies (L3). Let us consider any soft element x̃∈̃X̌ and
ε̃>̃0 be arbitrary. Let us consider any sequence {x̃n} of soft elements of X̌ such that
x̃n → x̃ as n → ∞. Then there exists a positive integer N3 such that ‖x̃n − x̃‖ <̃ε̃,
for all n ≥ N3. Then ‖x̃n − x̃‖ (λ) < ε̃ (λ) , i.e., ‖x̃n (λ)− x̃ (λ)‖λ < ε̃ (λ) , for
all λ ∈ A and n ≥ N3. Thus x̃n (λ) → x̃ (λ) as n → ∞ for each λ ∈ A. For
each λ ∈ A, using continuity of Tλ, there exists a positive integers Nλ such that
‖T (x̃n) (λ)− T (x̃) (λ)‖λ < ε̃ (λ), for all n ≥ Nλ. Let N = max {Nλ, λ ∈ A} , such
N exists since A is finite. Then we have ‖T (x̃n) (λ)− T (x̃) (λ)‖λ < ε̃ (λ), i.e.,
‖T (x̃n)− T (x̃)‖ (λ) < ε̃ (λ) , for all n ≥ N . Thus ‖T (x̃n)− T (x̃)‖ <̃ε̃, for all n ≥ N .
Therefore, T is continuous at x̃. Since x̃∈̃ X̌ is arbitrary, T is continuous on X̌. ¤

Remark 4.9. (Soft linear space of operators). Let X̌, Y̌ be soft normed linear
spaces satisfying (N5) over a finite set of parameters A. Consider the set W of all
continuous soft linear operators S, T etc. which satisfy (L3) each mapping SE(X̌)
into SE

(
Y̌

)
. Then using Theorem 4.7, it follows that for each λ ∈ A, Sλ, Tλ etc.are

continuous linear operators on X. Let W (λ) = {Tλ(= T (λ)); T ∈ W}, for all λ ∈ A.
Also using Theorem 4.7 and Theorem 4.8, it follows that, W (λ) is the collection of
all continuous linear operators on X. By the property of crisp linear operators it
follows that W (λ) forms a vector space for each λ ∈ A with respect to the usual
operations of addition and scalar multiplication of linear operators. It also follows
that W (λ) is identical with the set of all continuous linear operators on X for all
λ ∈ A. Thus the absolute soft set generated by W (λ) form an absolute soft vector
space. Hence W can be interpreted as to form an absolute soft vector space. We
shall denote this absolute soft linear (vector) space by L(X̌, Y̌ ).

Proposition 4.10. Each element of SE
(
L

(
X̌, Y̌

))
can be identified uniquely with

a member of W i.e., to a continuous soft linear operator T : SE(X̌) → SE
(
Y̌

)
.

Proof. Let f̃ ∈ SE
(
L

(
X̌, Y̌

))
. Then for each λ ∈ A, f̃ (λ) is a continuous linear

operator from X into Y. Then by Theorem 4.8, it follows that the operator T :
SE(X̌) → SE(Y̌ ) defined by T (λ) = f̃ (λ) , ∀λ ∈ A; is a continuous soft linear
operator satisfying (L3). Thus each element f̃ of SE

(
L

(
X̌, Y̌

))
can be identified

to a continuous soft linear operator T : SE(X̌) → SE
(
Y̌

)
, i.e. to a member of W .

We now show that such T is unique. If possible let S, T be two such continuous
soft linear operators. Then S (λ) = f̃ (λ) , ∀λ ∈ A; and T (λ) = f̃ (λ) , ∀λ ∈ A; i.e.,
S (λ) = T (λ) ,∀λ ∈ A. Let x̃∈̃X̌ and λ ∈ A be arbitrary. Then

(S (x̃)) (λ) = S (λ) ((x̃) (λ)) = T (λ) ((x̃) (λ)) = (T (x̃)) (λ).

This is true for all x̃∈̃X̌ and λ ∈ A. Hence S = T and thus the identification is
unique. ¤

Theorem 4.11. If S, T are continuous soft linear operators, then

‖S + T‖ ≤̃ ‖S‖+ ‖T‖ .
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Proof. For each x̃∈̃X̌, we have by Theorem 4.3,

‖(S + T ) (x̃)‖ = ‖S (x̃) + T (x̃)‖ ≤̃ ‖S (x̃)‖+ ‖T (x̃)‖
≤̃ ‖S‖ ‖x̃‖+ ‖T‖ ‖x̃‖ = (‖S‖+ ‖T‖) ‖x̃‖ .

This implies that ‖S + T‖ ≤̃ ‖S‖+ ‖T‖ . ¤

Theorem 4.12. L(X̌, Y̌ ) is a soft normed linear space where for f̃ ∈ SE
(
L

(
X̌, Y̌

))
,

we can identify f̃ to a unique T ∈ W and
∥∥∥f̃

∥∥∥ is defined by
∥∥∥f̃

∥∥∥ (λ) = ‖T‖ (λ) =sup
{
‖T (x̃)‖ (λ) : ‖x̃‖ ≤̃1

}
,

for each λ ∈ A.

Proof. Clearly
∥∥∥f̃

∥∥∥ is a mapping from SE(L
(
X̌, Y̌

)
) to the set of all non-negative

soft real numbers. So
∥∥∥f̃

∥∥∥ will be a soft norm if it satisfies soft norm axioms (N1) –
(N4) of Definition 2.22.

(N1). Clearly
∥∥∥f̃

∥∥∥ (λ) = ‖T‖ (λ) ≥ 0, ∀λ ∈ A i.e.,
∥∥∥f̃

∥∥∥ ≥̃0.

(N2). If f̃ (λ) = O, the null operator from X to Y , for each λ ∈ A; then T =
the null soft linear operator and

∥∥∥f̃ (λ)
∥∥∥ = ‖Tλ‖λ = 0 and hence

∥∥∥f̃
∥∥∥ = ‖T‖ = 0.

Suppose that
∥∥∥f̃

∥∥∥ = ‖T‖ = 0 i.e.,
∥∥∥f̃

∥∥∥ (λ) = ‖T‖ (λ) = sup
{
‖T (x̃)‖ (λ) : ‖x̃‖ ≤̃1

}
=

0, for each λ ∈ A. Since X̌, Y̌ satisfy (N5) and T satisfy (L3), we have for each
λ ∈ A, ‖T‖ (λ) = ‖Tλ‖λ = sup {‖Tλ (x)‖λ : ‖x‖λ ≤ 1} = sup {‖T (x̃)‖ (λ) : ‖x̃‖ ≤̃1}.
[ Using Lemma 4.4] Thus we have ‖Tλ‖λ = sup {‖Tλ (x)‖λ : ‖x‖λ ≤ 1} = 0, for each
λ ∈ A. By the property of crisp operators it follows that Tλ = O = T (λ) , for each
λ ∈ A. Hence we have T = the null soft linear operator and hence f̃ (λ) = O, the
null linear operator on X, for each λ ∈ A.

(N3). If γ̃ be a soft scalar, then for each λ ∈ A,∥∥∥γ̃f̃
∥∥∥ (λ) = ‖γ̃T‖ (λ) = ‖(γ̃T )λ‖λ

= ‖γ̃ (λ) .Tλ‖λ

= |γ̃| (λ) .‖Tλ‖λ = (|γ̃| ‖T‖) (λ) =
(
|γ̃|

∥∥∥f̃
∥∥∥
)

(λ) .

So,
∥∥∥γ̃f̃

∥∥∥ = |γ̃|
∥∥∥f̃

∥∥∥ .

(N4). We have
∥∥∥f̃ + g̃

∥∥∥ (λ) = ‖S + T‖ (λ) ≤ (‖S‖ + ‖T‖) (λ) = (
∥∥∥f̃

∥∥∥ + ‖g̃‖) (λ),

for each λ ∈ A; where f̃ , g̃ are identified with S and T respectively. Thus,
∥∥∥f̃

∥∥∥ is a

soft norm on L(X̌, Y̌ ) and hence L(X̌, Y̌ ) is a soft normed linear space. ¤
Remark 4.13. (Ring of operators). Let X̌ be a soft normed linear space satisfying
(N5) over a finite set of parameters A. Consider the set W of all continuous soft
linear operators S, T etc. which satisfy (L3) each mapping SE(X̌) into SE

(
X̌

)
.

We define the product of two such continuous soft linear operators S and T by
(ST ) (x̃) = S(T (x̃)) for every x̃∈̃X̌. It is a matter of simple verification that ST
becomes a continuous soft linear operator T : SE(X̌) → SE

(
X̌

)
. We write AA =

A2, A2A = A3, A3A = A4, and so on. It may be verified further that (ST )V =
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S (TV ) , (S + T ) V = SV + TV, V (S + T ) = V S + V T. Further, there exists an
operator I, the identity operator such that for all soft linear continuous operators
S, SI = IS = S. Therefore W becomes a ring with identity element. Since the
elements of SE(L(X̌, Y̌ )) can be identified uniquely to the elements of W . Thus
SE(L(X̌, Y̌ )) can be interpreted as to form a ring with identity element.

Theorem 4.14. For S, T ∈ W, ‖ST‖ ≤̃ ‖S‖ . ‖T‖ .

Proof. We have, ‖ST (x̃)‖ = ‖S(T (x̃))‖ ≤̃ ‖S‖ . ‖T (x̃)‖ ≤̃ ‖S‖ . ‖T‖ (x̃), for every
x̃∈̃X̌. Therefore, ‖ST‖ ≤̃ ‖S‖ . ‖T‖ . ¤

Theorem 4.15. For any positive integer n, ‖Sn‖ ≤̃‖S‖n
.

Proof. Put S = T in Theorem 4.14, then
∥∥S2

∥∥ ≤̃ ‖S‖ . ‖S‖ = ‖S‖2. Suppose that
the result is true for n = m, i.e., ‖Sm‖ ≤̃‖S‖m

. Let B = Am in Theorem 4.14, then
‖SSm‖ ≤̃ ‖S‖ . ‖Sm‖ i.e.,

∥∥Sm+1
∥∥ ≤̃ ‖S‖ .‖S‖m = ‖S‖m+1

. Hence by induction the
theorem is proved. ¤

Definition 4.16. Let Sn, S ∈ W. Then

‖Sn − S‖ (λ) = sup{‖(Sn − S) (x̃)‖ (λ) : ‖x̃‖ ≤̃1}
= sup{‖(Sn (x̃)− S (x̃))‖ (λ) : ‖x̃‖ ≤̃1},

for each λ ∈ A. If ‖Sn − S‖ → 0 as n → ∞, then we say that the sequence of
operators {Sn} converges in norm to the operator S and we write Sn → S (in
norm).

Definition 4.17. Let f̃n, f̃ ∈ L
(
X̌, Y̌

)
, then f̃n, f̃ can be identified uniquely to

Sn, S ∈ W. We define f̃n → f̃ (in norm) if Sn → S (in norm).

Theorem 4.18. Let X̌, Y̌ be soft normed linear spaces which satisfy (N5) and having
a finite set of parametes A. If Y̌ is a soft Banach space, then L

(
X̌, Y̌

)
is also a soft

Banach space with respect to the above identification.

Proof. Let {f̃n} be a Cauchy sequence in L
(
X̌, Y̌

)
. Then {f̃n} can be a identified

to a Cauchy sequence {Sn} in W, i.e., let ‖Sn − Sm‖ → 0 as m, n → ∞. If x̃∈̃X̌,
then we have

‖Sn (x̃)− Sm (x̃)‖ = ‖(Sn − Sm) (x̃)‖ ≤̃ ‖(Sn − Sm)‖ ‖x̃‖ → 0 as m,n →∞.

Therefore {Sn (x̃)} is a Cauchy sequence of soft elements of Y̌ and since Y̌ is com-
plete, Sn (x̃) → ỹ (say) as n →∞. With every x̃∈̃X̌, we can associate ỹ∈̃Y̌ , thereby
obtaining an operator S defined by S (x̃) = ỹ (= limn→∞ Sn (x̃) ) . We prove first
that S ∈ W. We have

S (x̃1 + x̃2) = limn→∞ Sn (x̃1 + x̃2) = limn→∞ Sn (x̃1) + Sn(x̃2) = S (x̃1) + S(x̃2) ,

so S is additive. If c̃ is a soft scalar, then

S (c̃x̃1) = limn→∞ Sn (c̃x̃1) = c̃ limn→∞ Sn (x̃1) = c̃.S (x̃1).
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So, S is a soft linear operator. Now, | ‖Sn‖−‖Sm‖ |≤̃ ‖Sn − Sm‖ → 0 as m,n →∞,
so the sequence {‖Sn‖} of non-negative soft real numbers is Cauchy and since the
parameter set is finite, is convergent (By Theorem 2.27). Therefore the sequence is
bounded, i.e., there exists a soft real number K̃ such that ‖Sn‖ ≤̃K̃ for n = 1, 2, . . . .

Hence ‖S (x̃)‖ = limn→∞ ‖Sn (x̃)‖ ≤̃ limn→∞ ‖Sn‖ ‖x̃‖ ≤̃K̃ ‖x̃‖, for all x̃∈̃X̌. Thus
S is bounded and hence is continuous. Therefore, S ∈ W. Now we show that
‖Sn − S‖ → 0 as n →∞. Since {Sn} is a Cauchy sequence, for ε̃>̃0 arbitrary there
exists n0 such that ‖Sn+p − Sn‖ <̃ε̃ if n ≥ n0 and p = 1, 2, . . . . . . . So for all x̃∈̃X̌,
‖x̃‖ ≤̃1, we have for n ≥ n0 and p = 1, 2, . . . . . . .

‖Sn+p (x̃)− Sn (x̃)‖ ≤̃ ‖Sn+p − Sn‖ ‖x̃‖ ≤̃ ‖Sn+p − Sn‖ <̃ε̃.

Letting p → ∞, we obtain ‖S (x̃)− Sn (x̃)‖ <̃ε̃ if n ≥ n0 and ‖x̃‖ ≤̃1. Therefore
for n ≥ n0, ‖S − Sn‖ (λ) = sup

{
‖S (x̃)− Sn (x̃)‖ (λ) : ‖x̃‖ ≤̃1

}
< ε̃ (λ) , for every

λ ∈ A. i.e., ‖S − Sn‖ <̃ε̃ i.e., Sn → S. Hence by definition, f̃n → f̃ (in norm).
Therefore L

(
X̌, Y̌

)
is a soft Banach space. ¤

Definition 4.19. Let X̌ be a soft Banach space and let the operations (x̃, ỹ) → x̃+ỹ
(c̃, x̃) → c̃.x̃ be defined on SE(X̌). If SE(X̌) together with these operations form
a ring and is assumed to satisfy the condition ‖x̃.ỹ‖ ≤̃ ‖x̃‖ . ‖ỹ‖ , ∀ x̃, ỹ ∈ SE(X̌).
Then such a system is called a soft Banach Algebra.

Example 4.20. By Theorem 4.18, L
(
X̌, Y̌

)
is a soft Banach space and the elements

of SE(L
(
X̌, Y̌

)
) can be identified uniquely to the elements of W which is a ring

with unity. We further notice that for any S, T ∈ W, ‖ST‖ ≤̃ ‖S‖ . ‖T‖ . So, with
respect to the above identification, L

(
X̌, Y̌

)
is a soft Banach Algebra.

5. Inverse of soft linear operators

Let T : SE(X̌) → SE
(
Y̌

)
where X̌, Y̌ are soft normed linear spaces having the

same underlying scalar field. SE(X̌) is the domain of the operator T . The set
{T (x̃) : x̃∈̃X̌} is the range of T . The domain of T and the range of T are denoted
respectively by D(T ) and R (T ) . Throughout this section we shall assume that X̌, Y̌
are soft normed linear spaces having the same underlying scalar field.

Definition 5.1. Let T : SE(X̌) → SE
(
Y̌

)
. The inverse of the operator T , denoted

by T−1, is said to exist if T−1 (T (x̃)) = x̃ for all x̃∈̃X̌ i.e., T−1 (T ) = I, the identity
operator. Such an operator T−1 clearly exists if and only if T (x̃1) = T (x̃2) implies
x̃1 = x̃2 for every x̃1, x̃2∈̃X̌.

Theorem 5.2. Let T : SE(X̌) → SE
(
Y̌

)
be a soft linear operator. Then T−1

exists if and only if T (x̃) = Θ implies x̃ = Θ.

Proof. Suppose T (x̃) = Θ implies x̃ = Θ and let T (x̃1) = T (x̃2). Then because T is
soft linear, T (x̃1 − x̃2) = T (x̃1)−T (x̃2) = Θ and therefore x̃1− x̃2 = Θ i.e., x̃1 = x̃2

and so T−1 exists.
Conversely, suppose that T−1 exists i.e., T (x̃1) = T (x̃2) implies x̃1 = x̃2. Let

T (x̃) = Θ, then T (x̃) = Θ=T (Θ) implying thereby x̃ = Θ. ¤
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Theorem 5.3. Let T : SE(X̌) → SE
(
Y̌

)
be a soft linear operator. If T−1 exists,

then T−1 is soft linear.

Proof. Let ỹ1, ỹ2∈̃R(T ), then there exist x̃1, x̃2∈̃X̌ such that T (x̃1) = ỹ1, T (x̃2) =
ỹ2. So,

T−1 (ỹ1 + ỹ2) = T−1 (T (x̃1) + T (x̃2))

= T−1 (T (x̃1 + x̃2))

= x̃1 + x̃2 = T−1 (ỹ1) + T−1 (ỹ2)

and if c̃ be any soft scalar then

T−1 (c̃ỹ1) = T−1 (c̃T (x̃1)) = T−1 (T (c̃x̃1)) = c̃x̃1 = c̃T−1 (ỹ1).

Hence T−1 is soft linear. ¤

Theorem 5.4. Let T : SE(X̌) → SE
(
Y̌

)
be a soft linear operator, where X̌, Y̌ are

soft normed linear spaces with the same finite dimension n. If R (T ) = SE(Y̌ ), then
T−1 exists.

Proof. Let ỹ1, ỹ2, . . . .., ỹn be a basis for Y̌ . Since R (T ) = SE(Y̌ ), there exists
x̃1, x̃2, . . . .., x̃n in X̌ such that T (x̃k) = ỹk, for k = 1, 2, .., n. Now c̃1. x̃1+c̃2. x̃2+..+
c̃n. x̃n = Θ, implies Θ= T (c̃1. x̃1 + c̃2. x̃2 + .. + c̃n. x̃n)=c̃1. ỹ1 + c̃2. ỹ2 + ..+ c̃n. ỹn,
giving that c̃1 = c̃2 = · · · = c̃n = 0, because ỹ1, ỹ2, . . . .., ỹn are linearly inde-
pendent. This shows that x̃1, x̃2, . . . .., x̃n are linearly independent and thus form
a basis for X̌ since X̌ is of dimension n. Now, suppose that T (x̃) = Θ, for
some x̃∈̃X̌. Then x̃ can be expressed as x̃ = c̃1. x̃1 + c̃2. x̃2 + .. + c̃n. x̃n. So,
Θ=T (x̃) = T (c̃1. x̃1 + c̃2. x̃2 + .. + c̃n. x̃n) =c̃1. ỹ1 + c̃2. ỹ2 + ..+ c̃n. ỹn. This implies
that c̃1 = c̃2 = · · · = c̃n = 0 and so x̃ = Θ. Hence T−1 exists by Theorem 5.2. ¤

Definition 5.5. An operator T : SE(X̌) → SE
(
Y̌

)
is called injective or one-to-one

if T (x̃1) = T (x̃2) implies x̃1 = x̃2. It is called surjective or onto if R (T ) = SE(Y̌ ).
The operator T is bijective if T is both injective and surjective.

Theorem 5.6. Let T : SE(X̌) → SE
(
Y̌

)
be a soft linear operator, where X̌, Y̌

are soft normed linear spaces. Then T−1 exists and is continuous on its domain of
definition if there exists a soft real number m̃>̃0 such that m̃ ‖x̃‖ ≤̃ ‖T (x̃)‖ for every
x̃∈̃X̌.

Proof. Suppose that m̃ ‖x̃‖ ≤̃ ‖T (x̃)‖ for every x̃∈̃X̌. Then T (x̃) = Θ implies x̃ = Θ
and so T−1 exists by Theorem 5.2. Now, T (x̃) = ỹ is equivalent to x̃ = T−1(ỹ) and
so m̃ ‖x̃‖ = m̃

∥∥T−1(ỹ)
∥∥ ≤̃ ‖ỹ‖ = ‖T (x̃)‖ or

∥∥T−1(ỹ)
∥∥ ≤̃‖ỹ‖

m̃ for all ỹ in R (T ) , which
is the domain of T−1. So, T−1 is bounded and hence continuous. ¤

Theorem 5.7. Let X̌ and Y̌ be soft normed linear spaces which satisfy (N5) and
T : SE(X̌) → SE(Y̌ ) be a soft linear operator. Let T−1 be a continuous soft linear
operator T−1 : SE(Y̌ ) → SE(X̌) which satisfy (L3). Then there exists a soft real
number m̃>̃0 such that m̃ ‖x̃‖ ≤̃ ‖T (x̃)‖ for every x̃∈̃X̌.
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Proof. Suppose that T−1 exists and is continuous. Since X̌, Y̌ satisfy (N5) and T
satisfy (L3), by Theorem 3.12, T−1 is bounded. So there exists a positive soft real
number M̃>̃0 such that

∥∥T−1(ỹ)
∥∥ ≤̃M̃ ‖ỹ‖ for all ỹ in R (T ) . There exists x̃∈̃X̌

such that T (x̃) = ỹ i.e., x̃ = T−1 (ỹ) . So, the above becomes ‖x̃‖ ≤̃M̃ ‖T (x̃)‖ i.e.,
1
M̃
‖x̃‖ ≤̃ ‖T (x̃)‖. So if m̃ = 1

M̃
the theorem is obtained. ¤

Theorem 5.8. Let X̌ be a soft Banach space and Y̌ be a soft normed linear space
both of which satisfy (N5) and T : SE(X̌) → SE(Y̌ ) be a bijective continuous soft
linear operator satisfying (L3). If T−1 is continuous then Y̌ is a soft Banach space.

Proof. We need only to show that Y̌ is complete. Let {yn} be a Cauchy sequence
in Y̌ . There exists xn∈̃X̌ such that T (xn) = yn. So by Theorem 5.7,

‖yn − ym‖ = ‖T (xn)− T (xm)‖ = ‖T (xn − xm)‖ ≥̃m̃ ‖xn − xm‖,
where m̃>̃0. Thus {xn} is also a Cauchy sequence in X̌. Since X̌ is complete,
limn→∞ x̃n = x̃0, for some x̃0∈̃X̌. Let T (x0) = y0. Then

limn→∞ ỹn = limn→∞ T (xn) = T (x0) = y0,

proving the completeness of Y̌ . So, Y̌ is a soft Banach space. ¤

6. Conclusions

In this paper we have introduced a concept of soft linear operator on a soft linear
space. Some basic properties of such operators has been investigated with examples.
Continuty and boundedness of such operators has been defined and studied some of
their basic properties. Spaces of continuous soft linear operators and inverse of soft
linear operators are studied . There is an ample scope for further research on soft
normed linear spaces and soft linear operators.
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