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1. Introduction

The idea of studying stability problem of functional equations started with a
well-known problem posed by Ulam [19] in 1940 concerning the stability of group
homomorphisms. Let G1 be a group and let G 2 be a metric group with the metric
d ( · , · ). Given ε > 0 does there exist a δ > 0 such that if a mapping h : G 1 −→
G 2 satisfies the inequality d (h (xy ) , h (x)h (y) ) < δ for all x , y ∈ G1, then
a homomorphism H : G 1 −→ G 2 exists with d ( h ( x ) , H(x ) ) < ε for all
x ∈ G1? In the next year Hyers [8] gave a partial acceptable answer to this question.
He showed that if δ > 0 and f : E −→ E 1 with E and E 1 Banach spaces, such
that

‖ f( x + y ) − f(x) − f(y) ‖ 6 δ



T. K. Samanta et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 2, 285–294

for all x , y ∈ E then there exists a unique g : E −→ E 1 such that g(x + y ) =
g(x) + g(y) and ‖ f(x ) − g(x) ‖ 6 δ for all x , y ∈ E . The generalized result
of T. Aoki, who elaborated and pondered on the Hyers-Ulam stability formulae
in [1], is the consequence of extensive acting upon and furthering to in 1978 by
Th. M. Rassias. His evolutionary definition determining the generalized hypothesis
in [14] denotes Hyers theorem as a special case. Of late Maligranda’s rectifying
performance that the mapping f satisfies some continuity assumption that finds its
concept of existence of unique additive mapping, commenced by T. Aoki [1]. The
quadratic function f(x) = cx2 satisfies the functional equation

f (x + y) + f (x− y) = 2f (x) + 2f (y)(1.1)

and therefore the equation (1.1) is called the quadratic functional equation. F. Skof
[18] proved the Hyers-Ulam stability theorem for (1.1) for the function f : E → E 1

where E is a normed space and E 1 is a Banach space. In fact, P. W. Cholewa [5],
S. Czerwik [6] proved the Hyers-Ulam stability theorem for (1.1) replacing E 1 by
an Abelian group. This result was further generalized by Th. M. Rassias [15], C.
Borelli and G. L. Forti [3]. Later on, in the paper [9], the authors further generalized
this result for the new quadratic functional equation (0.1).
Ever since the concept of fuzzy sets was introduced by Zadeh [20] in 1965 to describe
the situation in which data are imprecise or vague or uncertain. It has a wide
range of application in the field of population dynamics, chaos control, computer
programming, medicine , etc. With the launch of the concept of Fuzzy metric space
in 1975 by Kramosil and Michalek [11] it takes several vistas of more developmental
in such spaces. The fuzzy norm was introduced by Katsaras [10]. The norm has
also been exposed by some mathematicians from several standpoint on vector space.
The idea of fuzzy norm by Cheng and Moderson [4], Bag and Samanta [2] was so
precise to relate to fuzzy metric Kramosil and Michalek type [11]. However, Geoge
andVeeramani [7]opine, it is a fact that an ordinary normed linear space is a special
one of fuzzy normed linear space. Since them many [12, 13] made attempt on it to
prove a general stability theory of functional equations in fuzzy Banach spaces.

In this paper, this is an effort to generalize the stability theorem of generalized
Hyers-Ulam-Rassias Stability of the quadratic functional equation (0.1) in Fuzzy
Banach Spaces.

2. Preliminaries

We quote some definitions and examples which will be needed in the sequel.

Definition 2.1 ([17]). A binary operation ∗ : [ 0 , 1 ] × [ 0 , 1 ] −→ [ 0 , 1 ] is
continuous t - norm if ∗ satisfies the following conditions :

( i ) ∗ is commutative and associative ;
( ii ) ∗ is continuous ;
( iii ) a ∗ 1 = a ∀ a ∈ [ 0 , 1 ] ;
( iv ) a ∗ b ≤ c ∗ d whenever a ≤ c , b ≤ d and a , b , c , d ∈ [ 0 , 1 ].

Through out this article, we further assume that a ∗ a = a ∀ a ∈ [ 0 , 1 ] .
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Definition 2.2 ([12]). The 3-tuple ( X , N , ∗ ) is called a fuzzy normed linear
space if X is a real linear space, ∗ is a continuous t - norm and N is a fuzzy set in
X × ( 0 , ∞ ) satisfying the following conditions :

(i) N (x , t ) > 0 ;
(ii) N (x , t ) = 1 if and only if x = 0;
(iii) N ( c x , t ) = N

(
x , t

| c |
)

if c 6= 0 ;
(iv) N (x , s ) ∗ N ( y , t ) 6 N (x + y , s + t ) ;
(v) N (x , · ) : ( 0 , ∞ ) → ( 0 , 1 ] is continuous ;

for all x , y ∈ X and t , s > 0 .
Note that N (x , t ) can be thought of as the degree of nearness between x and null
vector 0 with respect to t .

Example 2.3. Let X = [ 0 , ∞ ) , a ∗ b = a b for every a , b ∈ [ 0 , 1 ] and
‖ · ‖ be a norm defined on X . Define N (x , t ) = e−

‖ x ‖
t for all x in X. Then

clearly (X , N , ∗ ) is a fuzzy normed linear space.

Example 2.4. Let (X , ‖ · ‖ ) be a normed linear space, and let a ∗ b = a b or
a ∗ b = min { a , b } for all a , b ∈ [ 0 , 1 ] . Let N (x , t ) = t

t + ‖ x ‖ for
all x ∈ X and t > 0 . Then (X , N , ∗ ) is a fuzzy normed linear space and this
fuzzy norm N induced by ‖ · ‖ is called the standard fuzzy norm.

Note 2.1. According to George and Veeramani [7], it can be proved that every
fuzzy normed linear space is a metrizable topological space. In fact, also it can be
proved that if ( X , ‖ · ‖ ) is a normed linear space, then the topology generated by
‖ · ‖ coincides with the topology generated by the fuzzy norm N of example (2.4).
As a result, we can say that an ordinary normed linear space is a special case of
fuzzy normed linear space.

Remark 2.5. In fuzzy normed linear space ( X , N , ∗ ) , for all x ∈ X, N (x , · )
is non- decreasing with respect to the variable t.

Definition 2.6 ([16]). Let ( X , N , ∗ ) be a fuzzy normed linear space. A sequence
{xn } in X is said to be convergent or converge if there exists an x ∈ X such that
lim

n→∞
N (xn − x , t ) = 1 . In this case, x is called the limit of the sequence

{xn } and we denote it by N − lim
n →∞

xn = x .

Definition 2.7 ([16]). Let ( X , N , ∗ ) be a fuzzy normed linear space. A sequence
{xn } in X is called Cauchy sequence if for each ε > 0 and t > 0 there exists an
n 0 ∈ N such that for all n > n 0 and all p > 0, we have N (xn + p − xn , t ) >
1 − ε .

3. The generalized Hyers-Ulam-Rassias stability of
the functional equation (0.1):

In this section, let X be a real vector space and ( Y , N ) be a fuzzy Banach space.

Theorem 3.1. Let φ : X 2 → [0 ,∞) be a function such that

(3.1) φ̃ (x , 0 ) =
∞∑

n=0

φ (2n x , 0)
4n

< ∞ and lim
n→∞

φ (2 n x , 2n y)
4n

= 0
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for all x , y ∈ X . Let f : X → Y be a mapping with f (0) = 0 such that

(3.2) lim
t→∞

N ( f (2x + y)− f (x + 2y)− 3f (x) + 3f (y) , t φ (x , y) ) = 1

uniformly on X × X . Then Q (x) : = N − lim
n→∞

f(2 n x)
4 n exists for each x ∈ X

and defines a quadratic mapping Q : X → Y such that if for some δ > 0 , α > 0

(3.3) N ( f (2x + y)− f (x + 2y)− 3f (x) + 3f (y) , δ φ (x , y) ) > α

for all x , y ∈ X, then

(3.4) N
(
f (x)−Q (x) , δ φ̃ (x , 0 )

)
> α

for all x ∈ X . Furthermore, the quadratic mapping Q : X → Y is a unique
function such that

(3.5) lim
t→∞

N
(
f (x)−Q (x) , t φ̃ (x , 0 )

)
= 1

uniformly on X.

Proof. For a given ε > 0 , by (3.2), there exits some t 0 > 0 such that

(3.6) N ( f (2x + y)− f (x + 2y)− 3f (x) + 3f (y) , t φ (x , y) ) ≥ 1− ε

for all t > t 0 . By induction on positive integer n , we show that

(3.7) N

(
4 nf (x ) − f (2 n x ) ,

t

4

n−1∑

k = 0

4 n−k φ
(
2 k x , 0

)
)

> 1 − ε

for all x ∈ X and for all t > t 0 .
Letting y = 0 in (3.6), we get

N ( f (2x)− f (x)− 3f (x) + 3f (0) , t φ (x , 0) ) > 1 − ε ,

i.e., N ( f (2x)− 4f (x) , t φ (x , 0) ) > 1− ε ,

i.e., N ( 4f (x)− f (2x) , t φ (x , 0) ) > 1− ε

for all x ∈ X and for all t > t 0 .
Thus we get (3.7) for n = 1 . Assume that (3.7) holds for n ∈ N . Then

N

(
4 n+1f ( x ) − f

(
2 n+1 x

)
,

t

4

n∑

k = 0

4 n−k+1 φ
(
2 k x , 0

)
)

> N

(
4 n+1f (x ) − 4 f (2 n x ) ,

t

4

n−1∑

k = 0

4 n−k+1 φ
(
2 k x , 0

)
)

∗ N
(
4 f (2 n x ) − f

(
2 n+1 x

)
, t φ (2 n x , 0)

)

> ( 1 − ε ) ∗ ( 1 − ε ) = 1− ε

This completes the proof of (3.7) . Letting t = t 0 and replacing n and x by p
and 2n x in (3.7) respectively , we get

N

(
4 pf (2n x ) − f

(
2 n+p x

)
,

t 0

4

p− 1∑

k = 0

4 p−kφ
(
2 n+k x , 0

)
)

> 1 − ε,
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which implies that

(3.8) N

(
f (2n x )

4n
− f (2 n+p x )

4 n+p
,

t 0

4. 4n+p

p−1∑

k = 0

4 p−kφ
(
2 n+k x , 0

)
)

> 1 − ε

for all n > 0 and for all p > 0 . It follows from (3.1) and the equality
p− 1∑

k = 0

4−n−kφ
(
2 n+k x , 0

)
=

n + p− 1∑

k = n

4− kφ
(
2 k x , 0

)

that for a given δ > 0 there exits n 0 ∈ N such that

t0
4

n + p− 1∑

k = n

4− kφ
(
2 k x , 0

)
< δ

for all n > n 0 and for all p > 0 . Now we deduce from (3.8) that

N

(
f (2n x )

4n
− f (2 n+p x )

4 n+p
, δ

)

> N

(
f (2n x )

4n
− f (2 n+p x )

4 n+p
,

t 0

4. 4n + p

p−1∑

k = 0

4p−kφ
(
2n+k x , 0

)
)

> 1− ε

for each n > n 0 and p > 0 . Thus the sequence
{

f(2 n x )
4n

}
is Cauchy in Y . Since

Y is a fuzzy Banach space, the sequence
{

f(2 n x )
4n

}
converges to some Q (x ) ∈ Y .

So we can define a function Q : X → Y by Q (x) := N − lim
n→∞

f(2 n x)
4 n , namely

for each t > 0 and x ∈ X,

lim
n→∞

N

(
f (2 n x)

4n
− Q (x) , t

)
= 1 .

Now we show that Q satisfies (0.1) . Let x , y ∈ X and fix t > 0 and 0 < ε < 1 .
Since lim

n→∞
φ(2 n x , 2 n y)

4 n = 0 there exists n 1 > n 0 such that

(3.9) t0
φ (2 n x , 2n y)

4n
<

t

5
for all n > n 1 . Hence for each n > n 1 ,

(3.10) N (Q (2x + y) − Q (x + 2y) − 3 Q (x) + 3 Q (y) , t )

> N

(
Q (2x + y) − f (2n (2x + y))

4n
,

t

5

)
∗

N

(
Q (x + 2 y) − f (2n (x + 2 y))

4n
,

t

5

)
∗

N

(
3 Q (x)− 3

f (2n x)
4n

,
t

5

)
∗

N

(
3 Q (y) − 3

f (2n y)
4n

,
t

5

)
∗
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N

(
f (2n (2 x + y))

4n
− f (2n (x + 2y))

4n
− 3

f (2n x)
4n

+ 3
f (2n y)

4n
,

t

5

)

Replacing x , y by 2nx , 2 ny respectively in (3.6) and for t = t 0 , we get

N
(
f (2n (2x + y)) − f (2n (x + 2 y)) − 3f (2nx) + 3f (2ny) ,

t0 φ ( 2nx , 2ny )
)

> 1 − ε,

which implies that

(3.11) N
(
4−n f (2n (2x + y)) − 4−n f (2n (x + 2 y)) − 3 . 4−n f (2nx) +

3 .4−n f (2ny) , t0 4−n φ ( 2nx , 2ny )
)

> 1 − ε .

The first four terms on the RHS of (3.10) tend to 1 as n → ∞ and the last term
> 1 − ε by (3.9) and (3.11) . Thus,

N (Q (2x + y) − Q (x + 2y) − 3 Q (x) + 3 Q (y) ) , t ) > 1− ε for all t > 0 ,

⇒ N (Q (2x + y) − Q (x + 2y) − 3 Q (x) + 3 Q (y) , t ) = 1 for all t > 0 ,

⇒ Q (2x + y)− Q (x + 2y)− 3 Q (x)+ 3 Q (y) = 0 for all x , y ∈ X .

Hence Q satisfies (0.1), i.e., Q : X → Y is quadratic . Now let for some positive
δ > 0 , α > 0 . (3.3) holds. Let

φn (x , 0 ) =
n− 1∑
k = 0

4− kφ
(
2 k x , 0

)
for all x ∈ X.

Let x ∈ X . By the same reasoning as in the beginning of the proof , we can deduce
from (3.3) that

(3.12) N

(
4 nf (x) − f (2 n x ) , δ

n− 1∑

k = 0

4 n−k φ
(
2 k x , 0

)
)

> α

for all positive integers n . Let t > 0 . We have

(3.13) N (f (x) − Q (x) , δφn ( x , 0 ) + t)

> N

(
f (x) − f (2n x )

4n
, δφn (x , 0 )

)
∗ N

(
f (2n x )

4n
− Q (x) , t

)
.

Combining (3.12) and the fact that

lim
n→∞

N

(
f (2 n x)

4n
− Q (x) , t

)
= 1 , we have

N (f (x) − Q (x) , δφn (x , 0 ) + t) > α ∗ 1 = α

for large enough n ∈ N .
From the continuity of N (f((x) − Q (x) , · ) and considering t → 0 , we get

N
(
f (x) − Q (x) , δ φ̃ (x , 0 )

)
> α for all x ∈ X .

Uniqueness: Let T be another quadratic mapping satisfying (0.1) and (3.5) .
Fix c > 0 , given ε > 0 , by (3.5) for Q and T we can find some t 0 > 0 such
that

N
(
f (x) − Q (x) , t φ̃ (x , 0 )

)
> 1 − ε ,
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N
(
f (x) − T (x) , t φ̃ (x , 0 )

)
> 1 − ε

for all x ∈ X and t > t0 .
Again, we see from (0.1) that f (2x) = 4 f (x) for y = 0 , by induction, it implies
that

(3.14) f (2 n x) = 4 n f (x) .

Since Q and T satisfy (0.1) , it follows from (3.14) that

Q (2 n x) = 4 n Q (x) and T (2 n x) = 4 n T (x) .

Fix some x ∈ X and find some integer n 0 such that

(3.15) t 0

∞∑

k = n

4− kφ
(
2 k x , 0

)
<

c

2
for all n > n 0 .

Since
∞∑

k = n

4− kφ
(
2 k x , 0

)
=

1
4 n

∞∑

k = n

4− (k−n)φ
(
2 k−n(2n x ), 0

)

=
1
4 n

∞∑
m = 0

4−mφ (2 m ( 2n x ), 0 ) =
1

4n
φ̃ (2n x , 0 ) ,

we have
N (Q (x) − T (x) , c )

= N

(
Q (x) − f (2n x )

4n
+

f (2n x )
4n

− T (x) ,
c

2
+

c

2

)

> N

(
Q (x) − f (2n x )

4n
,

c

2

)
∗ N

(
f (2n x )

4n
− T (x) ,

c

2

)

= N
(
f (2n x ) − 4n Q (x) , 4n c

2

)
∗ N

(
f (2n x ) − 4n T (x) , 4n c

2

)

= N
(
f (2n x ) − Q (2nx) , 4n c

2

)
∗ N

(
f (2n x ) − T (2nx) , 4n c

2

)

> N

(
f (2n x ) − Q (2nx) , 4n t0

∞∑

k = n

4−k φ
(
2 kx , 0

)
)
∗

N

(
f (2n x ) − T (2nx) , 4n t0

∞∑

k = n

4−k φ
(
2 kx , 0

)
)

= N
(
f (2n x ) − Q (2nx) , t0 φ̃ (2n x , 0 )

)
∗

N
(
f (2n x ) − T (2nx) , t0 φ̃ (2n x , 0 )

)

> ( 1− ε ) ∗ ( 1− ε ) = 1− ε

It follows that N (Q (x) − T (x) , c ) = 1 for all c > 0 . Thus Q (x) = T (x)
for all x ∈ X. This completes the proof of the theorem. ¤
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Corollary 3.2. Let θ > 0 and p be a real number with 0 < p < 2 . Let
f : X → Y be a function such that with f( 0 ) = 0 and
(3.16)

lim
t→∞

N ( f (2x + y) − f (x + 2y) − 3f (x) + 3f (y) , t θ (‖x‖ p + ‖y‖ p)) = 1

uniformly on X × X . Then Q (x) : = N − lim
n→∞

f(2 n x)
4 n exists for each x ∈ X

and defines a quadratic function Q : X → Y such that if for some δ > 0 , α > 0

(3.17)
N ( f (2x + y) − f (x + 2y) − 3f (x) + 3f (y) , δ θ ( ‖x‖ p + ‖y‖ p ) ) > α

for all x , y ∈ X , then

(3.18) N

(
f (x) − Q (x) , δ

4 θ

(4− 2 p)
‖x‖ p

)
> α

for all x ∈ X . Furthermore, the function Q : X → Y is a unique function such
that

lim
t→∞

N

(
f (x) − Q (x) , t

4 θ

( 4 − 2 p )
‖x‖ p

)
= 1

uniformly on X .

Proof. Define φ (x , y) = θ ( ‖x‖ p + ‖y‖ p ) . Now

φ̃ (x , 0 ) =
∞∑

n = 0

φ (2n x , 0)
4n

=
∞∑

n=0

θ ( ‖ 2 nx ‖ p )
4n

= θ ‖x‖ p
∞∑

n = 0

(
2p

4

)n

= θ ‖x ‖ p 1
1− 2 p

4

= θ ‖x ‖ p 4
4 − 2 p

.

It proves this corollary with the help of Theorem 3.1 . ¤

Theorem 3.3. Let φ : X 2 → [0 ,∞) be a function such that φ̃ (x , 0 ) =
∞∑

n=0
4nφ

(
x
2n , 0

)
< ∞ ; for all x ∈ X . Let f : X → Y be a function with

f( 0 ) = 0 such that

lim
t→∞

N ( f (2x + y)− f (x + 2y) − 3f (x) + 3f (y) , t φ( x , y) ) = 1

uniformly on X × X . Then Q (x) : = N − lim
n→∞

4n f
(

x
2n

)
exists for each x ∈ X

and defines a quadratic function Q : X → Y such that if for some δ > 0 , α > 0

N ( f (2x + y) − f (x + 2y) − 3f (x) + 3f (y) , δ φ( x , y) ) > α

for all x , y ∈ X , then

N
(

f (x) − Q (x) , δ φ̃ ( x , 0 )
)

> α for all x ∈ X .

Furthermore, the function Q : X → Y is a unique function such that

lim
t→∞

N
(

f (x) − Q (x) , t φ̃ (x , 0 )
)

= 1

uniformly on X .
292
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Corollary 3.4. Let θ > 0 and p be a real number with 0 < p < 2 . Let
f : X → Y be a function such that with f( 0 ) = 0 and

lim
t→∞

N ( f (2x + y) − f (x + 2y) − 3f (x) + 3f (y) , t θ (‖x‖ p + ‖y‖ p)) = 1

uniformly on X × X . Then Q (x) : = N − lim
n→∞

4n f
(

x
2n

)
exists for each x ∈ X

and defines a quadratic function Q : X → Y such that if for some δ > 0 , α > 0

N ( f (2x + y) − f (x + 2y) − 3f (x) + 3f (y) , δ θ (‖x‖ p + ‖y‖ p) ) > α

for all x , y ∈ X , then

N

(
f (x) − Q (x) ,

2 p

2 p − 4
δ θ ‖x‖ p

)
> α

for all x ∈ X . Furthermore, the function Q : X → Y is a unique function such
that

lim
t →∞

N

(
f (x) − Q (x) ,

2 p

2 p − 4
t θ ‖x‖ p

)
= 1 uniformly on X .

Proof. Define φ (x , y) = θ ( ‖x‖ p + ‖y‖ p ) and

φ̃ (x , 0 ) =
∞∑

n=0
4nφ

(
x
2n , 0

)
=

∞∑
n=0

4n θ ( ‖ x
2 n ‖ p ) = θ ‖x‖ p

∞∑
n = 0

(
4
2p

)n

= θ ‖x ‖ p 1
1− 4

2 p

= θ ‖x ‖ p 2p

2p − 4
.

It proves this corollary with the help of Theorem 3.1. ¤
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