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Abstract. In this paper, the incline-valued fuzzy bidirectional asso-
ciative memory neural networks with thresholds (L-FBAMTNNs) are in-
troduced. Some sufficient conditions for the L-FBAMTNNs to be strongly
convergent and strongly stable are given. It is shown that the convergence
index and the period of limit-cycles of an L-FBAMTNNs can be estimated
by the indices and the periods of the product of connection weight ma-
trices of the L-FBAMTNNs. Also the stable states and equilibria of an
L-FBAMTNNs can be given by the standard eigenvectors of the product
matrices of connection weight matrices.
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1. Introduction

Fuzzy neural networks (FNNs) have been first proposed by Lee and Lee in
[9, 10]. As a hybrid intelligent system of soft computing technique, FNN is an
efficient tool to deal with complex systems containing linguistic information and data
information. FNNs have been applied in diverse areas such as pattern recognition,
system modeling, image procession, control theory and so on.

Kosko studied fuzzy associative memory neural networks (FAMNNs) in [7] by
introducing the max and min operators in associative memory networks and in-
vented in [8] bidirectional associative memory neural networks (BAMNNs) which
generalized the single layer associative memory networks. Since then, FBAMNNS
based on max-min (resp., max-product, max-T , max-TL, max-Tξ) composition have
extensively been studied [2, 3, 11, 13, 15, 16, 17, 18].
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The fuzzy algebra [0,1] with max-min (resp., max-product, max-T , max-TL, max-
Tξ) operations forms a special type of semirings, called an incline. Inclines and incline
matrices have been applied in automata theory, medical diagnosis, informational
systems and other fields. Therefore, combination of inclines and neural networks
is a natural thing. Han firstly introduced the incline-valued fuzzy bidirectional
associative memories (L-FBAMNNs) and investigated the convergence and stability
of the L-FBAMNNs in [4].

It is well known that FAMNNs with thresholds generally have larger fault-tolerance
than that without thresholds, so many achievements on FAMNNs with thresholds
has been made [11, 12, 13]. In this paper, we set up the incline-valued bidirectional
associative memories with thresholds (L-FBAMTNNs), and then discuss the strong
convergence, strong stability, convergence index and period of limit-cycles, stable
states and equilibria of the L-FBAMTNNs by the product matrices of connection
weight matrices of a L-FBAMTNNs.

2. Preliminaries

Definition 2.1 ([1]). Let + and · be two binary operations on a nonempty set L. An
algebraic system (L, +, ·) is called an incline if it satisfies the following conditions:

(1) (L,+) is a semilattice,
(2) (L, ·) is a semigroup,
(3) x(y + z) = xy + xz and (y + z)x = yx + zx for all x, y, z ∈ L,
(4) x + xy = xy + x = x for all x, y ∈ L.

In an incline L, define a relation ≤ by x ≤ y ⇔ x + y = y. It is easy to see that
≤ is a partial order on L and x + y is the least upper bound of {x, y} ∈ L. We say
that ≤ is induced by the operation +. It follows that xy ≤ x and yx ≤ x for any
x, y ∈ L.

We call the additive identity 0 and multiplicative identity 1 in L(if there exist
such elements), respectively, the zero and the identity of L. It’s easy to see that

0 + x = x + 0 = x, 0 ≤ x, 0x = x0 = 0, x1 = 1x = x, x ≤ 1, x + 1 = 1 + x = 1
for all x ∈ L. By an incline with zero and identity we mean an incline Lthat has
both zero and identity satisfying 0 6= 1. In this paper, L always stands for an incline
with zero and identity.

L is said to be commutative if xy = yx for all x, y ∈ L.
An element a ∈ L in is said to be idempotent if a2 = a.We denote by I(L) the set

of all idempotent elements in L. Obviously, 0, 1 ∈ L.

Theorem 2.2 ([5]). If L is commutative, then I(L) is a distributive lattice with the
join and meet are, respectively, addition and multiplication of L.

For any positive n,we denote by n and [n] , respectively, the set {1, 2, . . . , n} and
the least common multiple of integers 1, 2, . . . , n.

Denote by Lm×n,Ln and Ln, respectively, the set of all m× nmatrices, the set of
all column vectors of order n and the set of all row vectors of order n over L.

For the addition, multiplication and scalar multiplication of incline matrices, the
author may refer to [1].If there exit some positive integers k and d satisfying Ak =
Ak+d,then the least such integers k and d are called the index and the period of A ,
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and denoted by i(A) and p(A), respectively. In this case, we say that A has index.
In particular, when p(A) = 1 , we say that A converges in finite steps.

Theorem 2.3 ([5]). If A ∈ Ln×n has index, then p(A)|[n].

Theorem 2.4 ([14]). If D is a distributive lattice and A ∈ Ln×n, then i(A) ≤
(n− 1)2 + 1.

Theorem 2.5 ([5]). If A ∈ I(L)n×n is symmetric, then i(A) ≤ 2n− 2and p(A) ≤ 2.

Theorem 2.6 ([4]). Let A ∈ Ln×m and B ∈ Lm×n.If the matrix AB ∈ Ln×n has
index, then the matrix BA ∈ Lm×m also has index, p(AB) = p(BA) and |i(AB) −
i(BA)| ≤ 1.

Let A ∈ Ln×n.Denote by ε(A), A∗j and C(A), respectively, the set of all standard
eigenvectors of A, the jth column vector of A and the subsemimodule of Ln finitely
generated by column vectors of A over L. It’s easy to see that C(A) has the greatest
element

∑
j∈n A∗j , denoted by τ(A). Similarly, we denote by Ai∗ the row vector of

A and by R(A) the subsemimodule of Ln finitely generated by row vectors of A over
L. Then R(A) has the greatest element

∑
i∈n Ai∗, denoted by η(A).For any positive

integers k and l,we denote Ak,l = Ak + Ak+1 + . . . + Ak+l−1.

Theorem 2.7 ([6]). If A ∈ Ln×n has index, then the following hold:
(1) ε(A) = C(Ai(A),p(A)),
(2) τ(Ai(A)) is the greatest standard eigenvector of A.

3. Incline-valued FBAM With Thresholds

In this section, we introduce a threshold at each unit of the two-layer associa-
tive NNs, and get the incline-valued fuzzy bidirectional associative memory neural
networks (L-FBAMNNs(W,R,P, Q)) with thresholds as follows:

{
X(t+1) = (Y (t) + Q)R
Y (t+1) = (X(t) + P )W

where t = 1, 2, . . . is the iteration number and

X(t) = (x(t)
1 , x

(t)
2 , . . . , x(t))

n , Y (t) = (y(t)
1 , y

(t)
2 , . . . , y(t)

m ),

P = (p1, p2, . . . , pn), Q = (q1, q2, . . . , qm),
m, n are natural numbers, and W = (wij)n×m, R = (rji)m×n are the connection
weight matrices. P,Q are called the threshold vectors.

Definition 3.1. Let (X(0), Y (0)) ∈ Ln × Lm (we always assume that Y (0) = (X(0)+
P )W ) be any stimulating state of the L-FBAMNNs(W,R,P, Q). If there exist some
positive integers k and l satisfying (X(k), Y (k)) = (X(k+l), Y (k+l)) , then the L-
FBAMNNs(W,R,P, Q)is said to be converge to a limit-cycle in finite steps for the
stimulating state (X(0), Y (0)), and the least such integers k and l are called the
convergence index and the period of the limit-cycle of the L-FBAMNNs(W,R,P, Q)
for (X(0), Y (0)) and denoted by i(X(0), Y (0)) and p(X(0), Y (0)),respectively.

In particular, when p(X(0), Y (0)) = 1, the L-FBAMNNs(W,R, P, Q) is said to be
converge to a state in finite steps for the stimulating state (X(0), Y (0)).
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Definition 3.2. A L-FBAMNNs(W,R,P, Q) is said to be strongly convergent if it
converges to a limit-cycle in finite steps for any stimulating state in Ln × Lm.

Definition 3.3. A L-FBAMNNs(W,R,P, Q) is said to be strongly stable if it con-
verges to a state in finite steps for any stimulating state in Ln × Lm.

It is clear that very strongly stable L-FBAMNNs(W,R, P,Q) is strongly conver-
gent.

Put
iL-FBAM := max {i(X(0), Y (0))|(X(0), Y (0)) ∈ Ln × Lm},

pL-FBAM := l.c.m.{p(X(0), Y (0))|(X(0), Y (0)) ∈ Ln × Lm},
where ‘l.c.m.’ mean the least common multiple. The positive integers iL−FBAM

and pL−FBAM are called the convergence index and the period of limit-cycles of the
L-FBAMNNs(W,R, P,Q), respectively.

Definition 3.4. A pattern (X, Y ) ∈ Ln × Lm is called a stable state of the L-
FBAMNNs(W,R,P, Q) if X = ((X + P )W + Q)R and Y = ((Y + Q)R + P )W .

Definition 3.5. A pattern (X,Y ) ∈ Ln × Lm is called an equilibrium of the L-
FBAMNNs(W,R,P, Q) if X = (Y + Q)R and Y = (X + P )W .

Note that an equilibrium is a stable state, but a stable state is not necessarily an
equilibrium, which can be seen from the following example.

Example 3.6. Let L = ([0, 1],∨,∧). Then L is an incline. Consider the following
matrices

W = R =
(

1 0.2
0.2 1

)
, P = Q =

(
0 0

)
, X =

(
0.1 0.1

)
, Y =

(
0.2 02

)
,

It’s easy to see that XWR = X and Y RW = Y . But XW =
(

0.1 0.1
) 6= Y and

Y R =
(

0.2 0.2
) 6= X. Hence (X,Y ) is a stable state but not an equilibrium of

L-FBAMNNs(W,R, P,Q).

Theorem 3.7. For an L-FBAMNNs(W,R, P, Q), if the matrix WR ∈ Ln×n or
RW ∈ Lm×m has index, then the L-FBAMNNs(W,R,P, Q) is strongly convergent,
and iL−FBAM ≤ max {i(MR), i(RM) + p(WR)}, pL−FBAM|p(WR).

Proof. Put k := max {i(WR), i(RW )}, l := p(WR). Then (RW )k = (RW )k+l and
(WR)k = (WR)k+l.Let (X(0), Y (0)) be any stimulating state of the L-FBAMNNs(W,
R, P, Q). We have that

X(k) = X(0)(WR)k + P
∑k

t=1(WR)t + QR
∑k−1

t=0 (WR)t,

X(k+l) = X(0)(WR)k+l + P
∑k+l

t=1(WR)t + QR
∑k+l−1

t=0 (WR)t

= X(0)(WR)k + P
∑k+l−1

t=1 (WR)t + QR
∑k+l−1

t=0 (WR)t,

X(k+2l) = X(0)(WR)k+2l + P
∑k+2l

t=1 (WR)t + QR
∑k+2l−1

t=0 (WR)t

= X(0)(WR)k + P
∑k+l−1

t=1 (WR)t + QR
∑k+2l−1

t=0 (WR)t

= X(k+l)

Similarly, we have that Y (k+l) = Y (k+2l). Hence (X(k+2l), Y (k+2l)) = (X(k+l),Y (k+l)).
Since (X(0), Y (0)) is any stimulating state,we have that L-FBAMNNs(W,R, P,Q) is
strongly convergent, and
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iL−FBAM ≤ max {i(MR), i(RM)}+ p(WR), pL−FBAM|p(WR).

This completes the proof. ¤

The converse of Theorem 3.7 does not hold, which can be seen from the following
example.

Example 3.8. Let L = ([0, 1],∨,×), where × is the ordinary multiplication. Then
L is an incline. Consider the following matrices

W = R =
(

0.1 0.1
0.1 0.1

)
, P = Q =

(
0.8 0.8

)
.

It’s easy to see that

(WR)k =
(

0.12k 0.12k

0.12k 0.12k

)
.

Hence WR does not converge in finite steps, and so has no index and period. But
for any stimulating state (X(0), Y (0)) (where Y (0) = (X(0) + P )W ), we have that

X(1) = X(0)WR + PWR + QR
=

(
0.08 0.08

)

X(k) = X(0)(WR)k + P
∑k

t=1(WR)t + QR
∑k−1

t=0 (WR)t

= X(0)(WR)k + PWR + QR
∑k−1

t=0 (WR)t

=
(

0.08 0.08
)
(for any k ≥ 2)

Hence X(1) = X(k), k ≥ 2. Similarly,Y (1) = Y (k), k ≥ 2. Thus the L-FBAMNNs(W,
R, P, Q) converges in finite steps and has index 1 and period 1.This shows the con-
verse of Theorem 3.7 does not hold.

Corollary 3.9. If W ∈ I(L)n×m and R ∈ I(L)m×n, then the following hold:
(1) the L-FBAMNNs(W,R, P, Q) is strongly convergent,
(2) iL−FBAM ≤ min{(n− 1)2 + 2 + p(WR), (m− 1)2 + 2 + p(WR)}.

Proof. (1) By theorem 2.4, WR ∈ I(L)n×n and so WR has index. Hence, by
Theorem 3.1, the L-FBAMNNs(W,R, P, Q) is strongly convergent.

(2) It follows from Theorem 2.4, Theorem 2.6 and Theorem 3.7. ¤

Corollary 3.10. If W ∈ I(L)n×m and R = WT , then the following hold:
(1) the L-FBAMNNs(W,R, P, Q) is strongly convergent,
(2) iL−FBAM ≤ min{2n− 1 + p(WR), 2m− 1 + p(WR)} and pL−FBAM ≤ 2.

Proof. Obviously, the matrix WR ∈ I(L)n×m is symmetric. By Theorem 2.5,
i(WR) ≤ 2n− 2 and p(WR) ≤ 2. Similarly, we have that i(RW ) ≤ 2m− 2 and
p(RW ) ≤ 2. Hence (1) and (2) hold from Theorem 3.7. ¤

Corollary 3.11. For any L-FBAMNNs(W,R, P, Q),if the matrix WR converges in
finite steps, then the L-FBAMNNs(W,R,P, Q) is strongly stable.

Theorem 3.12. Let (X, Y ), (X0, Y0) ∈ Ln × Lm. If X = XWR,Y = Y RW and
(X0, Y0) is a stable state of the L-FBAMNNs(W,R, P, Q), then (X + X0, Y + Y0) is
also a stable state of the L-FBAMNNs(W,R,P, Q).
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Proof. (((X + X0) + P )W + Q)R = XWR + X0WR + PWR + QR = X + X0

and (((Y + Y0) + Q)R + P )W = Y RW + Y0RW + QRW + PW = Y + Y0. So,
(X + X0, Y + Y0) is also a stable state. ¤

Theorem 3.13. A pattern (X,Y ) ∈ Ln × Lm is an equilibrium of a L-
FBAMNNs(W,R,P, Q) if and only if X = XWR+PWR+QR and Y = (X+P )W .

Proof. (X, Y ) is an equilibrium of a L-FBAMNNs(W,R,P, Q) if and only if X =
XWR + PWR + QR and Y = Y RW + QRW + PW if and only if X = XWR +
PWR + QR and Y = (X + P )W . ¤

Theorem 3.14. For a L-FBAMNNs(W,R, P,Q), if WR has index and (X0, Y0) is
a stable state of the L-FBAMNNs(W,R, P,Q), then

(1) every element in{
(X +X0, Y +Y0)|X ∈ R (

(WR)i(WR),p(WR)
)
, Y ∈ R (

(RW )i(RW ),p(RW )
)}

(denoted by M, for short) is a stable state of the network,
(2)

((
η(WR)i(WR)

)
+ X0,

(
η(RW )i(RW )

)
+ Y0

)
is the greast stable state in M,

(3) every element in
{

(X + X0, (X + X0 + P )W ) |X ∈ R (
(WR)i(WR),p(WR)

)}
(denoted by N, for short) is an equilibrium of the network,

(4)
((

η(WR)i(WR)
)
+ X0, (

(
η(RW )i(RW )

)
+ X0 + P )W

)
is the greatest equilib-

rium in N.

Proof. (1) By Definition 3.4, we have X0 = ((X0 + P )W + Q)R and Y0 = ((Y0 +
Q)R + P )W . For any (X + X0, Y + Y0) ∈ M, we have that XWR = X, Y = Y RW ,
and hence

(((X + X0) + P )W + Q)R = XWR + X0WR + PW + QR = X + X0,

(((Y + Y0) + Q)R + P )W = Y RW + Y0RW + QRW + PW = Y + Y0.

So (X + X0, Y + Y0) is a stable state.
(2) By Theorem 2.7,

((
η(WR)i(WR)

)
,
(
η(RW )i(RW )

))
is the greatest element in

R (
(WR)i(WR),p(WR)

)×R (
(RW )i(RW ),p(RW )

)
, hence

((
η(WR)i(WR)

)
+ X0,

(
η(RW )i(RW )

)
+ Y0

)

is the greatest stable state in M.
(3) It follows from Theorem 3.13 and Theorem 2.7.
(4) It follows from (3) and Theorem 2.7. ¤

4. Conclusions

In the paper, we obtain the facts that the L-FBAMNNs(W,R, P,Q) is strongly
convergent if the product matrices WR and RW have indices, and strongly stable if
WR and RW have indices and have period 1. It is shown that the convergence in-
dex and the period of limit-cycles of the L-FBAMNNs(W,R, P, Q) can be estimated
by the indices and the periods of the product matrices WR and RW . In addition,
we obtained some stable states and equilibria of the L-FBAMNNs(W,R, P, Q) when
the product matrices WR and RW have indices. For the L-FBAMNNs(W,R,P, Q)
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whose product of connection weight matrices have no indices, can we find the struc-
ture of all its stable states and equilibria? This problem is left for future studies.
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