
Annals of Fuzzy Mathematics and Informatics

Volume 6, No. 2, (September 2013), pp. 251–261

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Kleene’s fuzzy similarity and measure of similarity

Ismat Beg, Samina Ashraf

Received 23 July 2012; Accepted 25 September 2012

Abstract. Using Kleene Dienes implication operator we define fuzzy
similarity between fuzzy subsets of a crisp universe as a fuzzy subset of the
given universe. Properties of pointwise character of fuzzy similarity are
studied. It is shown that the fuzzy similarity is a local equivalence relation
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Sugeno’s fuzzy measure and the fuzzy set of similarity. Many examples of
measure of similarity are also constructed.
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1. Introduction

The concept of similarity and dissimilarity measures is an important aspect of
all sciences. There are several similarity measures that are proposed and used for
various purposes in the fields of arts and sciences ranging from anthropology to
zoology (see [1], [8], [16], [24] and [26]). Fuzzy similarity measures enjoy a lot of
advantages on their crisp counterparts. This is why fuzzy similarity measures are
widely studied (see [2], [4], [5], [6], [12], [17], [18], [19], [20] and [22]). Generally,
the value of a scalar-valued similarity measure of two fuzzy sets is determined by
comparing the corresponding membership values for each element in the universe.
The result of this comparison produces a value between 0 and 1, that represents
the degree to which the two sets are identical. Dubois and Prade (see [11, chapter
7.3]) use a symmetric difference operation and a scalar evaluator for generation of
scalar-valued fuzzy similarity measure, which together satisfy certain axioms. Cross
and Sudkamp [9] improved the approach of Dubois and Prade by defining fuzzy-
valued assessment of the similarity of fuzzy sets over a universe X. Kehagias and
Konstantinidou [17] have extended the range of similarity mapping to a Boolean
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lattice. Moreover, the comparisons of different fuzzy similarity measures as well as
their aggregations have also been studied by Wang et al [23] and Fonck et al [13].

In Section 2, we present preliminaries and set our notations. In section 3, we
reformulate the definition of fuzzy similarity mapping as a mapping on F (X) ×
F (X) −→ F (X), where F (X) denotes the set of all fuzzy subsets of a given universe
X. The fuzzy set of similarity stands as an element in F (X). The concept of fuzzy
set of similarity is a t-norm as well as fuzzy inclusion dependent. The fuzzy inclusion
is defined in terms of a fuzzy implicator and hence is highly sensitive to the properties
of the fuzzy implicator being used to define it. A lot of variations are observed in the
properties of these operators . Instead of working with general fuzzy implicators,
it seems appropriate to particularize about the implicator and the t-norm in use.
This is why our study is restricted to the fuzzy set of similarity defined in terms
of Kleene’s implicator and the respective t-norm and t-conorm. To highlight this
fact we name the newly defined concept Kleene’s fuzzy similarity. Many important
properties of fuzzy set of similarity are established and it is proved that Kleene’s
fuzzy set of similarity is a local fuzzy equivalence relation which is highly transitive.
In section 4, we focus on [0,1]-valued judgement of the similarity of two fuzzy subsets,
for this purpose we consider a measure of fuzzy similarity on F (X), defined as the
composite application by Sugeno’s [21] fuzzy measure and the fuzzy set of similarity
previously locally defined. Some new properties and examples of measures of fuzzy
similarity are also constructed. Two types of fuzzy equivalence relations are defined
and used in this paper: 1) fuzzy local equivalence relation and 2) fuzzy equivalence
relation. The first one is related with degree of equivalence at each point of space
and the other about allocation of a single degree of equivalence to the two fuzzy sets.
It is observed that the fuzzy similarity is a fuzzy local equivalence relation without
any additional condition imposed on it, while only the use of specific measures can
make measure of fuzzy of similarity, a fuzzy equivalence relation.

2. Preliminaries

Definition 2.1 ([25]). Let F (X) be the set of all fuzzy subsets of a universe X.
For all A,B ∈ F (X), A is said to be a subset of B if A(x) ≤ B(x) for all x ∈ X,
where A(x) and B(x) represent the membership grades of x in A and B respectively.
In this case we write A ⊆ B and call it the inclusion in Zadeh’s sense. Two fuzzy
sets A and B are said to be equal if and only if A(x) = B(x) for all x ∈ X. The
min and max operators will be used for the construction of fuzzy sets M(A,B) and
M∗(A,B) which represent the intersection and union of fuzzy sets A and B i.e., for
all x ∈ X

M(A,B)(x) = min(A(x), B(x)) and M∗(A,B)(x) = max(A(x), B(x)).

Moreover ker(A), the kernel of a fuzzy set A and supp(B), the support of a fuzzy set
B are defined as: ker(A) = {x ∈ X | A(x) = 1} and supp(B) = {x ∈ X | B(x) > 0}.
Definition 2.2 ([14]). A negator N is an order-reversing [0, 1] → [0, 1] mapping
such that N(0) = 1 and N(1) = 0. The negators are used to model pointwise com-
plements in the literature of fuzzy sets. Throughout this paper Ac, the complement
of a fuzzy set A, will be calculated by the standard negator which is defined as:
N(x) = 1− x.
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Definition 2.3 ([10]). A fuzzy implicator I is a binary operation on [0, 1] with
order reversing first partial mappings and order preserving second partial mappings
satisfying the boundary conditions:]

I(0, 1) = I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The Kleene’s implicator (IM ) is defined as:

IM (x, y) = max(1− x, y) for all x, y ∈ [0, 1].

Definition 2.4 ([3]). A binary operation E on F (X) is an ε−local fuzzy equivalence
on F (X), if the following conditions hold for all x ∈ X and for all A,B, C ∈ F (X):

1. Fuzzy Reflexivity at x: E(A,A)(x) ∈ [0, 1];
2. Symmetry at x: E(A,B)(x) = E(B, A)(x) for all x ∈ X;
3. ε−fuzzy transitivity at x:
IM (min(E(A, B)(x), E(B, C)(x)), E(A,C)(x)) = ε.

If ε > 0, then E is called fuzzy transitive at x, if ε ∈ [0.5, 1], then E will be called
strong fuzzy transitive at x and it is called weak fuzzy transitive at x otherwise.

Definition 2.5 ([3]). A fuzzy relation R on F (X) is called an ε−fuzzy equivalence
relation on F (X) if for all A,B, C ∈ F (X) following are satisfied:

1. Fuzzy reflexivity: R(A,A) ∈ [0, 1];
2. Fuzzy symmetry: R(A,B) = R(B, A) for all A,B ∈ F (X);
3. ε−Fuzzy transitivity: IM (min(R(A,B), R(B, C)), R(A,C)) = ε.

If ε > 0, then R is called fuzzy transitive, if ε ∈ [0.5, 1], then R will be called strong
fuzzy transitive, otherwise it is called weak fuzzy transitive .

Definition 2.6 ([7]). The fuzzy inclusion is a mapping Inc : F (X)×F (X) → F (X)
which assigns to every A,B ∈ F (X) a fuzzy set Inc(A,B) ∈ F (X) defined as:

(2.1) Inc(A,B)(x) = I(A(x), B(x)) for all x ∈ X.

Remark 2.7. If IM is used in the definition of fuzzy inclusion (2.1), then the
following statements are true for any A,B, C,D ∈ F (X):

1a. For any x ∈ X, Inc(A,B)(x) = Inc(B, A)(x) ⇔ A(x) = B(x).
1b. For any x ∈ X, Inc(A, B)(x) = 1 ⇔ x ∈ (supp(A))c ∪Ker(B).
1c. For any x ∈ X, Inc(A,B)(x) = 0 ⇔ x ∈ Ker(A) ∩ (supp(B))c.
1d. For all x ∈ X, Inc(A, A)(x) ≥ 0.5.
2. Inc(A, B) = 1 ⇔ X = (suppA)c ∪Ker(B).
3. Inc(A, B) = 0 ⇔ A = X and B = ∅.
4. Inc(A, Ac) = 0 ⇔ A = X.
5. The fuzzy inclusion defined in Definition 2.6 is strong fuzzy transitive
for all x ∈ X and for all A,B, C ∈ F (X).
6. Inc(A, B) = Inc(Bc, Ac).
7. M∗(Inc(A, B), Inc(B, A)) = 1.
⇔ X = (supp(A))c ∪Ker(B) ∪Ker(A) ∪ (supp(B)c).
8. B ⊆ C ⇒ Inc(A,B) ⊆ Inc(A,C).
9. B ⊆ C ⇒ Inc(C,A) ⊆ Inc(B,A).

253



Ismat Beg et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 2, 251–261

10. M(Inc(A,B), Inc(C, D))

⊆ M [Inc(M(A,C),M(B,D)), Inc(M∗(A,C),M∗(B, D))](2.2)
⊆ M∗[Inc(M(A,C),M(B,D)), Inc(M∗(A,C),M∗(B, D))](2.3)
⊆ M∗(Inc(A, B), Inc(C, D)).(2.4)

11. Inc(A, M(B, C)) = M(Inc(A, B), Inc(A,C)).
12. Inc(A, M∗(B,C)) = M∗(Inc(A,B), Inc(A,C)).
13. Inc(A, B) ⊆ M [Inc(M(A,C),M(B, C)), Inc(M∗(A,C),M∗(B,C))].

3. Kleene’s fuzzy similarity

Definition 3.1. Let T be a t-norm, and Inc be fuzzy inclusion as defined in (2.1),
then a fuzzy similarity mapping S is an : F (X) × F (X) → F (X) mapping which
allocates to all A,B ∈ F (X) a fuzzy set ST,Inc(A,B) on X defined as:

(3.1) ST,Inc(A,B)(x) = T (Inc(A,B)(x), Inc(B, A)(x)), for all x ∈ X.

In this case, ST,Inc(A,B) is called a fuzzy set of similarity between A and B. The
Definition 3.1 is a fuzzy inclusion as well as a t-norm dependent and consequently it
will assign different fuzzy sets of similarity to the same pair of fuzzy sets for different
fuzzy sets of inclusions and t-norms. In this section the definition of Kleene’s fuzzy
set of similarity is obtained by taking T = M, the min operator and IM be used in
Inc. We shall drop the subscripts for this specific choice in the Definition 3.1 i.e.,
S(A,B) is a fuzzy set defined for all x ∈ X as follows:

S(A,B)(x) = min(Inc(A,B)(x), Inc(B, A)(x))
= min(IM (A(x), B(x)), IM (B(x), A(x))).(3.2)

The first proposition develops the conditions for the maximum and minimum degrees
of similarity at any point x ∈ X. Fuzzy sets X and ∅ will be denoted by 1 and 0
respectively to specifically denote the maximal and minimal elements of the range.

Proposition 3.2. For all A, B ∈ F (X) and for all x ∈ X we have:
1. S(A,B)(x) = 1 ⇔ x ∈ [(supp(A))c ∩ (supp(B))c] ∪ [Ker(A) ∩Ker(B)].
2. S(A,B)(x) = 0 ⇔ x ∈ [(supp(A))c ∪ (supp(B))c] ∩ [Ker(A) ∪Ker(B)].
3. S(A,B)(x) = S(B, A)(x).
4. S(A,A)(x) ≥ 0.5.

Proof. For all A,B ∈ F (X) and for any x ∈ X,
1. S(A,B)(x) = 1 ⇔ min(Inc(A,B)(x), Inc(B, A)(x)) = 1
⇔ Inc(A,B)(x) = 1 and Inc(B, A)(x) = 1
⇔ x ∈ [(supp(A))c ∪Ker(B)] ∩ [Ker(A) ∪ (supp(B))c] by Remark 2.7 (1b)
⇔ x ∈ [(supp(A))c ∩ (supp(B))c] ∪ [Ker(A) ∩Ker(B)], using distributivity
of ∩ and ∪.

2. S(A,B)(x) = 0 ⇔ min(Inc(A,B)(x), Inc(B, A)(x)) = 0
⇔ either Inc(A,B)(x) = 0 or Inc(B, A)(x) = 0
⇔ x ∈ (Ker(A) ∩ (supp(B))c) ∪ (Ker(B) ∩ (supp(A))c) by Remark 2.7 (1c)
⇔ x ∈ [(supp(A))c ∪ (supp(B))c] ∩ [Ker(A) ∪Ker(B)], using distributivity
of ∩ and ∪.

3. Follows from commutativity of min.
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4. S(A,A)(x) = min(Inc(A,A)(x), Inc(A,A)(x)) = Inc(A,A)(x) ≥ 0.5, by Remark
2.7 (1d). ¤

Theorem 3.3. The Kleene’s fuzzy set of similarity S is a strong transitive local
fuzzy equivalence relation on F (X) at all x ∈ X.

Proof. Local fuzzy reflexivity is a consequence of the Definition 3.1 and local fuzzy
symmetry is obtained in Proposition 3.2(3). For strong fuzzy transitivity, suppose
otherwise, that is there exists an x ∈ X and A,B, C ∈ F (X) such that

IM (M(S(A,B), S(B, C)), S(A,C))(x) < 0.5
⇔ max(1−M(S(A,B), S(B, C))(x), S(A, C)(x)) < 0.5
⇔ 1−M(S(A,B), S(B,C))(x) < 0.5 and S(A,C)(x) < 0.5
⇔ min(S(A, B)(x), S(B, C)(x)) > 0.5 and S(A,C)(x) < 0.5
⇔ S(A,B)(x) > 0.5 and S(B,C)(x) > 0.5 and S(A,C)(x) < 0.5
⇔ min(Inc(A,B)(x), Inc(B,A)(x)) > 0.5

and min(Inc(B,C)(x), Inc(C,B)(x)) > 0.5
and min(Inc(A,C)(x), Inc(C, A)(x)) < 0.5

⇔ [Inc(A, B)(x) > 0.5 and Inc(B,A)(x) > 0.5]
and [Inc(B, C)(x) > 0.5 and Inc(C,B)(x) > 0.5]
and [either Inc(A,C)(x) < 0.5 or Inc(C, A)(x) < 0.5]

⇔ Inc is weak fuzzy transitive at x for A,B, C ∈ F (X), a contradiction to
Remark 2.7(5). ¤

Proposition 3.4. For all A, B ∈ F (X), we have
1. S(A,B) = 1 ⇔ X = [((supp(A))c ∩ (supp(B))c] ∪ [Ker(A) ∩Ker(B)]
i.e., A and B are equal crisp sets.
2. S(A,B) = 0 ⇔ X = [(supp(A))c ∪ (supp(B))c] ∩ [Ker(A) ∪Ker(B)].
3. S(A,B) = S(B,A).

Proof. For all A,B ∈ F (X)
1. S(A,B) = 1 ⇔ S(A,B)(x) = 1 for all x ∈ X
⇔ x ∈ [((supp(A))c ∩ (supp(B))c] ∪ [Ker(A) ∩Ker(B)] for all x ∈ X
by Proposition 3.2(1).
⇔ X = [(supp(A))c ∩ (supp(B)c] ∪ [Ker(A) ∩Ker(B)]
i.e., A and B are equal crisp sets.
2. S(A,B) = 0 ⇔ S(A,B) = (x) = 0 for all x ∈ X
⇔ x ∈ [(supp(A))c ∪ (supp(B))c] ∩ [Ker(A) ∪Ker(B)] for all x ∈ X
by Proposition 3.2(2).
⇔ X = [(supp(A))c ∪ (supp(B))c] ∩ [Ker(A) ∪Ker(B)]
⇔ A and B are crisp sets such that A = Bc.
3. For all x ∈ X, S(A, B)(x) = S(B, A)(x), by Proposition 3.2(3).
Hence S(A,B) = S(B, A). ¤

Corollary 3.5. For all A ∈ F (X), Proposition 3.4 leads to the following conclu-
sions:

1. There does not exist any set A ∈ F (X) such that S(A,Ac) = 1.
2. S(A,Ac) = 0 ⇔ A is a crisp set.
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Proposition 3.6. For any A,B ∈ F (X), we have:

S(A,B) = S(Bc, Ac).

Proof. For any A,B ∈ F (X) and for all x ∈ X
S(A, B)(x) = min(Inc(A,B)(x), Inc(B, A)(x))
= min(Inc(Bc, Ac)(x), Inc(Ac, Bc)(x)) by Remark 2.7 (6)
= S(Bc, Ac)(x). ¤

Proposition 3.7. For any A,B, C ∈ F (X), A ⊆ B ⊆ C implies that:

S(A,C) ⊆
{

S(A,B);
S(B,C).

Proof. The assumption A ⊆ B ⊆ C implies that for all x ∈ X, A(x) ≤ B(x) ≤ C(x).
It implies that S(A,B)(x) = min(Inc(A,B)(x), Inc(B,A)(x))
= Inc(B, A)(x) ⊇ Inc(C, A)(x) for all x ∈ X, by Remark 2.7 (9)
= min(Inc(A,C)(x), Inc(C, A)(x)) = S(A,C)(x).
Therefore, S(A,B) ⊇ S(A,C).
S(A, C) ⊆ S(B,C) can be proved similarly using Remark 2.7 (8). ¤

Theorem 3.8. For all A,B, C,D ∈ F (X),

M(S(A,B), S(C,D)) ⊆
{

S(M∗(A,C),M∗(B,D);
S(M(A, C),M(B, D)).

Proof. Using Remark 2.7(10) inequality (2.2), we get

(3.3) M(Inc(A,B), Inc(C, D)) ⊆ Inc(M(A,C),M(B,D))

Interchanging the roles of A and B as well as of C and D, we get

(3.4) M(Inc(B, A), Inc(D, C)) ⊆ Inc(M(B, D), M(A,C))

M is increasing in both variables so, (3.3) and (3.4) together imply that

M [M{Inc(A,B), Inc(C,D)},M{Inc(B, A), Inc(D, C)}]
⊆ M [Inc(M(A,C), M(B, D)), Inc(M(B, D),M(A,C))].

Re arranging terms and applying associativity of M, we get

M(S(A,B), S(C, D)) ⊆ S(M(A,C),M(B, D)).

Similarly, we can prove that M(S(A, B), S(C, D)) ⊆ S(M∗(A,C),M∗(B, D)). ¤

Corollary 3.9. For all A,B,C ∈ F (X),

M(S(A,B), S(A,C)) ⊆ S(A,M(B,C))

Proof. This can be easily obtained by putting C = A and D = C in Theorem
3.8. ¤

Corollary 3.10. If C is a crisp set, then for all A,B ∈ F (X),

S(A,B) ⊆
{

S(M∗(A,C),M∗(B,C)).
S(M(A,C),M(B,C)).
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Proof. Since C is crisp, by Proposition 3.4 (1) S(C, C) = 1.
By putting D = C in Theorem 3.8 we get

M(S(A,B), S(C,C)) = M(S(A,B), 1) ⊆
{

S(M∗(A,C),M∗(B, C));
S(M(A, C), M(B, C).

Using the fact that M(S(A,B), 1) = S(A,B), we get

S(A,B) ⊆
{

S(M∗(A,C),M∗(B,C));
S(M(A,C),M(B,C)).

¤
Proposition 3.11. For all A,B ∈ F (X),

1. If A ⊆ B, then S(A,M∗(A,B)) = S(B, M(A,B)).
2. If B ⊆ A, then S(A,M(A, B)) = S(B, M∗(A,B)).

Proof. For all A,B ∈ F (X),
1. A ⊆ B implies that for all x ∈ X, A(x) ≤ B(x),
so M∗(A,B) = B and M(A, B) = A.
It implies that S(A,M∗(A,B)) = S(A,B) = S(B,A) = S(B, M(A,B)).
Hence S(A,M∗(A, B)) = S(B, M(A,B)).
2. B ⊆ A implies that for all x ∈ X, B(x) ≤ A(x),
so, M∗(A, B)(x) = A and M(A,B) = B.
It implies that S(A,M(A,B)) = S(A,B) = S(B,A) = S(B,M∗(A,B)).
Hence S(A,M(A,B)) = S(B, M∗(A,B)). ¤

Proposition 3.12. For all A,B ∈ F (X),we have:
(i) M(S(M(A,B), A), S(A,M∗(A,B))) ⊆ S(A,B).
(ii) M(S(M(A, B), B), S(B, M∗(A,B))) ⊆ S(A,B).
(iii) S(M(A,B),M∗(A,B)) = S(A,B).
(iv) M(S(A,M∗(A,B)), S(B, M∗(A,B))) ⊆ S(A,B).
(v) M( S(A,M(A,B)), S(B, M(A,B))) ⊆ S(A, B).

Proof. For all A,B ∈ F (X) and for any x ∈ X,in the following we construct the
proof only for the case when A(x) ≤ B(x). The other situatation can be proved in
a similar way. If A(x) ≤ B(x), then M∗(A,B)(x) = B(x) and M(A,B) = A(x) so,

(i) min[S(M(A,B)(x), A(x)), S(A(x),M∗(A, B)(x))]
= min[S(A(x), A(x)), S(A,B)(x)] ≤ S(A,B)(x).
(ii) M(S(M(A,B)(x), B(x)), S(B(x),M∗(A,B)(x)))
= M(S(A,B)(x), S(B, B)(x)) ≤ S(A,B)(x).
(iii) S(M(A,B)(x),M∗(A,B)(x)) = S(A,B)(x).
(iv) M(S(A(x), M∗(A,B)(x)), S(B(x),M∗(A,B)(x)))
= M(Inc(M∗(A,B)(x), A(x)), Inc(M∗(A,B)(x), B(x))
= M(Inc(B(x), A(x)), Inc(B(x), B(x))).
≤ S(B, A)(x) = S(A, B)(x) by symmetry of S.
(v) M [S(A(x),M(A,B)(x)), S(B(x),M(A,B)(x))]
= M(S(A,A)(x), S(B,A)(x)) ≤ S(A,B)(x). ¤

4. Measure of fuzzy similarity

Definition 4.1. [15, Definition 2.7] Let (X, ρ) be a measurable space. A function
m : ρ → [0,∞[ is a fuzzy measure if it satisfies the following properties:
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m1: m(∅) = 0, and m(X) = 1; m2: A ⊆ B implies that m(A) ≤ m(B).

The concept of measure considers that ρ ⊆ {0, 1}X , but this consideration can be
extended to a set of fuzzy subsets = of X, = ⊆ F (X), satisfying the properties of
measurable space (F (X),=).

Definition 4.2. A measure of fuzzy similarity is a fuzzy relation on F (X) defined
as:

(4.1) mS(A, B) = m(S(A,B)) for all A,B ∈ F (X),

where, S(A,B) is the fuzzy set of similarity of A and B and m is Sugeno’s fuzzy
measure defined in 4.1.

Example 4.3. Here are some examples of the measure m: for all A ∈ F (X),
1a. m1(A) = Plinth(A) = inf

x∈X
A(x).

2a. m2(A) = sup
x∈X

A(x).

3a. m3(A) = 1
2 [Plinth(A) + Height(A)] = 1

2 [ inf
x∈X

A(x) + sup
x∈X

A(x)].

4a. In case of finite universes,

m4(A) =
|A|
|X| .

5a. In case of bounded universes equipped with a measure m,

m5(A) =
∫

A(x)dm

m(X)
.

where |A| , the scalar cardinality of a fuzzy subset A of a finite universe X, is defined
as:

|A| =
∑

x∈X

A(x).

Applying these measures on the fuzzy set of similarity defined in (3.2), we get
1b. m1S(A,B) = inf

x∈X
min[IM (A(x), B(x)), IM (B(x), A(x))].

2b. m2S(A,B) = sup
x∈X

min[IM (A(x), B(x)), IM (B(x), A(x))].

3b.

m3S(A,B) =
1
2
[ inf
x∈X

min[IM (A(x), B(x)), IM (B(x), A(x))]

+ sup
x∈X

min[IM (A(x), B(x)), IM (B(x), A(x))]].

4b. In case of finite universes

m4S(A,B) =
|min[max(1−A(x), B(x)),min(1−B(x), A(x))]|

|X ×X| .

5b. In case of bounded universes equipped with a measure m the measure m4S(A,B)
is defined as:

m5S(A, B) =
∫

min[IM (A(x), B(x)), IM (B(x), A(x))]dm

m(X ×X)
.
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Example 4.4. Let X = {1, 2, 3, 4}, A = {(1, 0.3), (2, 0.8), (3, 0.8), (4, 0.3)} and B =
{(1, 0.2), (2, 0.4), (3, 0.6), (4, 0.8). Then

Inc(A,B) = {(1, 0.7), (2, 0.4), (3, 0.6), (4, 0.8)},
Inc(B, A) = {(1, 0.8), (2, 0.8), (3, 0.8), (4, 0.3)},

Hence
S(A,B) = {(1, 0.7), (2, 0.4), (3, 0.6), (4, 0.3)},

where, the first coordinate of every ordered pair represents the element and the
second coordinate represents its membership in the respective fuzzy set. Applying
different measures on S(A, B) we get

1. m1S(A,B) = 0.3, 2. m2S(A,B) = 0.7,
3. m3S(A,B) = 0.5, 4. m4S(A,B) = 2

4 = 0.5.
The following remarkable properties of measure or degree of inclusion, when stud-

ied with reference to the Kleene’s implicator can be obtained by application of mono-
tone fuzzy measure on the inequalities obtained in Propositions 3.4-3.11.

Proposition 4.5. For all A, B ∈ F (X),
1. If A and B are equal crisp sets, then m1S(A,B) = 1.
2. If A and B are such that [((supp(A))c ∩ (supp(B))c] ∪ [Ker(A) ∩Ker(B)] 6= ∅,
then m2S(A,B) = 1.
3. mS(A,B) = mS(B, A).
4. There does not exist any set A ∈ F (X) such that mS(A, Ac) = 1.
5. If A and B are crisp sets such that A = Bc, then mS(A,B) = 0;
6. mS(A,B) = mS(Ac, Bc);
7. If A ⊆ B ⊆ C, then for any A, B,C ∈ F (X),

mS(A, C) ≤ mS(A,B) and mS(A,C) ≤ mS(B,C).

8. m(M(S(A,B), S(C, D))) ≤
{

mS(M∗(A,C),M∗(B, D);
mS(M(A,C),M(B,D)).

9. mS(A, B) = mS(M(A,B),M∗(A,B)).

Theorem 4.6. If m ∈ {m1, m2}, then mS is strong transitive fuzzy equivalence
relation on F (X).

Proof. For any A,B, C ∈ F (X),
Reflexivity: mS(A,A) = m(M(S(A,A), S(A,A))) ∈ [0, 1] by Proposition 3.2 (4).
Fuzzy symmetry: mS(A,B) = m(S(A,B)) = m(S(B, A)) by Proposition 3.4 (3)

= mS(B,A).
Strong fuzzy transitivity: From Theorem 3.3 it follows that

IM (M(S(A,B), S(B, C)), S(A,C))(x) ≥ 0.5 for all x ∈ X.
Taking inf and sup over x we get the result. ¤
Remark 4.7. If A,B ∈ F (X) are such that M∗(A, B) = X, then m4S(A,B) =
|A∩B|
|A∪B| .

Proof. M∗(A,B) = X ⇒ M∗(A,B)(x) = 1 for all x ∈ X. It follows from 3.12(iii)
that

S(A, B) = S(M(A, B),M∗(A,B)) = Inc(M∗(A, B),M(A,B)).
So for any x ∈ X, Inc(M∗(A,B),M(A,B))(x)
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= max(1−M∗(A,B)(x),M(A,B)(x))
= max(1− 1,M(A, B)(x)) = max(0,M(A,B)(x)) = M(A,B)(x).
Hence Inc(M∗(A, B),M(A,B)) = M(A,B)

so, m4S(A,B) = m4S(M(A,B),M∗(A,B)) = m4(S(M(A,B),M∗(A,B)))
= m4(M(A,B)) = |M(A,B)|

|X| = |M(A,B)|
|M∗(A,B)| = |A∩B|

|A∪B| . ¤

5. Conclusion

The perception of similarity as a fuzzy set and exploring its properties as a point-
wise mapping are highly beneficial as already discussed by Cross and Sudkamp [9].
The approach presented in this paper differs from previous approaches in the sense
that it is two dimensional. Once the properties of fuzzy set of similarity are estab-
lished we propose the application of a normal fuzzy measure to the results obtained
and get many other results about measures of fuzzy similarity. The comparison of
results with different measures and different implicators is another assignment at
hand. So we expect that the fuzzy measures of similarity obtained purely from ap-
plication of fuzzy measure to the fuzzy set of similarity may also be converted to
many other forms by using the properties studied in section 3 and 4.
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