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Abstract. The main purpose of this study is to contribute to the
development of the soft topological structures. For this reason, we deal
with the concept of soft uniformity structure. We give the definitions of
soft uniformity and soft uniformity base. We also investigate the relations
between the soft uniformity and soft topology. Moreover, we study the
basic properties of the soft uniformity structure.
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1. Introduction

In 1999, Molodtsov [7] introduced the concept of soft sets, which can be seen
as a new mathematical tool for dealing with uncertainties and also established the
fundamental results of the new theory. It is a general mathematical tool for dealing
with objects which have been defined using a very loose and hence very general set
of characteristics. A soft set is a collection of approximate descriptions of an object.
Presently, works on soft set theory are progressing rapidly. Molodtsov [7] successfully
applied the soft set theory into several directions. Maji et al. [5] defined and studied
several basic notions of soft set theory. Aktaş and Çaǧman [1] introduced the soft
group. Shabir and Naz [9] defined the soft topological space. Aygünoǧlu and Aygün
[2] introduced the soft continuity and studied soft compactness. Zorlutuna et al. [10]
investigated soft neighborhood of a point. Pazar Varol and Aygün [8] investigated
fundamental properties of soft Hausdorff spaces.

It is well-known that uniformity is a very important concept close to topology and
convenient tool for investigating topology. For this reason, we decided to concern
the notion of uniformity for the soft sets in order to make a contribution to the
development of this new theory. This paper is arranged in the following manner. In
section 2, we recall some definitions and notions of soft sets. In section 3, we recall
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some notions of soft topological spaces such as soft neighborhood and soft Hausdorff
space. These definitions will help us in the last section. In the last section, we
introduce soft uniformity and soft uniform base structures. We investigate some
fundamental properties of soft uniformity structure. Also, we give the relations
between soft uniformity and soft topology.

2. Preliminaries

In this chapter, we give some preliminaries about soft sets. We refer to [2, 4, 6, 7]
for all the basic definitions and notations. We make some small modifications to
some of them in order to make theoretical study in detail. Throughout this study,
X refers to an initial universe, P (X) is the power set of X, E is the set of all
parameters for X and A ⊆ E.

Definition 2.1 ([4, 6, 7]). A soft set FA on the universe X is defined by the set of
ordered pairs

FA = {(e, FA(e)) | e ∈ E, FA(e) ∈ P (X)},
where FA : E → P (X), such that FA(e) 6= ∅, if e ∈ A ⊆ E and FA(e) = ∅ if

e 6∈ A.
Since every soft set defined from a subset of the parameter set can be extended

to the universal parameter set E, we will use the notation F instead of the notation
FA to denote the soft set, for simplicity. So, throughout this study, a soft set F on
X, is a mapping from E into P (X), i.e., Fe := F (e) is a subset of X, for each e ∈ E.

S(X,E) denotes the family of all soft sets defined on X.

Definition 2.2 ([4, 7]). Let F and G be two soft sets over X.
(1) We say that F is a soft subset of G and write F v G if Fe ⊆ Ge, for each

e ∈ E. F and G are called equal if F v G and G v F .
(2) Union of two soft sets F, G ∈ S(X, E) is the soft set H = F t G, where

He = Fe ∪Ge, for each e ∈ E.
(3) Intersection of two soft sets F,G ∈ S(X, E) is the soft set H = F uG, where

He = Fe ∩Ge, for each e ∈ E.
(4) The complement of a soft set F ∈ S(X, E) is denoted by F c, where F c : E −→

P (X) is a function given by F c
e = X \ Fe, for each e ∈ E. Clearly (F c)c = F .

(5) (Null soft set) A soft set F over X is called a null soft set and denoted by Φ,
if Fe = ∅, for each e ∈ E.

(6) (Absolute soft set) A soft set F over X is called an absolute soft set and
denoted by Ẽ, if Fe = X, for each e ∈ E. Clearly (Ẽ)c = Φ and Φc = Ẽ.

Proposition 2.3. ([4, 5]) Let J be an index set and F,G, H, Fi, Gi ∈ S(X, E), for
all i ∈ J , then we have the following properties:

(1) F t (G tH) = (F tG) tH, F u (G uH) = (F uG) uH.
(2) F u (ti∈JGi) = ti∈J (F uGi), F t (ui∈JGi) = ui∈J (F tGi).
(3) (ui∈JFi)

c = ti∈JF c
i , (ti∈JFi)

c = ui∈JF c
i .

(4) If F v G, then Gc v F c.

Definition 2.4 ([3]). Let F ∈ S(X1, E1) and G ∈ S(X2, E2). The cartesian product
F ×G is defined as follows:

(F ×G)(e1, e2) = F (e1)×G(e2) for each (e1, e2) ∈ E1 × E2.
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According to this definition the soft set F × G is a soft set on X1 ×X2 and its
parameter set is E1 × E2.

Definition 2.5 ([9]). Let F ∈ S(X, E) and x ∈ X. x∈̃F read as x belongs to the
soft set F whenever x ∈ F (e) for all e ∈ E. For any x ∈ X, x˜6∈F if x 6∈ F (e) for some
e ∈ E.

Definition 2.6 ([9]). Let x ∈ X, then xE denotes the soft set on X for which
xE(e) = {x} for all e ∈ E.

Definition 2.7 ([8]). The soft set ∆ ∈ S(X ×X,E) is called diagonal soft set on
X ×X which is defined by ∆(e) = {(x, x) | x ∈ X}, for each e ∈ E.

Definition 2.8. Let F, G ∈ S(X × X,E). We define the soft sets F−1, F ◦ G ∈
S(X ×X, E) as follows:

F−1(e) = {(x, y) | (y, x) ∈ F (e)} and
F ◦ G(e) = {(x, y) | ∃z ∈ X such that (x, z) ∈ G(e) and (z, y) ∈ F (e)}, for all

e ∈ E.
F ∈ S(X ×X,E) is called symmetric if F = F−1.

Remark 2.9. Let F, G, H ∈ S(X ×X, E), then we have the following properties:
(1) If F v G, then F−1 v G−1 and F ◦H v G ◦H.
(2) (F ◦G)−1 = G−1 ◦ F−1.
(3) (F ◦G) ◦H = F ◦ (G ◦H).

Proof. (1) Let e ∈ E and (x, y) ∈ F−1(e). Then by the definition, (y, x) ∈ F (e) ⊆
G(e). So we have (x, y) ∈ G−1(e). From the arbitrariness of e, we have F−1 v G−1.

Let e ∈ E and (x, y) ∈ (F ◦H)(e). So, there exists z ∈ X such that (x, z) ∈ H(e)
and (x, y) ∈ F (e). Since F v G, (x, y) ∈ G(e). Hence, by Definition 2.8, (x, y) ∈
(G ◦H)(e). From the arbitrariness of the parameter e, we obtain F ◦H v G ◦H.

(2) Let e ∈ E. (x, y) ∈ (F ◦ G)−1(e) ⇔ (y, x) ∈ (F ◦ G)(e) ⇔ ∃z ∈ X : (y, z) ∈
G(e) and (z, x) ∈ F (e) ⇔ ∃z ∈ X : (z, y) ∈ G−1(e) and (x, z) ∈ F−1(e) ⇔ (x, y) ∈
(G−1 ◦ F−1)(e). So, (F ◦ G)−1(e) = (G−1 ◦ F−1)(e), for each e ∈ E. From the
arbitrariness of the parameter e ∈ E, we have (F ◦G)−1 = G−1 ◦ F−1.

(3) Let e ∈ E. (x, y) ∈ ((F ◦ G) ◦ H)(e) ⇔ ∃z ∈ X : (x, z) ∈ H(e) and (z, y) ∈
(F ◦ G)(e) ⇔ ∃z, t ∈ X : (x, z) ∈ H(e) and (z, t) ∈ G(e) and (t, y) ∈ F (e) ⇔ ∃t ∈
X : (x, t) ∈ (G ◦ H)(e) and (t, y) ∈ F (e) ⇔ (x, y) ∈ (F ◦ (G ◦ H))(e). So we have
((F ◦ G) ◦H)(e) = (F ◦ (G ◦H))(e), for each e ∈ E. From the arbitrariness of the
parameter e ∈ E, we obtain (F ◦G) ◦H = F ◦ (G ◦H). ¤

3. Soft topological spaces

In this section we recall and give some results of soft topological spaces which we
need for the next section.

Definition 3.1 ([9]). Let T be the collection of soft sets on X, then T is said to be
a soft topology on X if

(1) Φ, Ẽ belongs to T .
(2) the intersection of any two soft sets in T belongs to T .
(3) the union of any number of soft sets in T belongs to T .
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The pair (X, T ) is called a soft topological space. Every member of T is called
soft open. A soft set G is called soft closed in (X, T ) if Gc ∈ T .

Trivial soft topology, denoted by T 0 contains only Φ and Ẽ while the discrete
soft topology, denoted by T 1 contains all soft sets on X.

Example 3.2. (1) Let X = {a, b} and E be a nonempty arbitrary set. Consider
the family S = {Φ, Ẽ, aE}, then the pair (X,S) is a soft topological space.

(2) Let X = E = N and F ∈ S(X,E) be defined as follows FA =
⋃

e∈A

F (e) with

F (e) = {1, 2, ..., e}. Let us take into account the family T = {FA | A ⊆ E}∪{Φ, Ẽ},
then the pair (X, T ) is a soft topological space.

Definition 3.3 ([9]). Let (X, T ) be a soft topological space, F be a soft set on X
and x ∈ X. Then F is called a soft neighborhood of x if there exists a soft open set
G such that x∈̃G v F.

The neighborhood system of a point x, denoted by NT (x), is the family of all its
neighborhoods.

Theorem 3.4. Let (X, T ) be a soft topological space. The neighborhood system
NT (x) in (X, T ) has the following properties:

(1) If F ∈ NT (x), then x∈̃F .
(2) If F ∈ NT (x) and F v G, then G ∈ NT (x).
(3) If F, G ∈ NT (x), then F uG ∈ NT (x).
(4) If F ∈ NT (x), then there exists G ∈ NT (x) such that for all y∈̃G, we have

F ∈ NT (y).
Conversely, if on a set X a nonempty collection N (x) of soft subsets of S(X, E)

is assigned to each x ∈ X so as to satisfy (1) through (4), the result is a soft topology
on X, in which the neighborhood system at each x ∈ X is precisely N (x).

Proof. (4) Let F ∈ NT (x), then by the definition of the neighborhood structure,
there exists G ∈ T such that x∈̃G v F. Since x∈̃G and G ∈ T , we have G ∈ NT (x).
So, G ∈ NT (y), for all y∈̃G. Hence by G v F and by (2), we have F ∈ NT (y).

Conversely, let NT (x) ⊆ S(X,E) be a nonempty family of soft sets which satisfies
the conditions of Theorem 3.4 for each x ∈ X. Therefore, the family

T = {G ∈ S(X, E) | ∃Fx ∈ N (x) s. t. x∈̃Fx v G, for each x∈̃G}
is a soft topology on X which satisfies the desired properties. It is clear that

Φ, Ẽ ∈ T .
Let G,H ∈ T and x∈̃G u H. Then x∈̃G or x∈̃H. By the definition of T there

exist Ux, Vx ∈ N (x) such that x∈̃Ux v G and x∈̃Vx v H. Then we obtain that
x∈̃Ux u Vx v G uH. Since, by (3), Ux u Vx ∈ N (x), we have G uH ∈ T .

Let {Gλ}λ∈Λ ⊂ T and x∈̃
⊔

λ∈Λ

Gλ. Then there exists λ ∈ Λ such that x∈̃Gλ and

by the definition of T there exists Ux ∈ N (x) such that x∈̃Ux v Gλ v
⊔

λ∈Λ

Gλ.

Hence, we have
⊔

λ∈Λ

Gλ ∈ T .
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Now, let us show that N (x) = NT (x). Let U∗(e) := {y ∈ X | U ∈ N (y)}, for
each U ∈ N (x). We can show that U∗ satisfies the following properties, U∗ ∈ T
and x∈̃U∗ v U. Since U ∈ N (x), we have x∈̃U∗ (from definition of U∗). By (4),
since U ∈ N (y) for all y∈̃U∗, there exists V ∈ N (y) such that U ∈ N (z), for
each z∈̃V. So we have z∈̃U∗. Therefore V v U∗, and we obtain U∗ ∈ T , from the
definition of T . On the other hand, U ∈ N (y) for each y∈̃U∗ and hence y∈̃U , that
is U∗ v U. Consequently, since U∗ ∈ T and x∈̃U∗ v U, we have U ∈ NT (x). Hence,
N (x) ⊆ NT (x). Let U ∈ NT (x). From the definition of neighborhood structure
there exists G ∈ T such that x∈̃G v U. Then by the definition of T , there exists
Vx ∈ N (x) such that x∈̃Vx v G. Therefore Vx v G v U is satisfied and by (2),
we have U ∈ N (x). Hence, we obtain that NT (x) ⊆ N (x). Finally, we obtain the
desired equality. ¤
Definition 3.5 ([9]). Let (X, T ) be a soft topological space and F ∈ S(X,E). The
soft closure of F is the soft set F = u{G ∈ S(X, E) | G is a soft closed set and F v
G}.
Proposition 3.6 ([9]). Let (X, T ) be a soft topological space and F ∈ S(X,E). F
is soft closed set if and only if F = F.

Definition 3.7. Let (X, T ) be a soft topological space, F ∈ S(X,E) and x ∈ X.
Then x is called a soft adherence point of F if each soft neighborhood of x meets
(intersects) F, i.e., F uN 6= Φ, for each N ∈ NT (x).

Definition 3.8 ([9]). Let (X, T ) be a soft topological space and x, y ∈ X such that
x 6= y. (X, T ) is called soft Hausdorff space or soft T2-space if there exist soft open
sets F and G such that x∈̃F, y∈̃G and F uG = Φ.

4. Soft uniformity structure

In this section, we define soft uniformity, soft uniform base and also we give the
relations between soft uniformity and soft topology.

Definition 4.1. We call D ⊆ S(X×X, E) is a soft uniformity structure if it satisfies
the following:

(1) ∆ v U, for each U ∈ D.
(2) U1 u U2 ∈ D, for each U1, U2 ∈ D.
(3) For each U ∈ D there exists V ∈ D such that V ◦ V v U.
(4) For each U ∈ D there exists V ∈ D such that V −1 v U.
(5) If U ∈ D and U v V, then V ∈ D.
The pair (X,D) is called a soft uniform space.

Definition 4.2. Let (X,D) be a soft uniform space. The soft uniform structure D
on X is called a soft Hausdorff uniform structure if it provides u{U | U ∈ D} = ∆.

Definition 4.3. Let (X,D) be a soft uniform space and B be a subfamily of D. If
for each D ∈ D there exists a B ∈ B such that B v D, then B is called a base for
the soft uniform structure D.

Remark 4.4. Let X be a nonempty set, E be the parameter set and B be a
subfamily of S(X×X, E). B is a base for a soft uniform structure on X if it satisfies
the following conditions:
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(1) ∆ v B, for each B ∈ B.
(2) For each B1, B2 ∈ B there exists B3 ∈ B such that B3 v B1 uB2.
(3) For each B ∈ B there exists C ∈ B such that C ◦ C v B.
(4) For each B ∈ B there exists C ∈ B such that C−1 v B.

Definition 4.5. Let (X,D) be a soft uniform space and S be a subfamily of D.
If for all finite intersections of elements of S form a base for D, then S is called a
subbase for the soft uniform structure D.

Example 4.6. (1) Given any nonempty set X, the collection D of all soft subsets
of X × X which contain soft diagonal ∆ is a uniformity on X, called the discrete
soft uniformity. It has for a base the collection consisting of the single soft set ∆.

(2) Given any set X, the collection D consisting of the single soft set ẼX×X :
E → P (X ×X), ẼX×X(e) = X ×X for each e ∈ E, is a uniformity on X, called the
trivial soft uniformity.

(3) Let E = R and let D : E → P (R× R) be defined as follows:
D(e) = ∆(e) ∪ {(x, y) | x > e, y > e}, for all e ∈ E.

Then the soft sets D form a subbase for a soft uniformity on R.

Remark 4.7. (1) If D ∈ D, then D−1 ∈ D, for any uniformity D on X.
(2) The requirements (3) and (4) in the definition of a soft uniformity are together

equivalent to the single requirement:
If D ∈ D, then U ◦ U−1 v D for some U ∈ D.

First suppose (3) and (4) hold. Then given D ∈ D, find U ∈ D such that
U ◦ U v D and V ∈ D such that V −1 v U. Let W = U u V. Then W ◦W−1 v D.
Thus the condition above holds.

On the other hand, if the condition above holds, then given D ∈ D, find U ∈ D
such that U ◦ U−1 v D. Then U−1 v D easily, and if V = U u U−1, then V ∈ D
and V ◦ V v D. Thus (3) and (4) hold.

(3) The symmetric soft sets D in D (i.e., those for which D = D−1 ) form a base
for D.

Definition 4.8. For x ∈ X, e ∈ E and D ∈ D, we define a soft set D[x] : E → P (X)
as follows:

D[x](e) = {y ∈ X | (x, y) ∈ D(e)}.
This is extended to the soft set H on X as follows:

D[H] =
⊔

x∈̃H

D[x],

that is, for each e ∈ E,

D[H](e) =
⋃

x∈H(e)

D[x](e) = {y ∈ X | (x, y) ∈ D(e) for some x ∈ H(e)}.

Theorem 4.9. (1) For each x ∈ X, the collection Ux = {D[x] | D ∈ D} forms a
soft neighborhood at x, making X a soft topological space.

(2) The soft topology is Hausdorff iff D is soft Hausdorff.

Proof. (1) It is enough to show that the family of Ux satisfies the conditions of
Theorem 3.4.
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Vildan Çetkin et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 1, 69–76

(1): Since for D[x] ∈ Ux, we have D ∈ D and ∆ v D, then ∆(e) ⊆ D(e), that is,
(x, x) ∈ D(e), for each e ∈ E. So, x ∈ D[x](e), for each e ∈ E, i.e., x∈̃D[x].

(2): If D[x] ∈ Ux and D[x] v V, then V ∈ Ux. In fact, if we define W (e) =
D(e) ∪ {(x, y) | y ∈ V (e)}, for each e ∈ E, it is easy to see that W ∈ D and
V = W [x].

(3): Let D1[x], D2[x] ∈ Ux, then by the definition we have D1, D2 ∈ D and
D1 uD2 ∈ D.

y ∈ (D1[x] uD2[x])(e) ⇐⇒ y ∈ D1[x](e) ∩D2[x](e)
⇐⇒ (x, y) ∈ D1(e) and (x, y) ∈ D2(e)
⇐⇒ (x, y) ∈ D1(e) ∩D2(e)
⇐⇒ (x, y) ∈ (D1 uD2)(e)
⇐⇒ y ∈ (D1 uD2)[x](e), for each e ∈ E.

So, D1[x] uD2[x] = (D1 uD2)[x], i.e., D1[x] uD2[x] ∈ Ux.
(4): Let D[x] ∈ Ux. So by the definition, we have D ∈ D. Then there exists

V ∈ D such that V ◦ V v D. According to this V [x] ∈ Ux satisfies the desired
property. Because, if y∈̃V [x], i.e., y ∈ V [x](e), then (x, y) ∈ V (e), for each e ∈ E.
Then, (y, z) ∈ V (e), for all z ∈ V [y](e) and hence (x, z) ∈ (V ◦ V )(e) ⊆ D(e). It
is clear that z ∈ D[x](e), i.e., z∈̃D[x]. As a result, from the inequality V [y] v U [x]
and (2), we have D[x] ∈ Uy.

(2) Let (X,D) be a soft Hausdorff uniform space, that is u{D | D ∈ D} = ∆
and x, y ∈ X such that x 6= y. So, there exists e ∈ E such that (x, y) 6∈ ∆(e). By
the hypothesis, there exists D ∈ D such that (x, y) 6∈ D(e). Since the symmetric
elements of D constitutes a base there exists V ∈ D with V = V −1 such that
V ◦V v D. From here it is clear that V [x]uV [y] = Φ. Otherwise, z∈̃(V [x]uV [y]), i.e.,
z ∈ (V [x] u V [y])(e), for each e ∈ E. So, (x, z) ∈ V (e) and (z, y) ∈ V −1(e) = V (e).
Then, (x, y) ∈ (V ◦ V )(e) ⊆ D(e), for all e ∈ E. This is a contradiction.

Conversely, let the soft topology be Hausdorff. If (x, y)˜6∈∆, then there exists
e ∈ E with (x, y) 6∈ ∆(e). Then for x 6= y there exists D[x] ∈ Ux, V [y] ∈ Uy such
that D[x] u V [y] = Φ. From here it is clear that D, V ∈ D and hence D u V ∈ D.
Since (x, y)˜6∈DuV , we have (x, y)˜6∈ u {D | D ∈ D}. Hence, u{D | D ∈ D} = ∆. ¤

Definition 4.10. The topology thus associated with a diagonal uniformity D will
be called the uniform topology TD generated by D. Whenever the soft topology on
a soft topological space X can be obtained in this way from a soft uniformity, X is
called a uniformizable soft topological space.

Example 4.11. (1) The discrete soft uniformity on a set X generates the discrete
soft topology.

(2) The trivial soft uniformity on a set X generates the trivial soft topology.
(3) Let us take into account the soft uniformity base for R for which consists of

the soft sets

D(e) = ∆(e) ∪ {(x, y) | x > e, y > e}, for all e ∈ E

which is defined in Example 4.6 (3). For any x ∈ R, D[x] = xE whenever e ≥ x and
consequently this soft uniformity generates the discrete soft topology.

Theorem 4.12. The soft open and symmetric elements of D forms a base for D.
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Vildan Çetkin et al./Ann. Fuzzy Math. Inform. 6 (2013), No. 1, 69–76

Proof. A soft open symmetric soft set can be obtained by intersecting an open soft
set with its complement, so it suffices to show that the open soft sets form a base, for
which purpose it is enough to verify that if D ∈ D, then Dc ∈ D. Pick a symmetric
U such that U ◦U ◦U v D. So, it is enough to show U v Dc. But if (x, y)∈̃U , then
U [x]×U [y] v D, for if (w, z)∈̃U [x]×U [y], then (x,w)∈̃U, (y, z)∈̃U and hence, since
(x, y)∈̃U, (w, z)∈̃U ◦ U ◦ U v D has a neighborhood in D, so U v Dc. ¤
Theorem 4.13. Let (X,D) be a soft uniform space and F ∈ S(X,E). Then we
have F = uD∈DD[F ].

Proof. If we consider x∈̃D[y] if and only if y∈̃D−1[x] and D−1 ∈ D, for all D ∈ D,
we have

x∈̃F ⇐⇒ D[x] u F 6= Φ, for each D ∈ D.
⇐⇒ ∃ y∈̃F : y∈̃D[x] for each D ∈ D.
⇐⇒ ∃ y∈̃F : x∈̃D−1[y] for each D ∈ D.
⇐⇒ x∈̃D−1[F ], for each D ∈ D.
⇐⇒ x∈̃D[F ], for each D ∈ D.

¤
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[4] N. Çaǧman and S. Enginoǧlu, Soft set theory and uni-int decision making, European J. Oper.

Res. 207(2) (2010) 848–855.
[5] P. K. Maji, B. Biswas and R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562.
[6] P. Majumdar and S. K. Samanta, Similarity measure of soft set, New Math. Nat. Comput. 4

(2008) 1–12.
[7] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37(4/5) (1999) 19–31.
[8] B. Pazar Varol and H. Aygün, On soft Hausdorff spaces, Ann. Fuzzy Math. Inform. 5(1) (2012)

15–24.
[9] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786–1799.
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