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due to the parameterized classification of elements of a universe. Here the
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1. Introduction

Uncertainty is a common phenomenon of our daily existence because our world is
full of uncertainties. In our daily life we encounter many situations where we do take
account of these uncertainties. Therefore it is natural for man to understand and try
to model this uncertainty prevailing in physical world. From centuries, in almost all
branches of Science or in Philosophy, attempts have been made to understand and
represent the features of uncertainty. Perhaps that is the main reason behind the
development of Probability theory and Stochastic techniques which started in early
eighteenth century. Till mid-twentieth century, Probability theory was the only tool
for handling certain type of uncertainty called “Randomness”. But there are several
other kinds of uncertainties; one such type is called “vagueness” or “imprecision”
which is inherent in our natural languages. In 1965, L. A. Zadeh [13] coined his
remarkable theory of Fuzzy sets that deals with such types of uncertainties and
which is due to partial membership of an element in a set. Later this “Fuzziness”
concept leads to the highly acclaimed theory of Fuzzy Logic. This theory has been
applied with a good deal of success to engineering, with fuzzy control systems able
to do things like cook rice, wash cloths or shift gears in a car with great efficiency.
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After the invention of fuzzy sets many other hybrid concepts began to develop. In
1983, K. Atanasov [2] introduced the idea of Intuitionistic fuzzy sets, a set with each
member having a degree of belongingness as well as a degree of non-belongingness.
This is again a generalization of fuzzy set theory. Although Fuzzy set theory is very
successful in handling uncertainties arising from vagueness or partial belongingness
of an element in a set, it cannot model all sorts of uncertainties prevailing in different
real physical problems. Thus search for new theories has been continued. In 1982,
Z. Pawlak [10] came up with his Rough set theory. A Rough set is a set with
imprecise boundaries. It is basically an approximate representation of a given crisp
set in terms of two subsets of a crisp partition defined on the universal set involved.
Thus it is a computational model of approximate reasoning. Except Rough sets
there are also several other theories like multisets, vague sets, interval analysis etc.
which have their own domain of applications in the field of uncertainty analysis.
But there is one theory which is relatively new and having a lot of potential for
being a major tool for modeling uncertainty, is the theory of Soft sets. Soft set was
introduced by Molodtsov [9] in 1999 and is considered as the only theory having a
“parameterization tool”. Later Maji et al. [6, 7] defined operations on then and
applied soft sets in decision making. A soft set is a classification of elements of
the universe with respect to a given set of parameters. It has been shown that
soft set is more general in nature and has more capabilities in handling uncertain
information. Also a fuzzy set or a rough set can be considered as a special case of
soft sets. Now different types of sets mentioned above, expresses different types of
uncertainties and hence it is natural to measure the amount of uncertainty, whether
randomness or fuzziness etc that is attached with it. But what type of uncertainty
does a soft set represent? Soft sets actually deals with the uncertainty arising from
the parameterized classification of elements of a universe. To illustrate the notion
of soft set and the uncertainty associated with it, we here give an example:

Consider a collection U = {h1, h2, ...., h5, h6} of six houses that is sorted from oth-
ers by a buyer willing to buy a house. Some parameters of a good house are selected
and expressed as the parameter setE = {e1 = cheap, e2 = well constructed, e3 =
cos tly, e4 = in good neighbourhood, e5 = good location}. A soft set is a mapping
F : E → P (U) which classify the elements of U according to the parameters given in
E.For example here let us define the mapping F : E → P (U) as follows: Let F (e1) =
{h1, h4}, F (e2) = {h2, h3, h5}, F (e3) = {h2, h3}, F (e4) = {h1, h2, h3}, F (e5) = {h4}.

Here apparently the situation may seem to be quite deterministic. But if we
observe deeply we see the following facts: (i) This classification is dependent on
E, (ii) Associated to each element of U, there are either no parameter, exactly
one parameter or more than one parameter that is attached, e.g. consider the
elementsh6, h5&h2. (iii) From a buyers prospective there is always an uncertainty
to select one particular house, especially those one which have several positive and
negative parameters attached to it, e.g. h3. (iv) Buyer may also be worried about
other unknown parameters which may later affect him. (v) The situations where
one house does not have any given parameters are very much uncertain, e.g. h6.

These are some of the points for which a soft set represents certain kind of un-
certainty. Therefore it is significant to study the amount of uncertainty or ‘softness’
that is attached with a soft set. This paper aims to answer this question.
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The rest of the paper is constructed as follows: In Section 2, we state some pre-
liminary concepts, definitions and results that will be used in the rest of this paper.
In section 3, measure of softness of a soft set has been discussed. An application of
this softness measure in calculating the soft entropy of a fuzzy set has been discussed
in section 4. Section 5 concludes the paper.

2. Preliminaries

In this section a few definitions and properties regarding soft sets are given.

Definition 2.1 ([7]). Let U be an initial universal set and Ebe a set of parameters.
Let P (U)denote the power set of U. A pair(F,A) is called a soft set over U iff F is a
mapping given byF : A → P (U), where A ⊂ E.

Example 2.2. As an illustration, consider the following example.
Suppose a soft set (F, A)describes attractiveness of the shirts which the authors

are going to wear.
U = the set of all shirts under consideration = {x1, x2, x3, x4, x5}
A = {colorful, bright, cheap, warm} ={e1, e2, e3, e4}.
Let F (e1) = {x1, x2},F (e2) = {x1, x2, x3},F (e3) = {x4},F (e4) = {x2, x5}.
So, the soft set (F, A) is a subfamily {F (ei), i = 1, 2, 3, 4}ofP (U).
HereF (ei)is called an e-approximation of(F, A).

Definition 2.3 ([7]). For two soft sets (F, A)and(G,B)over a common universe
U,we say that (F, A)is a soft subset of (G,B)if (i)A ⊂ B,(ii)∀ε ∈ A,F (ε)is a subset
ofG(ε).

Definition 2.4 ([7]). (Equality of two soft sets) Two soft sets (F, A)and (G,B)over
a common universe Uare said to be soft equal if (F,A)is a soft subset of (G,B)and
(G,B)is a soft subset of (F, A).

Definition 2.5 ([8]). The complement of a soft set (F, A)is denoted by (F, A)C

and is defined by (F, A)C = (FC , A),where FC : A →P (U)is a mapping given by
FC(α) = U − F (α), ∀α ∈ A.

Definition 2.6 ([7]). (Null soft set) A soft set (F, A)over U is said to be null soft
set denoted byΦ̃, if ∀ε ∈ A,F (ε) =null set φ .

Definition 2.7 ([7]). (Absolute soft set) A soft set (F, A)over U is said to be absolute
soft set denoted byÃ, if ∀ε ∈ A,F (ε) = U .

Definition 2.8 ([7]). Union of two soft sets (F, A)and (G,B)over a common universe
U is the soft set(H, C), where C = A

⋃
B,and ∀e ∈ C,

H(e) = F (e), e ∈ A−B, = G(e), e ∈ B −A, = F (e)
⋃

G(e), e ∈ A
⋂

B.

This is denoted by(F, A)
⋃̃

(G,B).

Definition 2.9 ([7]). Intersection of two soft sets (F,A)and (G,B)over a common
universe U is the soft set(H, C), where C = A

⋂
B,and ∀e ∈ C,H(e) = F (e)

⋂
G(e).

This is denoted by (F, A)
⋂̃

(G,B).
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Definition 2.10 ([8]). For two soft sets (F, A) and (G,A) the mean Hamming
distance d(F,G), between two soft sets is defined as:

d(F, G) = 1
m{

∑m
i=1

∑n
j=1 |F (ei)(xj)−G(ei)(xj)|}, where F (ei)(xk) = 1, if xk ∈

F (ei)&F (ei)(xk) = 0, if xk /∈ F (ei).

3. Softness measure of a soft set:

In this section we introduce the notion of soft set entropy to measure the ‘softness’
of a soft set. Throughout this paper we assume the universeU and parameter setE
to be finite and denote|A| as the cardinality of the setA.

Entropy as a measure of fuzziness was first mentioned by Zadeh [14] in 1965.
Later De Luca-Termini [3] axiomatized the non-probabilistic entropy. According to
them the entropy E of a fuzzy set A should satisfy the following axioms:

(DT1) E(A) = 0 iff A ∈ 2X

(DT2) E(A) = 1 iff µA(x) = 0.5, ∀x ∈ X
(DT3) E(A) ≤ E(B) iff A is less fuzzy than B, i.e. if µA(x) ≤ µB(x) ≤ 0.5∀x ∈ X

or if µA(x) ≥ µB(x) ≥ 0.5,∀x ∈ X.
(DT4) E(Ac) = E(A).

Several other authors have investigated the notion of entropy. Kaufmann [4]
proposed a distance based measure of soft entropy, Yager [12] gave another view of
degree of fuzziness of any fuzzy set in terms of lack of distinction between the fuzzy
set and its complement. Kosko [5] investigated the fuzzy entropy in relation to a
measure of subsethood. Szmidt & Kacprzyk [11] studied the entropy of intuitionistic
fuzzy sets etc. Following these concepts here we propose a set of axioms that should
be satisfied by any measure of softness i.e. soft set entropy. For that purpose we
give two new definitions, namely deterministic soft set and equivalent soft sets.

Definition 3.1. A soft set(F, A) is said to be a deterministic soft set overU if the
following holds:

(i)
⋃

e∈A F (e) = U
(ii) F (e) ∩ F (f) = ϕ, where e, f ∈ A.

Definition 3.2. Let(F, A) be any soft set. Then another soft set (F∗, A) is said
to be equivalent to(F, A)if there exists a bijective mapping σfromAtoAdefined as:
σ(Fx) = F ∗x ,whereFx = {e : x ∈ F (e)}&F ∗x = {e′ : x ∈ F ∗(e)}.

Let C(F )denote the collection of all soft sets which are equivalent with(F,A).

Example 3.3. Let the universe and parameter set be U = {x1, x2, x3, x4}&A =
{e1, e2, e3}. Then let us consider the following soft set(F, A)as follows:

F (e1) = {x1, x2}, F (e2) = {x2, x3}, F (e3) = {x1, x4}.
Then the following soft set(G,A)is equivalent to the soft set(F, A)where

G(e1) = {x1, x4}, G(e2) = {x1, x2}, G(e3) = {x2, x3}.
This is because there is a bijective mappingσ on A such that σ(e1) = e2, σ(e2) =
e3 & σ(e3) = e1 and σ(Fx) = Gx ∀x ∈ U.
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From intuition we understand that the ‘softness’, i.e. the associated uncertainty
of a soft set is maximum if either the elements cannot be classified at all w.r.t. the
parameters or every element of the universe belong to every parameter, i.e. to every
e-approximation. Again the softness of a soft set is minimum if each element of the
universe is associated with only one parameter. Now for a superset of a soft set
the uncertainty ultimately increases in comparison with its subset, as new elements
being introduced in the set( i.e. in e-approximations) which shares same parameters
with other elements. The softness of a soft set and its equivalent soft sets are same
because the amount of imperfectness or ambiguity of information is same in both
cases. Based on the above discussion we have the following:

Definition 3.4. Letχ∗(U) be the collection of all soft sets overU . A mappingS :
χ∗(U) → [0, 1] is said to be soft set entropy or softness measure ifSsatisfies the
following properties:

(S1) S(Φ̃) = 1, S(Ã) = 1
(S2) S(F ) = 0, if F is det er min is tic soft set
(S3) S(F ) ≤ S(G) if F ( 6= Φ̃) ⊆ G
(S4) S(F ∗) = S(F ), where F ∗ ∈ C(F )

Remark 3.5. Note that according to this definition an ordinary set has softness
zero, as an ordinary set can be thought of as a soft set with a single parameter and
thus is a deterministic soft set.

Then we have the following theorem:

Theorem 3.6. The functionS : χ∗(U) → [0, 1] defined below is an entropy (or
measure of softness) of a soft set:

S(F ) = 1− |U |∑
x∈U |{e:x∈F (e)}| , if F 6= Φ̃ or Ã

= 1, if F = Φ̃ or Ã

Proof. Here (S1) holds obviously from construction.
(S2) For a deterministic soft set

∑
x∈U |{e : x ∈ F (e)| = |U | because each element

is attached with exactly one parameter⇒ |{e : x ∈ F (e)| = 1 ∀x ∈ U.
Hence S(F ) = 0.
Thus (S2) holds.

Next letF&G be two soft sets such that

F (6= Φ̃) ⊆ G ⇒ ∀e ∈ E,F (e) ⊆ G(e) ⇒ {e : x ∈ F (e)} ⊆ {e : x ∈ G(e)}
∴

∑

x∈U

|{e : x ∈ F (e)| ≤
∑

x∈U

|{e : x ∈ G(e)|

⇒ |U |∑
x∈U |{e : x ∈ F (e)| ≥

|U |∑
x∈U |{e : x ∈ G(e)|

⇒ S(F ) ≤ S(G).
Thus (S3) also holds.

(S4) LetF ∗ ∈ C(F )
Then ∴

∑
x∈U |{e : x ∈ F (e)| = ∑

x∈U |{e : x ∈ F ∗(e)|
∴ S(F ) = S(G).

Hence the theorem. ¤
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Example 3.7. Consider the example of house selection given in Section 1.
Consider a collection U = {h1, h2, ...., h5, h6} of six houses that is sorted among

others by a buyer willing to buy one house. Some parameters of a good house are
collected and expressed asE = {e1 = cheap, e2 = well constructed, e3 = cos tly, e4 =
in good neighbourhood, e5 = good location}. A soft set is a mapping F : E →
P (U) which classify the elements of U according to the parameters given in E.Here
we define the soft set F : E → P (U) as follows: Let F (e1) = {h1, h4}, F (e2) =
{h2, h3, h5}, F (e3) = {h2, h3}, F (e4) = {h1, h2, h3}, F (e5) = {h4}. HereS(F ) = 1 −

|U |∑
x∈U |{e:x∈F (e)}| = 1− 6

11 ≈ 0.45.

The notion of mean Hamming distances between two soft sets was proposed by
us in [8] in connection with the similarity of soft sets.

Again we can calculate entropy using the notion of distance between two soft sets.
For this we give the following definitions:

Let(F, A) be a soft set overU . ThenF : A → P (U)& let us denote RT =
Range of F.

Definition 3.8. Let(F,A) be any soft set over the universeU . Then the nearest soft
set of(F, A) is a soft set (Fnear, A)which is a deterministic over soft set overRT and
is obtained from(F, A) by eliminating the least number of elements.

Definition 3.9. Let(F, A) be any soft set over the universeU . Then the farthest
soft set of(F,A) is a soft set (Ffar, A)which is obtained from(F, A) by including
additional elements in (F, A)such thatFfar(e) = RF ∀e ∈ A.

Now letd1 and d2 be the distances betweenF and Fnear andF and Ffar respec-
tively.

Definition 3.10. A non null non absolute soft set (F, A) is said to be a soft set of
TYPE- I, ifd1 ≤ d2.

Definition 3.11. A non null non absolute soft set (F, A) is said to be a soft set of
TYPE- II, ifd1 > d2.

Example 3.12. Consider the following soft set (F, A)defined as follows:
Let U = {x1, x2, x3, x4, x5}& E = {e1, e2, e3} be the universal set and the set of

parameters. Let

F (e1) = {x1, x2, x5}, F (e2) = {x2, x3}, F (e3) = {x1, x4, x5}.
Here d1 = 3

3 & d2 = 7
3 .Hence(F, A) is TYPE-I soft set.

If we take another soft set(G,A) over sameU and E such that:

G(e1) = {x1, x2, x3, x4}, G(e2) = {x2, x3, x4, x5}, G(e3) = {x1, x4, x5}.
Then it is of TYPE-II because here d1 = 6

3 > d2 = 4
3 .

The distance based softness measure or soft entropy of(F, A) is defined as the

ratio E(F ) =

{
d1
d2

, if d1 ≤ d2
d2
d1

if d2 ≤ d1

}
if F 6= Φ , Ã and = 1 if F = Φ , Ã.

Theorem 3.13. The softness measures defined in Definition 3.12 satisfy all the
properties of Definition 3.4 for TYPE-I soft sets.
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Proof. Here (S1) is obvious.
Now if a soft setF is deterministic soft set thend1 = d(F, Fnear) = 0, ∴ E(F ) = 0

and hence (S2) holds.
Let F (6= Φ) and Gbe two TYPE-I soft sets such thatF ⊆ G, i.e. F (e) ⊆ G(e)∀e ∈

A.
Now to findFnear fromF we have to delete some common elements from F (e)′s.

Let the total number of such deletions be nF . Now these elements are also common
inG as F ⊆ G. So to findGnear one have to delete at least nF number of elements,
i.e. nG ≥ nF ⇒ dF

1 ≤ dG
1 . Similarly number of additions required to findFfar will

be more compared to Gfar, i.e. dF
2 ≥ dG

2 .

HenceE(F ) = dF
1

dF
2
≤ dG

1
dG
2

= E(G).
Hence (S3) holds.
(S4) follows obviously for all soft sets F&F ∗ ∈ C(F )from definition of equivalent

soft sets.
This completes the proof. ¤

Example 3.14. Consider an example where the universe isX = {x1, x2, x3, x4}and
the parameter set is

A = {e1, e2, e3}.Let (F,A)be a soft set defined as follows:

F (e1) = {x1, x3}, F (e2) = {x2, x3, x4}, F (e3) = {x1, x4}.
Then Fnear = (G,A) is defined as follows: Fnear(e1) = {x1}, Fnear(e2) = {x2, x3},
Fnear(e3) = {x4}.

AgainFfar = (H, A) is defined as follows: Ffar = Ã.

Now d1 = d(F, Fnear) = 1, d2 = d(F, Ffar) = 5/3,⇒ S(F ) = d1
d2

= 3/5.

4. Soft entropy of a fuzzy set:

In this section we will show that a softness measure set of a soft can also be used
as a measure the fuzziness of a fuzzy set.

In [1], Aktas & Cagman have made a comparative study between a soft set and
a fuzzy set. According to them:

Proposition 4.1 ([1]). Every fuzzy set may be considered as a soft set.

They have shown the following example to explain the situation.

Example 4.2 ([1]). Let us consider the following fuzzy set:

Fpoor = { h1

0.9
,

h2

0.3
,

h3

1.0
,

h4

1.0
,

h5

0.2
}

Let X = {h1, h2, h3, h4, h5} be a universe and the parameter set be A = {0.2, 0.3, 0.9,
1.0} = {µFpoor (x) : x ∈ X}.

Then the fuzzy set Fpoor can be represented by the soft set (FS , A), where FS :
A → P (X) is defined as FS(α) = {x ∈ X : µFpoor (x) ≥ α}.

∴ FS(0.2) = {h1, h2, h3, h4, h5}, FS(0.3) = {h1, h2, h3, h4},
FS(0.9) = {h1, h3, h4}, FS(1.0) = {h3, h4}.
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Definition 4.3. Let X be a universe and I = [0, 1]. A soft set F : A → P (X),
with A ⊆ I is called a softly fuzzy set. The collection of all such set are denoted by
SF (X).

The soft set (Fs, A) defined above is a softly fuzzy set.
Here we define two types of softly fuzzy sets corresponding to any fuzzy set.

Definition 4.4. Given a fuzzy set F, its corresponding upper (lower) soft set is a
softly fuzzy set (Fu

s , A) (or (F l
s, A)) defined as follows: Fu

S (or F l
S) : A → P (X) such

that

Fu
S (α) = {x ∈ X : µF (x) > α}, where A = {α ∈ [0, 1] : µF (x) = α, x ∈ X}.

(or F l
S(α) = {x ∈ X : µF (x) < α}, where A = {α ∈ [0, 1] : µF (x) = α, x ∈ X}).

Definition 4.5. Given a fuzzy set F , its upper soft entropy is the soft entropy of
the softly fuzzy set (Fu

s , A)& is denoted by Eu(F ).

Definition 4.6. Given a fuzzy set F , its lower soft entropy is the soft entropy of
the softly fuzzy set (F l

s, A)& is denoted by El(F ).

The upper soft entropy and lower soft entropy of a fuzzy set satisfies the following
properties:

Theorem 4.7. For a fuzzy set F the following holds:
(A1) E′(F ) = 0 if F ∈ 2X .
(A2) E′(F ) = 1 if µF (x) = 0.5∀x ∈ X.
(A3) E′(F ) ≤ E′(G) if µF (x) ≤ µG(x) ≤ 0.5.
(A4) Eu(F ) = El(F c)

Here E′ = Eu or El.

Proof. Proof for the first three results we prove for upper soft sets only. The case
for lower soft set will be similar.

Let F ∈ 2X , then its corresponding upper soft set (softly fuzzy set) (Fu
s , A)will

be as follows:
A = {0, 1} and Fu

s : A → P (X) such that Fu
s (0) = X1 ⊆ X&Fu

s (1) = ϕ.
Thus the softness measure S of (Fu

s , A) will be zero as(Fu
s , A) is also a determin-

istic soft set, i.e. Eu(F ) = S(Fu
S
) = 0.

Hence(A1) is satisfied.
Next letF ∈ IXs.t. µF (x) = 0.5 ∀x ∈ X.
Then we take the parameter set as A = {0.5} and Fu

S
: A → P (X) such that

Fu
S
(0.5) = ϕ.
Therefore (Fu

S
, A) = Φ and(Fu

S
, A) becomes an null soft set and Eu(F ) = S(Fu

S
) =

1.
Hence (A2) is satisfied.
Now ifF,G ∈ IXs.t. µF (x) ≤ µG(x)∀x ∈ X.

Then let their corresponding soft sets be (Fu1
S , A)and(Fu2

S , A
′
)

Where obviouslyA
′′

= A ∪ A
′
. Now we change the parameter sets of the above

two softly fuzzy sets to A
′′
and defineFu1

S (β) = ϕ ∀β /∈ A&Fu2
S (β) = ϕ ∀β /∈ A′.

Then

Fu1
S (α) = {x ∈ X : µF (x) > α} ⊆ {x ∈ X : µG(x) > α} = Fu2

S (α) ∀α ∈ A
′′
.
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Because this will not change the soft entropy.
ThenS(Fu1

S ) ≤ S(Fu2
S ).

Therefore (A3) is also satisfied.
(A4): LetF ∈ IX . Let the corresponding upper soft set be (Fu

s , A).
ThenA = {µF (x); x ∈ X}and

Fu
s (α) = {x : µF (x) > α} = {x : 1− µF (x) < 1− α} = {x : µF c(x) < 1− α}

= (F l
s)c(1− α).

Now for F c ∈ IX , the corresponding lower soft set will be ((F l
s)

c, A′),
whereA′ = {α : 1− α = µF (x)&x ∈ X}.
Thus (Fu

s , A) = ((F l
s)

c, A′) ⇒ Eu(F ) = El(F ) and hence (A4) follows.
This completes the proof. ¤

Remark 4.8. Then upper (lower) soft entropy of a fuzzy set can be found from a
measure of softness of a softly fuzzy set, i.e. soft set.

Remark 4.9. The softness measure defined in theorem 3.6 is also a measure of
upper (lower) soft entropy of fuzzy sets.

Example 4.10. LetF ∈ IX be a fuzzy set over the universeX = {x1, x2, x3, x4, x5}
where

F = { x1

0.3
,

x2

0.7
,

x3

0.8
,

x4

0.5
,

x5

0.9
}.

Let(Fu
s , A) be a the corresponding soft set, where A = {0.3, 0.5, 0.7, 0.8, 0.9}&Fu

s :
A → P (X) s.t.

Fu
s (0.3) = {x2, x3, x4, x5}, Fu

s (0.5) = {x2, x3, x5}, Fu
s (0.7) = {x3, x5},

Fu
s (0.8) = {x5}, Fu

S
(0.9) = ϕ.

Then the softness measure = the lower soft entropy of the fuzzy set F = S(Fu
s ) =

1− 5
10 = 0.5.

5. Conclusions:

In this paper we have extended the De Luca and Termini’s axioms to measure
the uncertainty attached to soft sets and proposed two techniques to measures of
softness of soft sets or soft set entropy for the first time. These measures also satisfy
the softness measure axioms defined by us. We have also shown that this measure is
consistent with similar considerations for fuzzy sets. And we have used soft entropy
to measure the fuzziness of a fuzzy set. Measure of softness of a soft set is actually
a measure of imperfectness of information represented by a soft set. Thus the study
of soft entropy is important and the authors are sure that this notion will be useful
in many domains of information theory and its applications.
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