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ABSTRACT. In this paper we discuss some properties of the self comple-
mentary and self weak complementary interval-valued fuzzy graphs, and
get a sufficient condition for a interval-valued fuzzy graph to be the self
weak complementary interval-valued fuzzy graph. Also we investigate re-
lations between operations union, join, and complement on interval-valued
fuzzy graphs.
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1. INTRODUCTION

I 1965, Zadeh [18] introduced the notion of a fuzzy subset of a set as a method for
representing uncertainty. Since then, the theory of fuzzy sets has became a vigorous
area of research in different disciplines including logic, topology, algebra, analysis,
information theory, artificial intelligence, operations research, neural networks and
planning etc [6], [8], [9], [10], [12]. The fuzzy graph theory as a generalization of
Euler,s graph theory was first introduced by Rosenfeld [15] in 1975. The fuzzy
relations between fuzzy sets were first considered by Rosenfeld and he developed the
structure of fuzzy graphs obtaining analogs of several graph theoretical concepts.
Later, Bhattacharya [5] gave some remarks on fuzzy graphs, and some operation of
fuzzy graphs were introduced by Mordeson and Peng [11]. The complement of fuzzy
graphs was studied by Sunitha and Vijayakumar [16]. In 1975, Zadeh [17] introduced
the notion of interval valued fuzzy subset of a set as an extension of fuzzy set in
which the values of the membership degrees are interval of numbers instead of the
numbers. Hongmei and Lianhua gave the definition of interval-valued fuzzy graph
in [7). In 2011, Muhammad Akram, Wieslaw A. Dudek [I] gave some operations
on interval-valued fuzzy graph. M. Akram and B. Davvaz [3] investigated strong
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intuitionistic fuzzy graphs. The definition of bipolar fuzzy graphs was proposed by
Muhammad Aram [2]. Then M. Akram and M.G. Karunambigai [4] define length,
distance, eccentricity, radius and diameter of a bipolar fuzzy graph and introduce
the concept of self centered bipolar fuzzy graphs. A. Nagoorgani and J. Malarvizhi
[13, 14] investigated isomorphism properties on fuzzy graphs. Also they defined
the self complementary fuzzy graphs. Bhutani in [6] introduced the concept of
weak isomorphism and isomorphism between fuzzy graphs. In this study we define
the self complement and self weak complement interval-valued fuzzy graphs and
some properties of its are discussed. We study some properties of isomorphism and
complement on interval-valued fuzzy graphs.

2. PRELIMINARIES

A fuzzy graph with S, a non empty finite set as the underlying set is a pair
G : (o,u) where 0 : S — [0, 1] is a fuzzy subset of S, : S xS — [0, 1] is a symmetric
fuzzy relation on the fuzzy subset o such that p(x,y) < min(o(x),o(y)), Y,y € S.
A fuzzy relation p is symmetric if p(z,y) = p(x,y) for all z,y € S. The underlying
crisp graph of the fuzzy graph G : (o, 1) is denoted as G* : (o, u*) where o* = {z €
S:o(x) >0} and p* = {(z,y) € S x S : p(x,y) > 0}. If u(x,y) > 0, then z and y
are called neighbors. For simplicity, an edge (x,y) will be denoted by zy.

The interval-valued fuzzy set A in V is defined by

A={(z,[pa-(2), pa+ (@)]) sz €V},

where p4- (z) and pa+(x) are fuzzy subsets of V such that ps- () < pa+(x) for all
zeV.

If G*: (V, E) is a graph, then by an interval-valued fuzzy relation B on a set E
we mean an interval-valued set such that for all xy € F,

pp-(z,y) < min(ua-(v), pa-(y)),
pp+(r,y) < min(pa+ (), pat(y)).

Definition 2.1. By an interval-valued fuzzy graph of a graph G* : (V, E) we mean
a pair G = (A, B), where A = [u4-, 14+] is an interval-valued fuzzy set on V' and
B = [up-, up+] is an interval-valued fuzzy relation on E.

Definition 2.2. Let G : (o, u) be a fuzzy graph on underlying set S. The comple-
ment of G is defined as G : (0, 1) where

A(z,y) = min(o(z),0(y)) — plz,y) Vz,yes.
When G : (0, ) is a fuzzy graph, G : (o, 71) is also a fuzzy graph.

Definition 2.3. The complement of an interval-valued fuzzy graph G : (A, B) of a
graph G* : (V, E) is an interval-valued fuzzy graph G : (4, B) of G* : (V,V x V),
where A = A = g, pua+) and B = [lig—, figt) is defined by

i (z,y) = min(pa-(x),pa-(y) —pp-(zy) Ya,yeV

Ipr(z,y) = min(ua+(x), pa+(y)) —ppr(zy) Vao,yeV
48
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Definition 2.4. Let G : (o, ) and G’ : (¢/, ') be two fuzzy graphs with underlying
sets S and S’, respectively. A homomorphism of fuzzy graphs h: G — G’ is a map
h: S — S’ which satisfies o(z) < o’'(h(z)), V€S and
p(zy) < p'(h(z)h(y)) Vao,y€eSs.
A weak isomorphism h : G — G’ is a bijective homomorphism that satisfies
o(z) =o'(h(x)), Vzxes.
A co-weak isomorphism h : G — G’ is a bijective homomorphism that satisfies

p(xy) = p'(h(x)h(y)), Y,y €S
An isomorphism h : G — G is a bijective homomorphism that satisfies
{ o(x) =o' (h(z)) YzeS
p(zy) = p' (h(z)h(y)) Vz,yes
Throughout this paper G : (A1, B1) and Gy : (As, Bs) are taken to be the interval-
valued fuzzy graphs of G : (Vi, E1) and G5 : (Va, Es), respectively.
Definition 2.5. Let Gy : (A1, B1) and Go : (A, Bs) be two interval-valued fuzzy
graphs. A homomorphism f: G; — G4 is a mapping f : V1 — V5 such that
() 4 (2) < - (F(@))par (2) < igs (F(2), V€W,
(b) s (29) < . (F@)F )by () < s (F@F W), V¥ 2y € Vi,
A bijective homomorphism with the property
(©) () = iy (F@)s s (@) = s (F@), VeV
is called a weak isomorphism.
A bijective homomorphism f : G; — G2 such that

(d) Fpr (zy) = Hpy (f(x)f(y»vMBfr (zy) = HpF (f(x)f(y), VYa,yeW
is called a co-weak isomorphism.
A bijective mapping f : G; — G5 satisfying (¢) and (d) is called an isomorphism.

Definition 2.6. The union G; U Gy = (A1 U Ag, By U Bs) of two interval-valued
fuzzy graphs G and Gs is defined as follows:

(MA;UMA;)(x):uA; ifveVi,zgVy

(A4) (MAI‘ Uqu—)(x) = Hag if x€Vo,x g Vi
(MA; U /‘A;)(x) = max(,uA; (x)JJA; (x)) if z€VinVa,
(/U‘ATUMA;')(:E):MAT ifzeVi,z g Vs
(B) (,“A;r U MA;’)(:E) = Hay if v €Va,x g V1
(s Ut )(z) = max(pgs (2), 14 () if @ € Vin Vs,
(,LLB; .UB;)(xy) = Hpr (:Ey) if zy € By, 2y € By
() (,LLB; U /‘B;)(xy) =Ky (zy) if vy € Eo, vy & En
(NBf U NBZ—)(xy) = maX(ﬂBl— (my)vﬂgz— (zy)) if zy € E1N Ey,
(Bt Upps)(zy) = pp+(zy) if vy € By 2y ¢ B>
(D)§ (upt Upps)(ey) = pgy(zy) if xy € By, xy ¢ Er
(hp+ Uppy)(zy) = max(ups (2y), ppy (vy)) if zy € By 0 By,
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Proposition 2.7 ([1]). The union of two interval-valued fuzzy graphs is an interval-
valued fuzzy graph.

Definition 2.8. The join G1 + G5 = (A1 + Az, By + Bs) of two interval-valued fuzzy
graphs G and G5 is defined as follows:

W { (Har +1a3) (@) = (pg+ U piys)(2) fxeViuvs,

(B){ (MB; +NB;)(xy) = ('uBf U/”LBZ_)(xy) if xy € Fh U Ey,

(bpr + np)(@y) = (np Uppgs)(zy)

©) { (upy + ppy )(2y) = min(p, - (2), paz (y)) if vy € E',

(bpr + ppg)(wy) = min(u 4 (), 4+ ()
where E’ is the set of all edges joining the nodes of V7 and V5.

Proposition 2.9 ([1]). The join of two interval-valued fuzzy graphs is an interval-
valued fuzzy graph.

3. SELF COMPLEMENT AND SELF WEAK COMPLEMENT
INTERVAL-VALUED FUZZY GRAPHS

In this section we will discuss some properties of the self complement and self
weak complement on interval-valued fuzzy graphs.

Definition 3.1. An interval-valued fuzzy graph G = (A, B) of a graph G* = (V, E)
is said to be self weak complementary interval-valued fuzzy graph if G is weak
isomorphic with it’s complement G, i.e there exists a bijective homomorphism f :

G — G such that for all x,y € V
{ pa-(x) = a=(f(x))
pra+(z) = pa=(f(x))
and

{ pe-(x,y) < mp=(f(x)f(y))
pp+(z,y) < g (f(2)f(y)).

Definition 3.2. An interval-valued fuzzy graph G is said to be self complementary

ifG=G.

Example 3.3. Consider a graph G* = (V, E) such that V = {a,b,c}, E = {ab, bc}.
Then an interval-valued fuzzy graph G = (A, B), where

4=((720553) (G705 50)

() (2 )
- \o0.170.15/7\0.27 0.2/ /7
is self weak complementary. In fact, identity bijective mapping is a weak isomor-

phism from G to G.
50
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Example 3.4. Consider a graph G* = (V, E) such that V = {a,b,c}, E = {ab, bc}.
Then an interval-valued fuzzy graph G = (A, B), where

4~((G2 0309 G oz o5))

B ([ ) (2 )

- \\0.270.15/7\0.47 0.25/ /7

is self-complementary. In fact, bijective mapping f : G — G such that a — a, b — c,
¢ — b is an isomorphism.
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Theorem 3.5. Let G = (A, B) be a self complementary interval-valued fuzzy graph
of a graph G* : (V,E). Then

S wp (o) = 5 3 minGea- (@), pa- ()

z#Y 1 TFy
> up(ay) = 5 Y min(uas (@), pas )-
Ty Ty

Proof. Let G = (A, B) be a self complementary interval-valued fuzzy graph of a
graph G*(V,E). Then there exists an isomorphism g : G — G such that for all
x,y € V we have
{ pa- () = Fa=(9(x) oy
pa+ (@) = frav(9(x))
and
{ ps-(zy) = Ip=(9(x)g(y)

pp+ (xy) = apr(9(x)g(y) Vr,y e V.

51
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Now by definition of G, for all z,y € V we have
{ fp-(9(x)g(y)) = min(ua-(9(z)), pa-(9(y))) — - (9(x)g(y))
fp+(9(2)g(y)) = min(pa+ (9(x)), pa+(9(y))) — pp+(9(x)g(y))
{ pp-(zy) = min(pas-(g(x)), pa-(9(z))) — ps-(9(x)g(v))
pp+(zy) = min(pa+(g(z)), pa+(9(2))) — pp+(g(x)g(y))
Hence

> up-(xy) + > pp-(9(x)g(y) =Y min(ua- (), pa-(y))

T#yY TFY TF#Y

> upe(zy)+ Y psi(gle =Y min(pas (), pa+(y))

TFy z#Y T#y

i.e.,

S (o) = 5 3 minGua- (@), pa- ()

T#y 93757/ . O
Z pp+(y) Z min(pa+(z), pa+(y))
zFy m#y

Theorem 3.6. Let G = (A, B) be a self weak complementary interval-valued fuzzy
graph of a graph G* : (V E). Then

> up-(zy) Z min(pa- (), pa- (y))
TFy x#y
Zu3+ xy) Zmln pa+ (), pa+(y))-

zFy zséy

Proof. Let G = (A, B) be a self weak complementary interval-valued fuzzy graph of
a graph G* : (V, E). Then there exists a weak isomorphism h : G — G such that for
all z,y € V we have

pa-(z) =ma-(h(z)) = pa- (h(z))
pa+(z) = far (h(x)) = pa+ (h(x))
pp- (zy) < g (h(z)h(y))
pp+(wy) < gt (h(z)h(y))

Using the definition of complement in the above inequality, for all z,y € V' we have

{ B~ (zy) < fip=(h(z)h(y)) = min(ua- (h(z)), pa-(h(y))) — pp- (h(z)h(y))
pp+ (zy) < fip+(h(z)h(y)) = min(pa+ (h(2)), pa+ (h(y))) — pp+ (R(z)h(y))
N { B-(2y) + pp-(h(x)h(y)) < min(ua- (h(z)), pa-(h(y)))
pp+(2y) + MB+(h( )h(y)) < mln(ﬂm(h(ﬂﬁ))a tea+(h(y)))
> s @y)+ Y pp- (M@)h(y) < min(pa- (b)), pa- (h(z)))
THY TFY z7Y
> npe(zy) + Y ppe(h <> min(ua+ (A(@)), pa+ (h(x)))
r#y T#y TAY
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2 Z pp-(zy) < Z min(pa-(z), pa-(y))

= TFy T#y
2> " ppe(zy) <> min(pas (), pa+ ()
TFy TFy
Hence

s (ay) < 3 3" min(ua- () - )

r#y ac;éy O
Zu3+ zy) Zmln prat (), pra+(y))
zFy r#z/

Theorem 3.7. Let G = (A, B) be a interval-valued fuzzy graph of a graph G* :
(V.E). If
1 .
pp-(zy) < p min(pa-(2), pa- ()
pp+(zy) < o min(pa+ (@), pa+(y))

for all x,y € V, then G = (A, B) is a self weak complementary interval-valued fuzzy
graph.

Proof. Consider the identity map I : V — V| { Zi; Eg i Zﬁ; ((j:g)))) YzeV.
By definition of ig we have
ps-(zy) = min(pa- (), pa- (y)) — pp- (zy)
{ u%(wy) = min(pa+ (), pa+(y)) — u]; (zy) veyev
Hence
fip—(zy) > min(pa- (2), pa-(y)) — 3 min(pa- (), pa- ()
= gmin(ua-(2), pa-(y)) > pp-(zy) VayeV
fp+ (zy) > min(pa+ (2), pa+ (y)) — 3 min(ua+ (), pa+ (y)) ’
= s min(pa+ (z), pa+ (y)) > pp+(zy)
pe-(zy) < - (I(z)I(y))
[ ) e -

4. COMPLEMENT AND ISOMORPHISM OF AN INTERVAL-VALUED FUZZY GRAPH

In this section we discuss some of the properties of isomorphism and complement
on interval-valued fuzzy graphs.

Theorem 4.1. Let G1 = (41, B1) and Go = (As, Ba) be two interval-valued fuzzy
graph such that ViNVo = ¢. Then G1 + G2 =2 GL UG,

Proof. We shall prove that the identity map is the required isomorphism. Let I :
V1 U Ve — V3 UV, be the identity map. We prove that for all z,y € V
53
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{

and

{

(,UA; + ,uA;)(x)
(Bar +1ag)(@)

(Fam U ) (@)
(Far UTiag) (@)

(hp- + bpo)(y) = (Ap= Ulig-)(zy)
(hpr +pps)(ey) = (Bgr

For all x,y € V' we have

Also

S 1 17(33) ifreW
(Bar +pa) (@) = (pp- Upg)(@) = { Mj; (@) if zeV
_ fig- () ifzeWy
B MA;(CE) if eV

= (B Uy (@),
m 1+(ac) ifxeWy
(NAI+ +,uA2+)(a:) = (NA;r JF.UA;)@) = { Mi;(x) if 2 € Vo
_ /LAT(LU) ifxeW
| Bar(@) ifzeVs

(hp- + g )(wy) = min((py- + py2) (@), (ma- + 1047)(Y) — (B + pp-)(2y)

A

|

{

min((,uA; UMA;)(x)’ (NA; UMA;)(:‘J)) - (MB; U uB;)(azy) if vy € By U Ey
min((zy- U pg=) (@), (- Upa-) () —min(pu, - (2), py-(y)) if 2y € Ef

min(p - (), o= () — pp- (2y) if zye kb
min(p (), o= () — pps (2Y) if xye By
min(p - (), - (y) —min(py-(2), py-(y)) if 2y € E

= (frp UTips ) ().

(hpr + ppe)(@y) = min((pat + pa1)(@), (ar + par) W) — (Lps + pps)(zy)

|
|

min((z g+ U pig+) (), (ar Upas) () — (ppr Upps)(zy) if zy € By U E,
min((z g+ U pip+)(2), (a+ U pgs)(y) — min(p 4 (2), gy (y)) if zy € B

min(p g+ (), Lot (Y)) = g (zy) if zye€ By

min(g 4+ (2), ot (Y)) — ppt (2y) if xye€ By

min(g,+ (2), ot (y)) —minpy+ (2), pat () i 2y € B
54
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figs (xy) if wy € B
= Fpgley) if xye B
0 if vyelE
= (Apr Uligy)(zy).
O

Theorem 4.2. Let Gy = (A1, B1) and Go = (Ag, By) be two interval-valued fuzzy
graph such that V1 NV = ¢. Then GLUGs 2 G, UGs.

Proof. We shall prove that the identity map is the required isomorphism. For all
x,y € V we have

par @) if eV
MA;(I) if weVs

= (,UA; UﬂA;)(x) = (,UA; +UA;)($)7
MAT(I) if el

NA;(x) if zeVs
- EAT(I) if vel
B EA;(I) if xeVs

= (Eay Viap)(a),

(MA; UMA;)(x) = (MA; UMA;)(x) =

(MAj UMA;)(x) = (/JAjr U MA;)(@") = {

(hp-Upp=)(zy) =min((py- Upy=)(2), (g Upa=) (W) — (pp- Upp:)(@y)

(

) MB;(l’y) if xye€ FE
a; W) —pps(vy) if xy € By

) =0

min(g - (z), A;(y - if veVi,yelh
Hp;- (zy) if wye€Ey

= E(my) if xy € By
min(,uA;(x),,uA;(y)) ifteVi,yeVa
(Fp Vg, )(zy) if wye€Ey

= (g Uig, )(zy) if wye€Ey

min(ﬂA; (95)7,“,42— (y) ifzy €L
= (g, + i, ) (),
(hpr Upps)(@y) = min((py+ Upae)(@), (s Upat)(¥) = (ppr U pps ) (zy)

(
min(p s+ (), gt (Y) — ppy(vy) if zy € By
= min(uA+( ), uA+(y)) u3+(9:y) if xy€ By
min(uA+( )uA+( ))—0 if xeVi,yels
55
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gt (zy) if xye Eq

=9 Fpr (zy) if xy € By
min(,uA;r(x),qu‘r(y)) ifreVi,yeVs
(Fipr Utips)(zy) if xy€ b

=« (pr Uiigy)(zy) if xye€ by

min(p g+ (2), gz (y)) ifzy € B

= (fpy + Apz)(zy). 0

Theorem 4.3. If there is a weak isomorphism between two interval-valued fuzzy
graphs G1 and G, then there is a weak isomorphism between G1 and Gs.

Proof. If h is a weak isomorphism between G; and Gs, then h : V; — V5 is a bijective
map that satisfies

) Har (z) = Hag (h(z)) .
W { bt () = syt (h(a)) 70

and

2) : Hp- (zy) < Hps (h(z)h(y))
| kst (@y) < ppr(h(@)h(y))

As h=! : Vo — V; is also bijective, for every xo € Va, there is an z; € Vi such that
h=1(x3) = z1. Using this in (1), we have

(3) : { Hag (z2) = Has (hil(xZ))

YVax,ye V.

paz (@2) = pyr (R (22))
Again by using (1) and (2)
Fp (@yr) = min(u - (21), pa- (1)) = ppr (@191) - 21,51 € Vi,
i (W™ H(@2)h ™ (y2)) = min(p - (h(z1), py- (R(y1)) — b (R(21h(y1)) 21,91 € V1,
= min(uy - (22), iy (42)) — pp; (2292)
= @(xgyg), Y xo,y2 € Vo,
ie.,
T (w2y2) < fip— (B~ H(@2)h ™ (32)), V2,92 € Va.
Also
Fpi (21y1) = min(p s (21), par (91)) — ppy (2191) V90 €N
= gy (W (@2)h ™ (y2)) = min(uys (W(@1)), s (h(y1) = pgs ((z1)h(yr))
= min(pyt (22), pag (y2)) — ppy (T292)

= NB;(xzyQ) YV x2,y2 € Vo,
56
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ie., fipr (w2ye) < fipr (B Ha2)h M (y2)), ¥ 22,2 € Va
Therefore h=1 : V5 — Vj is a weak isomorphism between G and Gs. O

Notation 4.4. We denote by Aut(G), the automorphism group of a interval-valued
fuzzy graph G.

Theorem 4.5. Let G = (A, B) be a interval-valued fuzzy graph of a graph G* :
(V, E). Then the automorphism group of G and G are identical.

Proof. We prove that for any injective map h : V — V, h € Aut(G) if and only if

h € Aut(G). We have

Also, for all x,y € V,
75 (h(@)h(y)) = 75~ ()
& min(ua- (W), pa- (M(y)))—ps- (W@)h(y)) = min(pa- (z), pa- (y))—ps- (zy)
< pp-(h(@)h(y)) = pp-(2y),

and
ip+ (M(@)h(y)) = g+ (ry)
& min(pa+ (h(2)), pa+ (h(y))—pp+ (h(x)h(y)) = min(pa+ (2), pa+ (y))—pp+ (zy)
< pp+(h(x)h(y)) = pp+(zy).

This complete the proof. O
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