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Abstract. Fuzzy set theory has been applied to many fields, such
as operation research, control theory and management science. This pa-
per presents a new method for solving fuzzy linear programming prob-
lem with triangular coefficients in constraints and objective function. It is
shown that such problem can be reduced to a fuzzy linear semi-infinite pro-
gramming problem. Than we present two methods for solving linear semi-
infinite programming problem with fuzzy coefficients in objective function.
Finally, a numerical example is included to illustrate the solution proce-
dure.
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1. Introduction

Linear Programming (LP ) is a one of the most important model in Operational
Research (OR). Linear programming problems should be considered as a special
kind of decision model, the decision space is defined by the constraints, the goal is
defined by the objective function and the type of decision is decision making under
certainty. The conventional model of linear programming can be stated as:

(1.1)
max cT x
s.t. Ax ≤ b,

x ≥ 0,

where c and x are n-dimensional column vectors, A is an m× n (m ≤ n) matrix, b
is (m ≤ n) dimensional column vector, and 0 is the n-dimensional zero vector. Note
that in this model, all coefficients of A, b, and c are crisp numbers, and each constraint
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must be satisfied strictly. Linear programming is one of the most widely used decision
making tools for solving real world problems. One of the main assumptions used in
this technique is that the input data have complete accuracy.
However, more often than not, real world situations are characterized by imprecision
(fuzziness) rather than exactness. Therefore, a number of researchers have shown
interest in the area of fuzzy linear programming. The idea of fuzzy set was first
proposed by Zadeh, as a mean of handling uncertainty that is due to rather than
to randomness. After that Bellman and Zadeh [3] proposed that a fuzzy decision
might be defined as the fuzzy set, defined by the intersection of fuzzy objective
and constraint goals. This paper studies a linear programming problem with fuzzy
coefficients in constraints and objective function. To describe this problem, we
consider the following linear program in the conventional form:

(1.2)

max
n∑

j=1

c̃jxj

s.t.
n∑

j=1

ãijxj ≤ b̃i, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

where ãij , b̃i and c̃j , i = 1, ...,m, j = 1, ..., n, are fuzzy coefficients in terms of fuzzy
sets. Ramik and Rimanek [17] also dealt with problem [6] with fuzzy parameters in
the constraints. Later, Delgado, Verdegay and Vila [6] studied a general model for
fuzzy linear programming problems which involve fuzziness both in the coefficients
and in the accomplishment of the constraints. In this paper, we focus on the linear
programming problem [6] with fuzzy coefficients in the elements of A, b and c.
We will show that such problems can be reduced to a Linear Semi-Infinite Program-
ming (LSIP ) problem with fuzzy cost coefficients. Hence LSIP problem with fuzzy
cost coefficients that we show them in an abbreviated form of (FLSIP ), have a valu-
able role to solve linear programming problems with fuzzy coefficients in constraints.
Thus the optimality conditions of solutions to FLSIP are investigated and then an
algorithm is proposed to solve the original problem. Also a numerical example is
given to illustrate its performance.

2. Preliminaries

The ordering indices are so diverse that it is necessary to organize them into sev-
eral lines to investigate them more efficiently. In [19], ordering indices are classified
into three categories. In the first class, each index is associated with a mapping
F from the set of fuzzy quantities to the real line R in order to transform the in-
volved fuzzy quantities into real numbers (see also in [12, 13, 14, 15, 16]). Fuzzy
quantities are then compared according to the corresponding real numbers. In the
second class, reference sets are set up and all the fuzzy quantities to be ranked are
compared with the reference sets. In the last class, a fuzzy relation is constructed to
make pairwise comparisons between the fuzzy quantities involved. These pairwise
comparisons serve as a basis to obtain the final ranking orders. For the details,
readers are referred to [18, 19].
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Let R be the real line, then a fuzzy set Ñ in R is defined to be a set of ordered
pairs Ñ = {(x, µÑ (x)) | x ∈ R}, where µÑ (x) is called the membership function for
the fuzzy set. The membership function maps each element of R to a membership
value between 0 and 1.

A fuzzy set Ñ on R is convex, if for any x, y ∈ R and any λ ∈ [0, 1], we
have µÑ (λx + (1− λ)y) ≥ min {µÑ (x), µÑ (y)}.
In this paper, the support of a fuzzy set Ñ is denoted by supp Ñ . A fuzzy number
Ñ is defined as an upper semi continuous, bounded (bounded support), convex and
normal fuzzy quantity. For a fuzzy number Ñ , the interval N1 = {x | µÑ (x) = 1}
is called the kernel or the modal values interval of Ñ . The non- decreasing function
on the left of the modal values interval and the non-increasing function on the right
of the modal values interval will be referred to as the left and right spread, respec-
tively. A special case is the trapezoidal fuzzy number whose left and right spread are
straight lines. The trapezoidal fuzzy number with support (a, b) and modal values
interval [c, d] is denoted by (a, c, d, b). When c = d, a trapezoidal fuzzy number
reduces to a triangular fuzzy number. We denote the triangular fuzzy number with
support (a, b) and modal value c by (a, c, b).

Definition 2.1. A fuzzy number Ñ shall be called a (fuzzy) zero, symbolized by õ,
if its membership function is as follows:

µÑ (x) = min {max [0, 1 + x/α],max [0, 1− x/ β]}, for all x ∈ R and α, β > 0.

Its figure is shown below.

Figure 1. Zero triangular fuzzy number

Given a ranking method, the notations Ñ � M̃ , Ñ ∼ M̃ and Ñ % M̃ mean
that Ñ has a higher ranking than M̃ , the same ranking as M̃ and at least the same
ranking as M̃ , respectively; Ñ ≺ M̃ and Ñ - M̃ are equivalent to M̃ � Ñ and
M̃ % Ñ , respectively.
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3. The model

Assume Ñ1, Ñ2, ..., Ñn are the fuzzy quantities to be ranked and n−iα= inf Ñiα,
n+

iα = sup Ñiα and α ∈ [0, 1]. Ñiα denotes the α-cut of Ñi, i.e. Ñiα={x | x ∈
R and µÑi

(x) ≥ α}.
Figure 2 shows the membership function of the convex fuzzy number Ñ .
Let F(Ñ) be the set of all fuzzy numbers. Based upon the Extension Principle

[20], we have the following results the proofs are straight for word based on the
extention principle and hence we omit them here.

Figure 2. The membership function of a fuzzy number Ñ

Theorem 3.1. If Ñ1, Ñ2, ..., Ñn ∈ F (Ñ), then M̃ , Ñ1 + Ñ2 + ... + Ñn ∈ F (Ñ)
and

m−
iα = n−1α + n−2α + ... + n−nα,

m+
iα = n+

1α + n+
2α + ... + n+

nα,
∀ α ε [0, 1].

Theorem 3.2. If Ñ ∈ F (Ñ) and k is a positive real number, then M̃ , k.Ñ ∈ F (Ñ)

and
m−

α = k.n−α ,

m+
α = k.n+

α ,
∀ α ε [0, 1].

Theorem 3.3. If Ñ ∈ F (Ñ) and k is a negative real number, then M̃ , k.Ñ ∈

F (Ñ) and
m−

α = k.n+
α ,

m+
α = k.n−α ,

∀ α ε [0, 1].

Theorem 3.4. If Ñ ∈ F (Ñ) and k = 0, then k.Ñ , 0.
216
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After introducing the concept of fuzzy numbers with their properties, we have
to discuss the issue of ranking fuzzy numbers. There are many ranking methods
available for the comparison relation between two fuzzy numbers [5, 11, 12, 13].
Here we adopt the commonly used concept of α-preference [1, 4], and provide the
following ranking method.

Definition 3.5. For Ñ1, Ñ2 ∈ F (Ñ) and α ε [0, 1], Ñ1 ≥α Ñ2 if and only if
LÑ1

(t) ≥ LÑ2
(t),

RÑ1
(t) ≥ RÑ2

(t),
∀ t ε [α, 1].

Figure 3 illustrates such a relation of Ñ1 ≥α Ñ2 for some α ε [0, 1]. According to

Figure 3. A relation of Ñ1 ≥α Ñ2 for some α ∈ [0, 1]

the fuzzy ranking method provided above, given α ∈ [0, 1], a Fuzzy Linear Program-
ming (FLP ) problem considered can be described as follows:

(3.1) (FLP ) :


min

n∑
j=1

c̃jxj

s.t.
n∑

j=1

ãijxj ≥α b̃i, i = 1, · · · , q,

xj ≥ 0, j = 1, · · · , n,
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where c̃j , ãij , b̃i ∈ F (Ñ), for i = 1, 2, ..., q, j = 1, 2, ..., n. Here,
n∑

j=1

ãijxj ≥α b̃i, i =

1, 2, ..., q means that

(3.2)

n∑
j=1

Lãij(t).xj ≥ Lb̃i(t)
,

n∑
j=1

Rãij(t).xj ≥ Rb̃i(t)
,
∀ t ε [α, 1].

Now substituting expression (3.2) into problem (3.1) yields the following problem:

(3.3)

min
n∑

j=1

c̃jxj

s.t.
n∑

j=1

Lãij(t).xj ≥ Lb̃i(t)
,

n∑
j=1

Rãij(t).xj ≥ Rb̃i(t)
,

xj ≥ 0, j = 1, · · · , n,

∀ t ε [α, 1], i = 1, · · · , q.

Let fij(t) , Lãij (t), for i = 1, ..., q, j = 1, ..., n, fij(t) , Rãi−q,j (t), bi(t) ,
Rb̃i−q

(t), for i = q + 1, ..., 2q, j = 1, ..., n, m , 2q, and T , [α, 1]. Then we
have the following equivalent problem:
(3.4)

(FLSIP ) :



min
n∑

j=1

c̃jxj

s.t.

 f11(t) . . . f1n(t)
...

. . .
...

fm1(t) . . . fmn(t)


 x1

...
xn

 ≥
 b1(t)

...
bm(t)

 , ∀t ∈ T.

where T is a compact metric space, fij(t) and bi(t), i = 1, ...,m, j = 1, ..., n, are
real-valued continuous functions on T. Notice that problem (3.4) is a Fuzzy Linear
Semi-Infinite (FLSIP ) Programming problem with n variables and infinitely many
constraints. Its feasible region and the optimal objective value are denoted by Fuzzy
Programming (FP ) and v(FLSIP ), respectively, in this paper. Here for solving
the FLSIP problem, we reduce the problemto a Linear Semi-Infinite Programming
(LSIP ) problem. Hence to investigate the optimality conditions of solutions to
LSIP , some basic analysis for LSIP are presented in the next section and the
details can be found in [8].
Now we explain how can reduce an FLSIP problem to an LSIP problem using
a linear ranking function as well as given in [14]. Hence consider the linear semi-
infinite programming problem with fuzzy objective value, c̃j = (cj

m, cj
α, cj

β), for
all j = 1, ..., n, where cj

m, cj
α and cj

β are respectively, the core, the left spread and
the right spread of the triangular fuzzy number c̃j . Up to rest the paper here we
use a linear ranking function which as first introduced by Yager (see in [12] and also
[15]). For example, if we let F (R) denote the set of all triangular fuzzy numbers, a
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linear ranking function R : F (R) → R on c̃j = (cj
m, cj

α, cj
β) ∈ F (R) is defined

as R(c̃j) = 1/2cj
m + 1/4(cj

β − cj
α).

Now using a linear ranking function problem (3.4) can be convert to:
(3.5)

(LSIP ) :



min
n∑

j=1

cjxj

s.t.

 f11(t) . . . f1n(t)
...

. . .
...

fm1(t) . . . fmn(t)


 x1

...
xn

 ≥
 b1(t)

...
bm(t)

 , ∀t ∈ T.

The current problem is now an LSIP problem that can be solved by the process
which is given in Section 6. Two next sections are concern to the fundamental
theorems on the optimal solutions.

4. Basic analysis

Let T be a compact metric space, C(T) be the space of all real-valued con-
tinuous functions on T, M(T) be the space of bounded regular Borel measures
on T, C+(T) , {h∈ C(T) | h(t) ≥ 0,∀ t ∈ T}, and M+(T) , {µ ∈ M(T)
| µ(B) ≥ 0,∀ B ∈ B(T), where B(T) is the set of all Borel set in T. Consider the
dual problem of (LSIP ) [10]:

(4.1) (DLSIP ) :


max

m∑
i=1

∫
T

bi(t)dµi,

s.t.
m∑

i=1

∫
T

fij(t)dµi ≤ cj , j = 1, · · · , n,

µi ∈ M+(T), i = 1, · · · ,m.

Let FD be the feasible region of DLSIP and v(DLSIP ) the optimal objective
value of DLSIP . From a result of [19], it follows that if the optimal value of
DLSIP has finite value and there is a µ0 = (µ0

1, µ
0
2, ..., µ

0
m) ∈ (M+(T))m such that

m∑
i=1

∫
T

fij(t)dµ0
i ≤ cj , j = 1, ..., n, then the strong duality holds for DLSIP . This is

stated in Theorem 4.1.

Theorem 4.1. Assume that (FD) 6= ∅ and −∞ < v(DLSIP ) <∞. If there exists

µ0 = (µ0
1, µ

0
2, ..., µ

0
m) ∈ (M+(T)))m such that

m∑
i=1

∫
T

fij(t)dµ0
i ≤ cj , j = 1, ..., n, then

(FP ) 6= ∅ and v(LSIP ) = v(DLSIP ).

Applying Theorem 4.1, we have the following result.

Theorem 4.2. Assume that v(LSIP ) = v(DLSIP ), then x∗ ∈ (FP ) solves LSIP
and µ∗ ∈ (FD) solves DLSIP if and only if

n∑
j=1

fij(t) x∗j − bi(t) = 0,∀ t ∈ supp(µ∗i ), i = 1, · · · ,m.

next we discuss the existence theorem for LSIP .
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Theorem 4.3. If FP is bounded, then (LSIP ) has an optimal solution which is an
extreme point of FP .

Proof. It is obvious that the feasible set FP is bounded and closed, and hence, is
a compact set in Rn. Since the objective function of LSIP is a continuous linear
function on the compact set FP ⊂ Rn, it will attain its minimum at an extreme
point of FP . �

From Theorem 4.3, we see that the extreme points of the feasible set FP play
an important role for optimal solutions of LSIP . We will discuss the relationship
between the optimal solutions and extreme points of the feasible region of LSIP in
the next section.

5. Extreme points

To study the extreme points of the feasible region of LSIP , we recall some useful
definitions for general linear programming. Let E and F be real linear spaces, and
A : E → F a linear operator. Consider the following linear program:

(5.1) (LP ) :

 min 〈c∗, x〉,
s.t. Ax = b,

x ∈ P,

where c∗ is a linear functional in E, b ∈ F and P is a positive convex cone in E. For
x0 ∈ P we define, B(x0) = {x ∈ E | x0 ± λx ∈ P for some real λ > 0}.
Reference [2] showed that x0 is an extreme point of the feasible region for LP if
and only if B(x0) ∩ N(A) = {0} where 0 denotes the zero vector and N(A) =
{x ∈ E | Ax = 0}, the null space of A.
In order to investigate the conditions under which a feasible solution becomes an
extreme point, the inequality constraint of LSIP are transformed to equality con-
straint. Let g = (g1, ..., gm) ∈ (c+(T))m be the vector of “slack variables” of LSIP ,
and consider a new semi-infinite programming problem with equality constraint
(LSIP )e:

(5.2) (LSIP ) :



min
n∑

j=1

cjxj ,

s.t.
n∑

j=1

fij(t)xj − gi(t) = bi(t),∀ t ∈ T i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,
gi(t) ∈ c+(T), i = 1, · · · ,m.

Let (FP )e be the feasible region of (LSIP )e and (x, g) ∈ (FP )e. Suppose that
exactly p components of the variable x are greater than zero, and, without loss
of generality, we assume that the first p components of x are positive, i.e., x =
(x1, ..., xp, 0, ..., 0)T. Let t

(i)
1 , t

(i)
2 , ..., t

(i)
li
∈ T, such that gi(t

(i)
1 ) = gi(t

(i)
2 ) = ... =

gi(t
(i)
li

) = 0.
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Define the li × p matrices

(5.3)

Ki ,


fi1(t

(i)
1 ) . . . fip(t

(i)
1 )

...
. . .

...
fi1(t

(i)
li

) . . . fip(t
(i)
li

)

, i = 1, · · · ,m,

K ,


k1

k2

...
km

 .

Then we have the following theorem [8].

Theorem 5.1. Let K and (x, g) ∈ (FP )e be defined as above. If rank (K) = p,
then (x, g) is an extreme point of (FP )e.

Next we check the conditions for an extreme point (x, g) to be an optimal solution
for (LSIP )e. Let (x, g) be an extreme point of (FP )e and

{sk(1)}k=1,...,r1 ⊂ {tk(1)}k=1,...,l1 , ..., {sk(m)}k=1,...,rm
⊂ {tk(m)}k=1,...,lm .

Suppose that exactly p components of x are greater than zero, and without loss of
generality, the first p components of x are positive. Define

(5.4)

k̄i ,


fi1(s

(i)
1 ) . . . fip(s

(i)
1 )

...
. . .

...
fi1(s

(i)
ri ) . . . fip(s

(i)
ri )

 , i = 1, · · · ,m,

and

k̄ ,


k̄1

k̄2

...
k̄m

 .

Let x = (x1, ..., xp)T and c = (c1, ..., cp)T. We have the following theorem [8].

Theorem 5.2. Suppose that (x, g) and k̄ are defined as above. If we find k̄ such
that

i) k̄ is invertible,

ii) (k̄T )−1c ,



u1
1
...

u1
r1
...

um
1
...

um
rm


≥ 0,

iii)
m∑

i=1

ri∑
k=1

fij(s
(i)
k )ui

k − cj ≤ 0, for j = p + 1, ..., n,
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then (x, g) is an optimal solution of (LSIP )e.

6. Solution procedure

There are many semi-infinite programming algorithms [7, 9] available for solving
linear semi infinite programming problems. The difficulty lies in how to effectively
deal with the infinite number of constraint. Based on a recent review [9], the “cutting
plane approach” is an effective one for such application. Following the basic concept
of the cutting plane approach, we can easily design an iterative algorithm which adds
m constraint at a time until an optimal solution is identified. To be more specific,
at the kth iteration, given Tk = {t1, t2, ..., tk}, where tk = (tk1 , tk2 , ..., tkm) ∈ Tm, and
k ≥ 1, we consider the following linear programming problem (LP k):

(LP k) :



min
n∑

j=1

cjxj

s.t.



f11(t11) . . . f1n(t11)
...

. . .
...

fm1(t1m) . . . fmn(t1m)

...
. . .

...

f11(tk1) . . . f1n(tk1)
...

. . .
...

fm1(tkm) . . . fmn(tkm)



 x1

...
xn

 ≥



b1(t11)
...

bm(t1m)
...

b1(tk1)
...

bm(tkm)



xj ≥ 0, j = 1, · · · , n.

Let F k be the feasible region of problem (6). xk = (xk
1 , ..., xk

n) is an optimal solution
of problem (6). We define the “constraint violation functions” as follows:

vk+1
i (t) ,

n∑
j=1

fij(t)xk
j − bi(t), ∀ t ∈ T i = 1, · · · ,m.

Since fij(t) and bi(t) are continuous over T and T is compact, the function vk+1
i (t)

achieves its minimum over T, for i = 1, ...,m. Let tk+1
i (t) be such a minimizer and

consider the value of vk+1
i (tk+1

i ), for i = 1, ...,m. If the value is greater than or equal
to zero, for i = 1, ...,m, then xk becomes a feasible solution of LSIP , and hence,
xk is optimal for LSIP because the feasible region F k of problem (6) is no smaller
than the feasible region FP of LSIP . Otherwise, xk is not optimal and tk+1 =
(tk+1

1 , ..., tk+1
m ) /∈ Tk. We then augment Tk to a larger set Tk+1 = {t1, ..., tk, tk+1}.

By repeating this process, xk will converge to the optimal solution of LSIP . This
background provides a foundation for us to outline a cutting plane algorithm for
solving LSIP .
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Algorithm 6.1 CPLSIP Algorithm

Step 1 [Initialization] Set k = 1; Choose any t1i ∈ T; Set T1 = {t1}.

Step 2 Solve (LP )k and obtain an optimal solution xk.

Step 3 Find a minimizer tk+1
i ∈ of vk+1

i (t). over T, for i = 1, ...,m.

Step 4 If vk+1
i (tk+1

i ) ≥ 0, for i = 1, ...,m, then stop with xk being an optimal

solution of LSIP .

Otherwise, set Tk+1 = Tk ∪ {tk+1} and k ← k + 1; go to Step 1.

When LSIP has at least one feasible solution, i.e., FP 6= ∅, it is easy to see that
the CPLSIP Algorithm either terminates in a finite number of iterations with an
optimal solution or generates a sequence of points {xk | k = 1, 2, ...}. Our objective
for the remaining part of this section is to show that if the CPLSIP Algorithm does
not terminate in finite iterations, then {xk} has a subsequence which converges to
an optimal solution of LSIP . We now show a convergence proof for the CPLSIP
Algorithm which we omit the proof here.

Theorem 6.1. Let {xk} be a sequence generated by the CPLSIP Algorithm. If
there exists an M > 0 such that ‖ xk ‖ ≤ M,∀ k, then there is a subsequence of xk

which converges to an optimal solution of LSIP .

7. Numerical example

Now we are a place to illustrate the proposed approach and solution procedures.
Let us consider the following fuzzy linear programming problem:

Example 7.1. Consider the following fuzzy linear programming problem:

(FLP ) :


max z = (13, 13/2, 7/2)x1 + (16, 4, 8)x2,
s.t. 〈3, 2, 1〉x1 + 〈6, 4, 1〉x2 ≤α 〈13, 5, 2〉,

〈4, 1, 2〉x1 + 〈6, 5, 4〉x2 ≤α 〈7, 4, 2〉,
x1, x2 ≥ 0,
α ∈ [0, 1],

hence the mentioned fuzzy linear programming will reduced to the following from:

(LSIP ) :



min −7.25x1 − 9x2

s.t.


−2t1 − 1 −4t1 − 2
−t2 − 3 −5t2 − 1
−t3 − 4 t3 − 7
2t4 − 6 4t4 − 10

 (
x1

x2

)
≥


−5t1 − 8
−4t2 − 3
2t3 − 15
2t4 − 9

 ∀ti ∈ [α, 1],

x1, x2 ≥ 0.
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Given any α ∈ [0, 1], say α = 0.6 in this example and an arbitrary point, say
t1 = (t11, t

1
2, t

1
3, t

1
4) = (0.7, 0.8, 0.7, 0.8), we have a regular linear program,

(LP 1) :



min −7.25x1 − 9x2

s.t.


−2t11 − 1 −4t11 − 2
−t12 − 3 −5t12 − 1
−t13 − 4 t13 − 7
2t14 − 6 4t14 − 10

 (
x1

x2

)
≥


−5t11 − 8
−4t12 − 3
2t13 − 15
2t14 − 9

 ∀ ti ∈ [α, 1],

x1, x2 ≥ 0.

Solving (LP 1) results in an optimal solution x1 = (x1
1, x

1
2) = (1.63158, 0). Define

v2
1(t1) = (−2t1 − 1)x1

1 + (−4t1 − 2)x1
2 − (−5t1 − 8) = 1.73684t1 + 6.36842,

v2
2(t2) = (−t2 − 3)x1

1 + (−5t2 − 1)x1
2 − (−4t2 − 3) = 2.36842t2 − 7.89472,

v2
3(t3) = (t3 − 4)x1

1 + (t3 − 7)x1
2 − (−2t3 − 15) = 0.36842t3 + 8.47368,

v2
4(t4) = (2t4 − 6)x1

1 + (4t4 − 10)x1
2 − (t4 − 9) = 1.26316t4 − 0.78948.

.

The minimizers of v2
1(t1), v2

2(t2), v2
3(t3), v2

4(t4) over [α, 1] = [0.6, 1] are (0.6, 0.6, 1, 0.6),
respectively.

Hence we choose t2 = (t21, t
2
2, t

2
3, t

2
4) = (0.6, 0.6, 1, 0.6).

Since v2
1(t21) ≥ 0, v2

2(t22) ≤ 0, v2
3(t23) ≥ 0, v2

4(t24) ≤ 0, the CPLSIP Algorithm
iterates with a new linear program,

(LP 2) :



min −7.25x1 − 9x2

s.t.



−2t11 − 1 −4t11 − 2
−t12 − 3 −5t12 − 1
−t13 − 4 t13 − 7
2t14 − 6 4t14 − 10

. . . . . .
−2t21 − 1 −4t21 − 2
−t22 − 3 −5t22 − 1
−t23 − 4 t23 − 7
2t24 − 6 4t24 − 10



(
x1

x2

)
≥



−5t11 − 8
−4t12 − 3
2t13 − 15
2t14 − 9

. . .
−5t21 − 8
−4t22 − 3
2t23 − 15
2t24 − 9


x1, x2 ≥ 0.

Solving (LP 2) result in an optimal solution x2 = (x2
1, x

2
2) = (0.136364, 0.940191).

Define

v3
1(t1) = (−2t1 − 1)x2

1 + (−4t1 − 2)x2
2 − (−5t1 − 8) = 0.966508t1 + 5.983254,

v3
2(t2) = (−t2 − 3)x2

1 + (−5t2 − 1)x2
2 − (−4t2 − 3) = −0.837319t2 + 1.65077,

v3
3(t3) = (t3 − 4)x2

1 + (t3 − 7)x2
2 − (−2t3 − 15) = 0.923445t3 + 7.873027,

v3
4(t4) = (2t4 − 6)x2

1 + (4t4 − 10)x2
2 − (t4 − 9) = 2.03492t4 − 1.220094.

.
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The minimizers of v3
1(t1), v3

2(t2), v3
3(t3), v3

4(t4) over [0.6, 1] are 0.6, 1, 1, 0.6 respec-
tively. Hence, we choose t = (t31, t

3
2, t

3
3, t

3
4) = (0.6, 1, 1, 0.6).

Now, since v3
1(t31) ≥ 0, v3

2(t32 ≥ 0, v3
3(t33 ≥ 0, v3

4(t34 ≥ 0, the algorithm stops and

results an optimal solution x∗ = x2 =

 0.136364

0.940191

. The fuzzy linear program

with α = 0.6.

8. Conclusion

In this paper, a linear programming problem with fuzzy coefficient in A, b and c
is studied. By using the concept of α-preference we have shown that such problems
can be reduced to a linear semi-infinite programming problem. We have also studied
the relation between the optimal solutions and extreme points of the linear semi-
infinite program are established. A cutting plane algorithm is proposed for solving
a linear programming problem with fuzzy coefficients in terms of linear semi-infinite
programming.
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