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ABSTRACT. In this article we study the rate of multivariate pointwise
convergence in the g-mean to the Fuzzy-Random unit operator or its per-
turbation of very precise multivariate normalized Fuzzy-Random neural
network operators of Cardaliaguet-Euvrard and ”Squashing” types. These
multivariate Fuzzy-Ranfom operators arise in a natural and common way
among multivariate Fuzzy-Random neural network. These rates are given
through multivariate Probabilistic-Jackson type inequalities involving the
multivariate Fuzzy-Random modulus of continuity of the engaged multi-
variate Fuzzy-Random function or its Fuzzy partial derivatives. Also sev-
eral interesting results in multivariate Fuzzy-Random Analysis are given
of independent merit, which are used then in the proof of the main results
of the paper.

2010 AMS Classification: 26A15, 26E50, 41A17, 41A25, 41A99, 47540.

Keywords: Fuzzy-Random analysis, Fuzzy-Random neural networks and opera-
tors, Fuzzy-Random modulus of continuity, Fuzzy-Random functions, Jackson type
and probabilistic inequalities.

Corresponding Author:  George A. Anastassiou (ganastss@memphis.edu)

1. INTRODUCTION

Let (X, B, P) be a probability space. Consider the set of all fuzzy-random vari-
ables Lr (X,B,P). Let f : R — Lp (X,B,P), d € N, be a multivariate fuzzy-
random function or fuzzy-stochastic process. Here for T e R, s € X we denote
(f (?)) (s)=f (7, s) and actually we have f : R? x X — Ry, where Rz is the
set of fuzzy real numbers. Let 1 < ¢ < 400. Here we consider only multivariate
fuzzy-random functions f which are (g-mean) uniformly continuous over R?. For
each n € N, the multivariate fuzzy-random neural network we deal with has the
following structure:
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It is a three-layer feed forward network with one hidden layer. It has one input unit
and one output unit. The hidden layer has (2n2 + 1) processing units. To each pair

of connecting units (input to each procebsmg unit) we assign the same Welght nl—e,

0 < a < 1. The threshold values n— are one for each processing unit k * € Z4. The
activation function b (or S) is the same for each processing unit. The Fuzzy Random

.
weights associated with the output unit are f (% , s) O — L , one

2L (=)

for each processing unit ?, ® denotes the scalar Fuzzy multiplication.

The above precisely described multivariate Fuzzy-Random neural networks induce
some completely described multivariate Fuzzy-Random neural network operators of
normalized Cardaliaguet-Euvrard and ”Squashing ”types.

We study here throughly the multivariate Fuzzy-Random pointwise convergence
(in g-mean) of these operators to the unit operator and its perturbation. See
Theorem 35, 38 and Comment 41. This is done with rates through multivariate
Probabilistic-Jackson type inequalities involving Fuzzy-Random moduli of continu-
ity of the engaged Fuzzy-Random function and its Fuzzy pertial derivatives.

On the way to establish these main results we produce some new independent
and interersting results for multivariate Fuzzy-Random Analysis. The real ordinary
theory of the above mentioned operators was presented earlier in [I], [2] and [9)].
And the fuzzy case was treated in [3]. The fuzzy random case was studied first in
[5]. Of course this article is strongly motivated from there and is a continuation.

The monumental revolutionizing work of L. Zadeh [13] is the foundation of this
work, as well as another strong motivation. Fuzzyness in Computer Science and
Engineering seems one of the main trends today. Also Fuzzyness has penetrated
many areas of Mathematics and Statistics. These are other strong reasons for this
work.

Our approach is quantitative and recent on the topic, started in [I], [2] and
continued in [3], [7], [§]. It determines precisely the rates of convergence through
natural very tight inequalities using the measurement of smoothness of the engaged
multivariate Fuzzy-Random functions.

2. BACKGROUND

We begin with

Definition 2.1. (see [12]) Let p: R — [0, 1] with the following properties:

(i) is normal, i.e., 3 xp € R: p(zg) = 1.

(i) pQz+ (1 —=Ny) > min{p(z),u(y)}, Ve,y e R, VX el0,1] (uis called a
convex fuzzy subset).

(iii) w is upper semicontinuous on R, i.e., V zg € R and V £ > 0, 3 neighborhood
V(zo):p(x) <p(zo) +e, VeV (xg).

(iv) the set supp (u) is compact in R (where supp(p) := {z € R; u (z) > 0}).

We call i a fuzzy real number. Denote the set of all p with Rz.

E.g., X{zo} € Ry, for any 79 € R, where xy,,) is the characteristic function at
Zo-
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For 0 < r < 1and u € Ry define [u)" := {z € R : p(z) > r} and [©)° :=
{reR:u(z) >0}

Then it is well known that for each r € [0,1], [11]" is a closed and bounded interval
of R. For u,v € Ry and A € R, we define uniquely the sum u & v and the product
A ©u by

wdv]” =[u" +[v]", Nou"=Au", Vrel,1],
where [u]” 4 [v]" means the usual addition of two intervals (as subsets of R) and
A[u]” means the usual product between a scalar and a subset of R (see, e.g., [12]).
Notice 1 ®u =w and it holds u v =vPu, AQu=uo X If0<r <ry, <1
then [u]™ C [u]™. Actually [u]" = [u(_r),ug_r)}, where u'”) < ug_r), u(_r),ug_r) ER,V
r € [0,1].

Define
D:Rf xRFp - R, U{0}
by
D (u,v) :== sup max{’u(j) - ,‘ugf) - 115:) },
rel0,1]

where [v]" = {v(r),vg)} i u,v € Rr. We have that D is a metric on Rx. Then
(Rz, D) is a complete metric space, see [12], with the properties

(1) D(u@®wvdw)=Dwuv), VuuvwéeRg,

Dkou,kov) = |klD(uv), YuveRgsVEkeR,
Dudv,wde) < D(u,w)+D(v,e), Yuuvwe€cRg.

Let f,g: R — Rz be fuzzy real number valued functions. The distance between f, g
is defined by

D*(f,9) = supD (f(z),9(z)).
(r)

On Rr we define a partial order by "<”: uw,v € Rp, u < v iff u(f) < v ’ and

ugf) < vgf), Vrelol].
‘We need

Lemma 2.2 ([4]). For any a,b€R:a-b>0 and any u € Rr we have
(2) D(a@u,b@u)§|afb|~D(u,o,
where 0 € Ry is defined by 0 := x {0}

Lemma 2.3 ([4]). (i) If we denote 0 := x{o}, then 0 € Rr is the neutral element
with respect to @, i.e., udo=0Du=u, ¥V u € Rg.

(ii) With respect to o, none of u € Rz, u # 0 has opposite in Rg.

(iii) Let a,b e R:a-b >0, and any u € Ry, we have (a+b)Qu=a@udbOu.
For general a,b € R, the above property is false.

(iv) For any A € R and any u,v € Rr, we have A\ (uPv) = A0 ud A O v.

(v) For any \,u € R and u € Ry, we have A\® (u @ u) = (A p) © u.
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(vi) If we denote ||ul| z := D (u,0), V u € Rg, then ||-|| z has the properties of a
usual norm on Rg, i.e.,

||u||]_- = 0iffu=o, ”)‘@u”}' = [l HUH]:,

(3) ue v||}- < HUH}' + HUH}'a ||U||}‘ - ||UHf~ < D (u,v).

Notice that (Rz,®,®) is not a linear space over R; and consequently (R, ||-|| z)
is not a normed space.

As in Remark 4.4 ([4]) one can show easily that a sequence of operators of the
form

(4) Ly (f) (@) =) f (zx,) ©wp (@), neN,

k=0

(3 denotes the fuzzy summation) where f : R? — Rz, x5, € R% d € N, wy, 1 ()
real valued weights, are linear over R?, i.e.,

(5) Ly(A0fopog)(x)=A0 Ly (f)(#)®pno© Ly (9) (z),

VYA, p € R, any 2 € RY; f, g : R? — Ry. (Proof based on Lemma 2.3 (iv).)
We need

Definition 2.4. (see [12]) Let x,y € Rz. If there exists a z € Ry such that
x =y + z, then we call z the H-difference of z and y, denoted by z :=z — y.

Definition 2.5. (see [12]) Let T := [zg,z0+ 3] C R, with 8 > 0. A function
f: T — Rg is differentiable at x € T if there exists a f’ (x) € Rz such that the
limits

i LEER @) @)= f @)

h—0+ h h—0+ h
exist and are equal to f’' (z). We call f’ the derivative of f or H-derivative of f at
x. If f is differentiable at any x € T', we call f differentiable or H-differentiable and
it has derivative over T the function f’.

We need also a particular case of the Fuzzy Henstock integral (§ (z) = g) intro-
duced in [12], Definition 2.1 there.
That is,

Definition 2.6. (see [11], p. 644) Let f : [a,b] — Rx. We say that f is Fuzzy-
Riemann integrable to I € Rz if for any € > 0, there exists § > 0 such that for any
division P = {[u,v];&} of [a, b] with the norms A (P) < §, we have

(6) D<Z(vu)®f(§),[><€.

P
‘We choose to write

b
(7) I:= (FR)/ f(x) dz.

We also call an f as above (F R)-integrable.
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We mention the following fundamental theorem of Fuzzy Calculus:

Corollary 2.7 ([3]). If f : [a,b] — Rz has a fuzzy continuous derivative f' on [a,b],
then f'(x) is (FR)-integrable over [a,b] and

(®) f(s)=f ()@ (FR) / Cf(x)da, forany s>t stefabd].

Note. In Corollary 2.7/ when s < t the formula is invalid! Since fuzzy real
numbers correspond to closed intervals etc.
We need also

Lemma 2.8 ([3]). If f,9 : [a,b] C R — R are fuzzy continuous (with respect to
metric D), then the function F : [a,b] — R, U{0} defined by F (z) := D (f (z), 9 (x))
is continuous on [a,b], and

b b b
(9) D((FR) / f (u) du, (FR) / g(u)du) < / D(f () .9 (x)) da.

Lemma 2.9 ([3]). Let f : [a,b] — Rr fuzzy continuous (with respect to metric D),
then D (f (x),0) < M,V z € [a,b], M > 0, that is [ is fuzzy bounded.

‘We mention

Lemma 2.10 ([5]). Let f : [a,b] — Rz have an existing fuzzy derivative f' at
¢ € [a,b]. Then f is fuzzy continuous at c.

Note. Higher order fuzzy derivatives and all fuzzy partial derivatives are defined
the obvious and analogous way to the real derivatives, all based on Definitions [2.4)
2.5, here.

We need the fuzzy multivariate Taylor formula.

Theorem 2.11. ([7], p.54) Let U be an open convex subset on R™, n € N and f :
U — R be a fuzzy continuous function. Assume that all H-fuzzy partial derivatives
of f up to order m € N exist and are fuzzy continuous. Let z := (z1,...,2,),
xo = (Zo1,...,Ton) € U such that z; > xo;, @ = 1,...,n. Let 0 < t < 1, we define
x; = xo; + (2 — 20i), ¢ = 1,2,...,n and g, (t) = f(xo+t(z—xp)). (Clearly
2o +t(z—mx0) €U). Then for N =1,...,m we obtain

n* N
(10) ggN) (t) = (Z (Zz — :L'Oi) ® 8,2) f (iCl, X2, ,.’En) .

i=1

Furthermore it holds the following fuzzy multivariate Taylor formula

m—1% (N)
) re=rwe Y F P er, 0.,
N=1 ’
where
= ! 1 $)™ @ g™ (s)ds
12 Ry 01) = oy © (FR) [ (1= 0l (9
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Comment 2.12. (ezplaining formula (10)) When N = n = 2 we have (z; > wo;,
i=1,2)

g: () = f (o1 +t (21 —x01) o2 +t (22 —202)), 0<t <1
We apply Theorems 2.18, 2.19, 2.21 of [7] repeatedly, etc. Thus we find

g,/z (t) = (21 - xOl) O] ﬁ (£U17.T2) @ (ZQ - 1'02) © ﬁ ((El,.’lig) .

oy O0x2
Furthermore it holds
02 O%f (z1,x
(13) gl (t) = (21 —201)° @ 8.%; (r1,22) ©2 (21 — zo1) (22 — T02) © 5;17813322)
32
D (2’2 — 31‘02)2 ® ((?:CJ%C (Il,xg) .
When n =2 and N = 3 we obtain
o3 B3f(z1,x
g/ZH (t) = (21 — (E01)3 ® 6l‘l]31(- (1’1, SUQ) D 3 (Zl — .’£01)2 (22 — (Eoz) ® afx(%all‘QQ)
O3f (x1,x 03
(14) @3 (21 — zo1) (22 — $02)2 ® M @ (22 — 3302)3 ® 8x§ (w1, 22).
When n =3 and N = 2 we get (z; > zi, 1 = 1,2,3)
"t)=(x—x )26)&(:5 T2, 73) ® (20 — T )26)&(30 To,T3)
g, =21 01 891:% 1,22,X3 2 02 83:% 1,%2,T3
s O°f
(15) ® (23 — 203)” © D22 (w1, 22,73) © 2 (21 — zo1) (22 — To2)
3

@32f ($1, X2, 253)
8$16l‘2

0f (z ) L2, T
@2(22—3002)(23_5”03)®féx;—8323)

O f (x1, w2, x3)

@2 (23 — 203) (21 — T01) © 0r3011

etc.
3. BASIC PROPERTIES
‘We need

Definition 3.1. (see also [11], Definition 13.16, p. 654) Let (X, B, P) be a proba-
bility space. A fuzzy-random variable is a B-measurable mapping g : X — Rz (i.e.,
for any open set U C R, in the topology of Rx generated by the metric D, we have

(16) g ' (U)={s€ X;g(s) cU} €B).
The set of all fuzzy-random variables is denoted by Lz (X,B,P). Let g,,g €
Lr(X,B,P),neNand0<q< +oo. We say g (s) 7q_nlj>_an” g (s) if
n—-—1+0oo
(17) lim | D(gn(s).9(s))" P(ds) = 0.
n—-—+0oo X
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Remark 3.2. (see [11], p. 654) If f,g € Lz (X,B,P), let us denote F : X —
Ry U{0} by F(s) = D(f (s),g( )), s € X. Here, F is B-measurable, because
F = G o H, where G (u,v) = D (u,v) is continuous on Ry x Rz, and H : X —
Rr X Rg, H( )=(f(s),9(s)), s € X, is B-measurable. This shows that the above
convergence in g-mean makes sense.

Definition 3.3. (see [11], p. 654, Definition 13.17) Let (7,7) be a topological
space. A mapping f : T — L (X,B, P) will be called fuzzy-random function (or
fuzzy-stochastic process) on T'. We denote f (t) (s) = f(t,s),t €T, s € X.

Remark 3.4. (see [L1], p. 655) Any usual fuzzy real function f : T — Rz can be
identified with the degenerate fuzzy-random function f (¢t,s) = f(t),Vte T, s € X.

Remark 3.5. (see [I1], p. 655) Fuzzy-random functions that coincide with proba-
bility one for each ¢t € T will be consider equivalent.

Remark 3.6. (see [11], p. 655) Let f,g: T — Lz (X,B,P). Then f®gand kO f
are defined pointwise, i.e.,

(fog)ts) = fts)@gts),
(ko f)it,s) = kof(ts), teT,seX.

Definition 3.7. (see also Definition 13.18, pp. 655-656, [11]) For a fuzzy-random
function f: RY — Lz (X, B, P), d € N, we define the (first) fuzzy-random modulus
of continuity

7) (f’ 6)Lq =

0
sup{(/XDq(f(w,S),f(yﬁ))P(dS))q rz,y €RY, Jlz =yl Sé},

0<9,1<qg<o0.

Definition 3.8. Here 1 < ¢ < +oo. Let f: R? — Lz (X,B,P), d € N, be a fuzzy
random function. We call f a (¢-mean) uniformly continuous fuzzy random function
over RY, iff V e > 0 3 § > 0 :whenever ||z — y[|, <4, z,y € R, implies that

[ (DG @) s sy Plas) <
We denote it as f € Cg}{ (Rd) .

Proposition 3.9. Let f € C’gj{z (R). Then ng) (f,0)q <00, any 6 > 0.
Proof. Let €9 > 0 be arbitrary but fixed. Then there exists 6o > 0: ||z —yl|;, < do

implies

/X (D(f (2.5) . f (5.8)))" P (ds) < e < oo,

1
That is Q(lf) (f:00)pa < &f < oco. Let now § > 0 arbitrary, z,y € R? such that
|z —yll;, <6. Choose n € N:ndp > d and set x; := z+L(y—x),0<i<n. Then

D(f(x,s),f(y,s)) < D(f(1'78)7f(1'1,8))+D(f($1,8),f(x278))

+..+D (f (zn—lv 5) 7f (y7 5)) .
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Consequently

q

(/X (D(f (x7s)7f(y,s)))qp(ds)> < (/X (D (f (ffys)af(m,S)))qP(ds))

1
q

a 1
bt ([ DU @) S ) P (@) <00 (7.00)0 < <
X
since [lz; — wiy1|l;, = Lz - y||l1 <l§<gp,0<i<n

Therefore ng) (f,0) 4 < mef < oo. O

Proposition 3.10. Let f,g:RY — L (X,B,P), d €N, be fuzzy random functions.
It holds
(i) f (f, )4 is nonnegative and nondecreasing in 6 > 0.

)thf)(f, 8) . = (£,0),, =0, ZﬁfECFR(Rd)

) 0 (1,51 + )40 < 00 (58011 + 07 (1, 82)0, 80,82 > 0.
iv) Q(f) (f,nd);q < an}-) (f;0)pa, d>0,n€N.
0 0 (F00) 0 < (N0 (£ < A+ DO (£28)00 A> 0,8 > 0, uhere
[] is the ceilling of the number.

(vi) 0 (£ © 9.0) 0 < U (£.0) 0 + 9 (9,0) . 6 > 0. Here f &g is a fuzzy
random function.

(vii) Qg}-) (fs+)pa is continuous on Ry, for f € C’gj{z (RY).

(i
(
(
(

Proof. (i) is obvious.
(i) @1 (f,0), =0.
(=) Let léig)lfh (f,0);c=0. Then Ve >0,e7a >0and 36 >0, QU (f,0),, <ea.

Le. for any z,y € R? : [z — y||,, < d we get
[ 77 @s) o s P ) <
X

That is f € Cpy (RY).
(<) Let f € Cpty (RY). ThenVe > 036 > 0 : whenever |z — yll,, <6, z,y R,
it implies

/XD“(f(x,S),f(yys))P(dS)SE

Le.Ve>036>0:Q(f,6),, <ev. That is Q (f,8),, — 0as | 0.
(iii) Let z1, 20 € R : [j2; — x2||l1 < 1 + b3. Set x = 6167262“ + (S]Sﬁx27 so that
T € T173. Hence |z — z1||; <41 and [[zg — z[[;, < J2. We have

(/X D% (f (21,8 ,f(arz,s))P(ds))‘l’ <

(/XDq<f<x1,s>,f<x,s>> ) (/ DY (f (2.5), (22, 5)) P (d8>> .

O (f ller —2lly,) o+ (f ez — x\lh)m <
198
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Ql (f» 61)Lq + QQ (fa 62)Lq
Therefore (iii) is true.
(iv) and (v) are obvious.
(vi) Notice that

Q=

(/x Di((f@9)(,9),(f&9) (y75))P(ds)> <

(/Dq (5.5). (5.8)) P ) ([ P00 ))P(ds>)

That is (vi) is now clear.
(vii) By (iii) we get

67 (£.61 4+ 02) 0 = O (£.00) 1] < 7 (£,62)
Let now f € ngR (R?), then by (ii) th (f, 02); = 0. That is proving the
continuity of Qg (f,)pa on Ry. O

We give

Definition 3.11. ([6]) Let f (¢,s) be a stochastic process from R? x (X, B, P) into
R, d € N, where (X, B, P) is a probability space. We define the g-mean multivariate
first moduli of continuity of f by

Q1 (f7 6)L‘1 =

(18) Sup{(/xf(x,S)—f(yvs)qu(dS))q tx,y €RY, o —yll, Sé},

6>0,1<qg<o0.

For more see [6].
We also give

Proposition 3.12. Assume that ng) (f,0) 4 is finite, 6 > 0,1 < g < oo. Then
(F) > () (r)
(19) Q7 (f,0)pa 2 Sup max {91 (f ,5) (f 5) } :
The reverse direction "<” ”is not possible.
Proof. We observe that
D (f (xvs) ,f(y7s)) =

sup max{‘fy) (33, S) - fir) (yv S) ) -(i-r) (.13, S) - f—(i-r) (yv 3)’}
rel0,1]

)

‘f (r — 17y, s)

respectively in +, —.
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Hence
([ores swora) = ([ |1 wo- 0w Pas).
X X
respectively in +, —.
Therefore it holds
sw ([ D1 @) £ ) =

z,yeR
lo—yll,, <5

1

q q
sup max sup (/ ‘ff;) (x,8) — fj(;) (v, 8)’ P (ds)) )
refo,1{+ =} z,y€eR? X

le—yl,, <8

proving the claim. O

Remark 3.13. For each s € X we define the usual first modulus of continuity of

f (. s) by

(20) A7 (18),6) = sup  D(f(w.5).f (,5), 5>0.
A

Therefore

DY (f (@), f (4:9) < (17 (£ ().9)) "

VseXandz,y eR: lz—yll,, <6,6>0.
Hence it holds

DS 90,1 ) P L)) < (w7 (7 (.9),0) Ps))
(s ) = )

Va,ye R : |z —yll, <4
We have that

(21) o (100 = ([ (47 (09.9) Plas)

under the assumption that the right hand side of (21)) is finite.
The reverse ”>” of the last (21) is not true.

Also we have

Proposition 3.14 ([5]). (i) Let Y (t,w) be a real valued stochastic process such that
Y is continuous in t € [a,b]. Then'Y is jointly measurable in (t,w).
(ii) Further assume that the expectation (E |Y]) (t) € C ([a,b]), or more generally

f: (E 1Y) (t) dt makes sense and is finite. Then

(22) E(/%wm@ﬁ>_/%nywﬁ

According to [10], p. 94 we have the following
200
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Definition 3.15. Let (Y, 7) be a topological space, with its o-algebra of Borel sets
B := B (Y,T) generated by 7. If (X, S) is a measurable space, a function f : X — Y
is called measurable iff f~1 (B) € S for all B € B.

By Theorem 4.1.6 of [10], p. 89 f as above is measurable iff
fHC)yeSforal CeT.
We would need

Theorem 3.16. (see [10], p. 95) Let (X,S) be a measurable space and (Y,d) be a
metric space. Let f,, be measurable functions from X into Y such that for all z € X,
fo(x) = f(x) inY. Then f is measurable. Le., lim f, = f is measurable.

We need also

Proposition 3.17. Let f, g be fuzzy random variables from S into Rg. Then
(i) Let c € R, then ¢ ® f is a fuzzy random variable.
(ii) f @ g is a fuzzy random variable.

Finally we need

Proposition 3.18 ([5]). Let f : [a,b] — Lz (X,B,P), a,b € R, be a fuzzy-random
function. We assume that f(t,s) is fuzzy continuous in t € [a,b], s € X. Then
(FR) f; f(t,s)dt exists and is a fuzzy-random variable.

4. MAIN RESULTS
We need the following (see [9]) definitions.

Definition 4.1. A function b : R — R is said to be bell-shaped if b belongs to Ly
and its integral is nonzero, if it is nondecreasing on (—oo, a) and nonincreasing on
[a, +00), where a belongs to R. In particular b(x) is a nonnegative number and
at a,b takes a global maximum; it is the center of the bell-shaped function. A
bell-shaped function is said to be centered if its center is zero.

Definition 4.2. (see [9]) A function b: RY — R (d > 1) is said to be a d-dimensional
bell-shaped function if it is integrable and its integral is not zero, and for all i =
1,...,d,

t—b(x1, .ty ., zq)

is a centered bell-shaped function, where 7 := (T1,...,xq) € R? arbitrary.

Example 4.3. (from [9]) Let b be a centered bell-shaped function over R, then
(x1,...,2q) = b(x1)...b(x4) is a d-dimensional bell-shaped function, e.g. b could be
the characteristic function or the hat function on [—1,1].
d
Assumption 4.4. Here b(Z) is of compact support B* := [[ [-T;, T3], T; > 0 and
i=1
it may have jump discontinuities there. Here we consider functions f € ngR (Rd) .
In this article we study among others in g-mean (1 < q¢ < o0) the pointwise

convergence with rates over R, to the fuzzy-random unit operator or a perturbation
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of it, of the following fuzzy-random multivariate neural network operators, (0 < a <
1, 7= (21,...,7q) ERY, s € X, (X,B, P) a probability space, n € N)

(Ma () (7, 5) =

’I’Lz*

Z Tg f(%7”%i7s) @b(nl_a (-’I/‘l _%)7...,711_& ({,Ud—k—ﬁi))

ki=—n2?2 kgq=-—n?2

(23)

n2

S i: b(n'=e (zy — %) ey (3 — %‘i))

k1:7n2 kd:7n2

In short, we can write

K =—n?
(24) (M, (/) (F.5) = ~
)
E=-n
In this article we assume that
(25) n >  max {Ti—|—|xi|,T;é},
i€{1,...,d}

see also [2], p. 91.
So, by (25) we can rewrite ([] is the integral part of a number, while [-] is the
ceiling of a number)

(M (£)) (7, 5) =

(26)
[nx1+Tin%]* [nxg+Tgn™]*

fE LB ) ob(nt= (z — &), ntme (zg — 22))

no n n n
ki=[nz1—Tin*] ka=[nzq—Tan]

[nz1+Tin%] [nza+Tan®] A .
b (nl—(’K (3:1 — ;1) s, T (a:d — ﬁ))
ki=[nz1—Tin%*| ka=[nzq—Tan>]

In short we can write

Denoting

[n?-‘r?na] ?
(28) V(7T):= > b <n1—a (? - n)) ,
F=[n@-Tno|
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we will write and use from now on that

[n?—i—?no‘] *

- nl—® ?—z
29) ML) (T = Y f(i,s:)@b( <? v)
1

?: [n?—?no‘

The above M,, are linear operators over R% x X.
Related works were done in [7] and [§].

We present
Theorem 4.5. Here all as above. Then
d
a > T
(30) (/X DT (M, () (7,s), f (?,s))P(d5)> <o |4, Zn:f,a

As n — oo, we get that
(Mo f) (7,5) " f(F,5)
with rates.

Proof. We observe that

That is it holds
(31) D (M, (f)(,s), f(7,s)) <

La
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Hence

[n?ﬁna} ni-a (7 _ & _
5 b( <? n))D<f<k,s>,f(?7s)>,

[n?jt?na] b(nt—e ?_ E —
n k
(32) ( V((?) ))Q(f) <f, T ) <
?:[n?)f?n‘ﬂ 1/ La
[n@+Tn"] b (nlfa (? B z» i T,
n Q(]:) =1 _
Z V (?) 1 f7 nl_a
?:[n?—?n‘ﬂ
La
d
> T
(33) Qg]‘—) f, i=11_a
La
Condition (25) implies that
(34) z; —% < an—ﬂ alli=1,...,d.

The proof of (30) is now finished.

Remark 4.6. Consider the fuzzy-random perturbed unit operator

(Tn(f))(?vs) =f <?_ nljia78>,

— d LT
V(Z,s)eR‘x X; T :=(T1,....,Tq),n €N, 1 < g < o0.
‘We observe that

(35) </X D4 (f (? — nlzia,s) ,f(?,s)> P(ds)) < Q(lj—‘) 7. in:ll_a

Q=

/X DY (T, (f) (T25) . £ (T 9)) P (ds))

d
T

Q=
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Given that f € C’g}3 (R?), we get that (T, (f)) (7, s) "armean” f(@,s),V (7,s) €

n—oo
R x X.
Next we estimate in high order with rates the 1-mean difference

/XD((Mn(f))(?,S),(Tn(f))(?78))P(d8), neN.

‘We make

Assumption 4.7. Let ¥ € R?, d € N, s € X; where (X, B, P) is a probability
space, n as in (25), b of compact support B*, 0 < a < 1, M,, as in (29).

Let f :RY — Lz (X,B, P) be a fuzzy continuous in = € R? random function.

We assume that all H-fuzzy partial derivatives of f up to order N € N exist and
are fuzzy continuous in T € R? and all belong to Cg}{ (Rd).

Furthermore we assume that

(36) [ D (79,9 Plas) < .
X
forala:lal=3j,j=1,..,N.
Call
(37) Q) (f2ex,5) 1 = mﬁ?ﬂ@ (fa,8) g, 6>0.

We give
Theorem 4.8. All here as in Assumption|].7. Then

XD((Mn () (@, 8) (T () (T, 5)) P(ds) <

d
> T

/D(fa(?78)75)P(d8)+Q§f) =
X

nlfa

Lt

d
. 2( 3
1 2E ' F max <i_1 )
o9 | || (T2 || e

al=N | T[ os! | Ni=
i=1

—

L1
By (38), as n — oo, we get

/X D (Mo () (7, 5),(Ta () (%, 5)) P (ds) — 0,

with rates in high order.
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Proof. By (25) we get that
T; k; T;
< -

nlfoz -

(39) -

‘We consider the case

T; k;
(40) ri— 4= <—, 1=1,..d
n n
Set
T % T
(41) 9% (t,s):=f (? i +1 (n —-7+ n10‘> ,8) ,

0<t<],Vse X.
We apply Theorem 2.11, and we have by the fuzzy multivariate Taylor formula
that
()

? ? Nﬁl*gz (O,S)
(42) f(na‘S) :f<?—n1_a,8> & Z ”TGBRN(O,I,S),

Jj=1

where

(43) Ry (0,1,s) :=

n

ﬁ ©(FR) /01 (1-0)"" ©g" (0,5)do,

VseX.
Here for j =1,..., N, we obtain

0 & k; T; 0 !
(44) gz (978) = Z g _$Z+F © O f ($1,$27...,xd78>7

i=1

0<6<1,VseX.
More precisely we have for j = 1,..., N, that

) _ - 4! d k; T; i
g% (078)_ Z H E_mi_k’nl*a

d
ar=(ai,..., agq), o, €ZT ai!
=1

. d .\
i=1,...,d, |a]:=3 a;=j
1

T
(45) @fa (iﬂ - nl—a7s> )

Vse X, and

(46) g% (0,5) = > dN! <H(Z—x+n1T_a> >
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T % T
@fa<?— 1_a+9<—?+ 1_a>,s>,
n n n

0<6<1,VseX.

. . b(nl_‘1 (?
Multiplying (42) by —=

obtain

VseX.

nl
[n?—l—?n"‘} * N _1x g%) (0’ 3) b (nlfa (? _ E))
s n
D > @ V() “
?:[n?—?nﬂ J=1

[nT+Tno]« o=
P (o B )
*=[n7-Tne]
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—

[n?—&-?n"‘] nt= (T — E
(49) XN: 3 b( ( n)>D(g§) (o,s),5> +

V(7) 4!
R[] (7))
[n 7+ T b (i (7 - E)) RN ()
3N v |\ T
k:[n?—Tﬂ‘ﬂ

[n?-‘rTno‘] b (nl—a (? _ %)) Q(Z],V (0, 3)
> vy PR OLe. =
VseX.
Notice that
N
9(1) (0, 5) 1 ! N-1 . (N)
(51) N T o) Q(FR)/O S S

We estimate

1

! ' _ m\N-1 (N) )

(52) (N — 1)| O] (FR)/O (1 9) ® g% (0’ S) d9> <
! 6
(N i 1! /o (1- G)N_l D <9(N) (0,5) 79(:) (O,s)) do (g)
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1 NI d
| || (I

— — — —
63) D<fa(? T +9<k?+ 7 ))f(eT))dQ]
n-—% n nt—¢ nt—¢

Therefore it holds

(V) (0, s)
gz » 8 (by (53) and Tonelli’s (|10]) theorem)
D RN (Oa 1) S) ) | P (dS) S
. NI

VRS
[N}
~
N———
8
N——
2
3
B
[\]
TR
e
~
N——
IA

d
la|=N H Oéi!
b I
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We have proved that

[27+Tn"] ) (iea (3 _ I 2 (0.5)
b( V((?) ”)> /XD Ry (0,1,5) ’ = P (ds)

oo < | 3 [ [ (T(2)")| o e =22
loa|=N HO% i=1

Next we extimate

(59) [D(fa (?,s>,a+D<fa <E’—nT> o (%))].

Consequently we have

% XD( 9 (0,5), )P(d8)< > - (_1<n2£a>a>

B lor|=j H Oél'!
i=1

(59) /X D (fu (,5),6) P (ds) + 2 | fo,

Ll
210
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Furthermore it holds

N 1 d 2} o
>3 || (1))
=t lo/=i | ] et | Nimt
=1
S
(60) | D@53 Plas) + 97 | o2

Ll
By (50) we get

[TL?-F?nU‘] nl_a ? _ E %V) (O7 S)
> d v(m ) (/XD(RN(QLSLQ”N! )P(ds)>
k=[n7

((56), ©0)) N 1 9T, \
S EHNEN

i=1 [lal=i | [T es! | \i=t
=1

d
> T,
(62) | D@53 Plas) 97 | o B +
Ll
>
_ 2 T;
1 QE o (F) max (i—l >
Z d (H(nl—a> > Qi | fa™s nl—o ’
i=1

la|=3 H 051'
i=1

proving (38).

L1
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Remark 4.9. Inequality (38) reveals that the operators M,, behave in good ap-
proximation like the simple operators T,,. So T}, is a good simplification of M,,.

We give the following definition
Definition 4.10. Let the nonnegative function S : R — R, d > 1, S has compact

d
support B* := [[ [-T3,T:], T; > 0 and is nondecreasing there for each coordinate.
i=1
d
S can be continuous only on either [](—oo,T;] or B* and can have jump disconti-
i=1

nuities. We call S the multivariate ”squashing function” (see also [9]).

Comment 4.11. If the operators M, see (23), replace b by S, we derive the nor-
malized ”squashing ”operators K,. Then Theorems 4.5, 4.8 remain valid for K,,
just replace M, by K, there.
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