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1. Introduction

In the year 1999, Molodtsov [16] initiated the theory of soft sets as a new mathe-
matical tool for dealing with uncertainties. He has shown several applications of this
theory in solving many practical problems in economics, engineering, social science,
medical science, etc. Research works in soft set theory and its applications in various
fields have been progressing rapidly since Maji et al. ([13],[14]) introduced several
operations on soft sets and applied it to decision making problems. In the line of re-
duction and addition of parameters of soft sets some works have been done by Chen
[3], Pei and Miao [17] , Kong et al. [12] , Zou and Xiao [20]. Aktas and Cagman [1]
introduced the notion of soft group and discussed various properties. Jun ([10],[11])
investigated soft BCK/BCI – algebras and its application in ideal theory. Feng et
al. [8] worked on soft semirings, soft ideals and idealistic soft semirings. Ali et
al. [2] and Shabir and Irfan Ali ([2],[18]) studied soft semigroups and soft ideals
over a semi group which characterize generalized fuzzy ideals and fuzzy ideals with
thresholds of a semigroup. The idea of soft topological spaces was first given by M.
Shabir, M. Naz [19] and mappings between soft sets were described by P. Majumdar,
S. K. Samanta [15]. Feng et al. [9] worked on soft sets combined with fuzzy sets
and rough sets. Recently in ([4],[5]) we have introduced a notion of soft real sets,
soft real numbers, soft complex sets, soft complex numbers and some of their basic
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properties have been investigated. Some applications of soft real sets and soft real
numbers have been presented in real life problems. In ([6],[7]) we introduced the
concept of ‘soft metric’, ‘soft linear spaces’, ‘soft norm’ on a ‘soft linear spaces’ and
studied various properties of ‘soft metric spaces’ and ‘soft normed linear spaces’ in
details.

It is worth mentioning here that, in fuzzy settings, topological concepts, metric
concept and norm linear space concept are extended nicely but complex valued inner
product theory of vector space has not been so successful because of some inherent
difficulty in the non-comparable order structure of complex number on one hand and
the lattice ordering of the gradation function of fuzzy sets on the other. In this paper
we have attempted to extend the inner product concept in soft set settings. We have
seen that in soft settings inner product theory could be extended meaningfully.

In fact, in this paper we have introduced a notion of soft inner product on soft
linear space and studied some of its properties. In section 2, some preliminary results
are given. In section 3, a notion of ‘soft inner product’ on a ‘soft linear space’ is
given and various properties of ‘soft inner product spaces’ are studied. It has been
shown that every ‘soft inner product space’ which satisfies (I5) is also a ‘soft normed
linear space’ ([7]) which satisfy (N5). By a counter example it has been established
that the converse does not hold in general. The definition of soft Hilbert space is
given in section 4 and some properties of soft Hilbert spaces are investigated. The
concepts of orthogonality and orthonormality in soft Hilbert spaces and their various
properties are studied in section 5 and section 6 respectively. Section 7 concludes
the paper.

2. Preliminaries

Definition 2.1 ([16]). Let U be an universe and E be a set of parameters. Let
P(U) denote the power set of U and A be a non-empty subset of E. A pair (F, A)
is called a soft set over U , where F is a mapping given by F : A → P(U). In other
words, a soft set over U is a parametrized family of subsets of the universe U . For
ε ∈ A, F (ε) may be considered as the set of ε – approximate elements of the soft
set (F, A).

Definition 2.2 ([9]). For two soft sets (F,A) and (G,B) over a common universe
U , we say that (F,A) is a soft subset of (G,B) if

(1) A ⊆ B and
(2) for all e ∈ A, F (e) ⊆ G(e). We write (F, A)⊂̃ (G,B).

(F, A) is said to be a soft superset of (G,B), if (G,B) is a soft subset of (F, A). We
denote it by(F, A)⊃̃ (G,B).

Definition 2.3 ([9]). Two soft sets (F,A) and (G,B) over a common universe U
are said to be equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of
(F, A).

Definition 2.4 ([14]). The union of two soft sets (F, A) and (G,B) over the common
universe U is the soft set
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(H, C) , where C = A ∪B and for all e ∈ C,

H (e) =





F (e) if e ∈ A−B
G (e) if e ∈ B −A
F (e) ∪G (e) if e ∈ A ∩B.

We express it as (F,A) ∪̃ (G,B) = (H,C).

The following definition of intersection of two soft sets is given as that of the bi-
intersection in [8].

Definition 2.5 ([8]). The intersection of two soft sets (F,A) and (G,B) over the
common universe U is the soft set (H, C) , where C = A ∩ B and for all e ∈ C,
H (e) = F (e) ∩G(e). We write (F,A) ∩̃ (G,B) = (H,C).

Let X be an initialuniversal set and A be the non-empty set of parameters. In
the above definitions the set of parameters may vary from soft set to soft set, but in
our considerations, throught this paper all soft sets have the same set of parameters
A. The above definitions are also valid for these type of soft sets as a particular case
of those definitions.

Definition 2.6 ([9]). The complement of a soft set (F, A) is denoted by (F, A)c =
(F c, A), where F c : A → P(U) is a mapping given by F c (α) = U − F (α), for all
α ∈ A.

Definition 2.7 ([14]). A soft set (F,A) over U is said to be an absolute soft set
denoted by Ǔ if for all ε ∈ A, F (ε) = U .

Definition 2.8 ([14]). A soft set (F, A) over U is said to be a null soft set denoted
by Φ if for all ε ∈ A, F (ε) = ∅.

Definition 2.9 ([19]). The difference (H, A) of two soft sets (F, A) and (G, A) over
X, denoted by (F, A) \(G, A), is defined by H (e) = F (e)\G(e) for all e ∈ A.

Proposition 2.10 ([19]). Let (F, A) and (G,A) be two soft sets over X. Then
(i). ((F, A)∪̃(G,A))c = (F, A)c∩̃(G,A)c

(ii). ((F, A)∩̃(G,A))c = (F, A)c∪̃(G,A)c
.

Definition 2.11 ([4]). Let X be a non-empty set and A be a non-empty parameter
set. Then a function ε : A → X is said to be a soft element of X. A soft element
ε of X is said to belongs to a soft set B of X, which is denoted by ε∈̃B, if ε (e) ∈
A (e) , ∀e ∈ A. Thus for a soft set A of X with respect to the index set A, we have
B (e) =

{
ε (e) , ε∈̃B

}
, e ∈ A.

It is to be noted that every singleton soft set (a soft set (F, A) for which F (e) is
a singleton set, ∀e ∈ A) can be identified with a soft element by simply identifying
the singleton set with the element that it contains ∀e ∈ A.

Definition 2.12 ([4]). Let R be the set of real numbers and B(R) the collection
of all non-empty bounded subsets of R and A taken as a set of parameters. Then a
mapping F : A → B(R) is called a soft real set. It is denoted by (F, A). If specifically
(F, A) is a singleton soft set, then after identifying (F,A) with the corresponding
soft element, it will be called a soft real number.
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We use notations r̃, s̃, t̃ to denote soft real numbers whereas r, s, t will denote
a particular type of soft real numbers such that r (λ) = r, for all λ ∈ A etc. For
example 0 is the soft real number where 0 (λ) = 0, for all λ ∈ A.

We now introduce some definitions and prove a theorem on soft real numbers
which will be used in this paper.

Definition 2.13. A sequence of soft real numbers {s̃n} is said to be bounded above
if there is a soft real number M̃ such that sn≤̃M̃ for all n ∈ N . {s̃n} is said to be
bounded below if there is a soft real number m̃ such that m̃≤̃s̃n for all n ∈ N . {s̃n}
is said to be bounded if it is both bounded above and bounded below.

Definition 2.14. A sequence of soft real numbers {s̃n} is said to be monotonically
increasing if m < n imply s̃m≤̃s̃n. {sn} is said to be monotonically decreasing if
m < n imply s̃m≥̃s̃n. {s̃n} is said to be monotene if it is either monotone increasing
or monotone decreasing.

Definition 2.15. A sequence of soft real numbers {s̃n} is said to be convergent if for
arbitrary ε̃>̃0, there exists a natural number N such that for all n ≥ N , |s̃− s̃n| <̃ε̃.
We denote it by limn→∞ s̃n = s̃.

Theorem 2.16. A sequence of soft real numbers with respect to a finite set of
parameters which is monotonically increasing and bounded above is convergent.

Proof. Let {s̃n} be a sequence of soft real numbers with respect to a finite set
of parameters which is monotonically increasing and bounded above. Then Clearly
{s̃n (λ)} is a sequence of real numbers which is monotonically increasing and bounded
above for each λ ∈ A. Then by the property of real numbers if follows that {s̃n (λ)}
is convergent for each λ ∈ A. Let sλ = limn→∞ s̃n (λ) , ∀λ ∈ A. Let s̃ be a soft
real number such that s̃ (λ) = sλ, ∀λ ∈ A. Let ε̃>̃0 be arbitrary. Then for each
λ ∈ A there exists nλ ∈ N such that, |s̃ (λ)− s̃n (λ)| < ε̃ (λ) , for all n ≥ nλ. Since
the parameter set is finite we can choose N( = max {nλ; λ ∈ A} ) such that for all
n ≥ N , |s̃ (λ)− s̃n (λ)| < ε̃ (λ) , ∀λ ∈ A i.e., for all n ≥ N , |s̃− s̃n| <̃ε̃ i.e., {s̃n} is
convergent. ¤

Theorem 2.17. The infinite series
∑∞

k=1 c̃k where c̃1, c̃2, . . . , c̃n . . . are soft real
numbers with respect to a finite set of parameters is convergent if the sequence {s̃n}
where s̃n =

∑n
k=1 c̃k is monotonically increasing and bounded above.

Proof. This proof is similar to the above theorem and hence omitted. ¤

Definition 2.18 ([5]). Let C be the set of complex numbers and ℘(C)be the col-
lection of all non-empty bounded subsets of the set of complex numbers.A be a set
of parameters. Then a mapping

F : A → ℘(C)

is called a soft complex set. It is denoted by (F, A).
If in particular (F, A) is a singleton soft set, then identifying (F, A) with the

corresponding soft element, it will be called a soft complex number.
The set of all soft complex numbers is denoted by C (A) .
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Definition 2.19 ([5]). Let (F, A) be a soft complex set. Then the complex conjugate
of (F, A) is denoted by (F, A)and is defined by F (λ) = {z : z ∈ F (λ)}, ∀λ ∈ A ,
where z is complex conjugate of the ordinary complex number z. The complex
conjugate of a soft complex number (F,A) is F (λ) = z; z ∈ F (λ),∀λ ∈ A.

Definition 2.20 ([5]). Let (F,A), (G,A) ∈ C (A) . Then the sum, difference, prod-
uct and division are defined by

(F + G) (λ) = z + w; z ∈ F (λ) , w ∈ G(λ),∀λ ∈ A;
(F −G) (λ) = z − w; z ∈ F (λ) , w ∈ G(λ),∀λ ∈ A;
(FG) (λ) = zw; z ∈ F (λ) , w ∈ G(λ), ∀λ ∈ A;
(F/G) (λ) = z/w; z ∈ F (λ) , w ∈ G(λ), ∀λ ∈ A; provided G(λ) 6= ∅, ∀λ ∈ A.

Definition 2.21 ([5]). Let (F,A) be a soft complex number. Then the modulus of
(F, A) is denoted by (|F |, A)and is defined by |F | (λ) = |z|; z ∈ F (λ), ∀λ ∈ A, where
z is an ordinary complex number.

Since the modulus of each ordinary complex number is a non-negative real number
and by definition of soft real numbers it follows that (|F |, A)is a non-negative soft
real number for every soft complex number (F, A).

Let X be a non-empty set. Let X̌ be the absolute soft set i.e., F (λ) = X, ∀λ ∈ A,
where (F, A) = X̌. Let S(X̌) be the collection of the null soft set Φ and those soft
sets (F, A) over X for which F (λ) 6= ∅, for all λ ∈ A.

Let (F, A)( 6= Φ) ∈ S(X̌), then the collection of all soft elements of (F,A) will
be denoted by SE (F, A) . For a collection B of soft elements of X̌, the soft set
generated by B is denoted by SS(B).

Definition 2.22 ([6]). A mapping d : SE(X̌) × SE(X̌) → R (A)∗ , is said to be a
soft metric on the soft set X̌ if d satisfies the following conditions:

(M1). d (x̃, ỹ) ≥̃0, for all x̃, ỹ∈̃X̌.
(M2). d (x̃, ỹ) = 0, if and only if x̃ = ỹ.
(M3). d (x̃, ỹ) = d (ỹ, x̃)for all x̃, ỹ∈̃X̌.
(M4). For all x̃, ỹ, z̃∈̃X̌, d (x̃, z̃) ≤̃d (x̃, ỹ) + d (ỹ, z̃)
The soft set X̌ with a soft metric d on X̌ is said to be a soft metric space and is

denoted by (X̌, d, A) or (X̌, d).

Definition 2.23 ([6]). Let (X̌, d) be a soft metric space,r̃ be a non-negative soft
real number and ã∈̃X̌. By an open ball with centre ã and radius r̃, we mean the
collection of soft elements of X̌ satisfying d(x̃, ã)<̃r̃.
The open ball with centre ã and radius r̃ is denoted by B(ã, r̃).
Thus B (ã, r̃) = {x̃∈̃X̌; ; d(x̃, ã)<̃r̃} ⊂ SE(X̌).
SS(B (ã, r̃)) will be called a soft open ball with centre ã and radius r̃.

Definition 2.24 ([6]). Let (Y, A) be a soft subset in a soft metric space (X̌, d).
Then a soft element ã is said to be an interior element of (Y,A) if ∃ a positive soft
real number r̃ such that ã ∈ B (ã, r̃) ⊂ SE(Y, A).

Definition 2.25 ([6]). Let (X̌, d) be a soft metric space and (Y, A) be a non-null
soft subset belonging to S (

X̌
)

in (X̌, d). Then (Y,A) is said to be ‘soft open in X̌
with respect to d’ if there is a collection B of soft elements of (Y, A) such that B is
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open with respect to d and (Y, A) = SS(B). In a soft metric space (X̌, d), the null
soft set Φ is considered to be soft open.

Theorem 2.26 ([6]). If a soft metric d satisfies the condition:
(M5). For (ξ, η) ∈ X × X, and λ ∈ A, {d (x̃, ỹ) (λ) : x̃ (λ) = ξ, ỹ (λ) = η} is a

singleton set, and if for λ ∈ A, dλ : X×X → R+ is defined by dλ(ξ, η) = d (x̃, ỹ) (λ),
where x̃, ỹ∈̃X̌ such that x̃ (λ) = ξ, ỹ (λ) = η. Then dλ is a metric on X.

Proposition 2.27 ([6]). Let
(
X̌, d

)
be a soft metric space satisfying (M5). Then

for every open ball B (ã, r̃) in
(
X̌, d

)
, SS (B (ã, r̃)) (λ) = B(ã (λ) , r̃ (λ)), an open

ball in (X, dλ) , for each λ ∈ A.

Proposition 2.28. [[6]] Let
(
X̌, d

)
be a soft metric space satisfying (M5). Then

(F, A) is soft open with respect to d if and only if (F, A) (λ) is open in (X, dλ) , with
centre ã (λ) and radius r̃ (λ) for each λ ∈ A.

Definition 2.29 ([6]). Let (X̌, d) be a soft metric space. A soft set (Y, A) ∈ S(X̌),
is said to be ‘soft closed in X̌ with respect to d’ if its complement (Y, A)c is a member
of S(X̌) and is soft open in (X̌, d).

Definition 2.30 ([7]). Let V be a vector space over a field K and let A be a
parameter set. Let G be a soft set over (V,A). Now G is said to be a soft vector
space or soft linear space of V over K if G(λ) is a vector subspace of V, ∀λ ∈ A.

Definition 2.31 ([7]). Let F be a soft vector space of V over K. Let G : A → ℘(V )
be a soft set over (V, A). Then G is said to be a soft vector subspace of F if

(i) for each λ ∈ A, G(λ) is a vector subspace of V over K and
(ii) F (λ) ⊇ G (λ) , ∀λ ∈ A.

Definition 2.32 ([7]). Let G be a soft vector space of V over K. Then a soft
element of G is said to be a soft vector of G. In a similar manner a soft element of
the soft set (K, A) is said to be a soft scalar, K being the scalar field.

Definition 2.33 ([7]). Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X,
∀λ ∈ A. Then a mapping ‖.‖ : SE(X̌) → R (A)∗ is said to be a soft norm on the
soft vector space X̌ if ‖.‖ satisfies the following conditions:

(N1). ‖x̃‖ ≥̃0, for all x̃ ∈̃ X̌;
(N2). ‖x̃‖ = 0 if and only if x̃ = Θ;
(N3). ‖α̃.x̃‖ = |α̃| ‖x̃‖ for all x̃∈̃ X̌ and for every soft scalar α̃;
(N4). For all x̃, ỹ∈̃ X̌, ‖x̃ + ỹ‖ ≤̃ ‖x̃‖+ ‖ỹ‖.
The soft vector space X̌ with a soft norm ‖.‖ on X̌ is said to be a soft normed

linear space and is denoted by (X̌, ‖.‖ , A) or (X̌, ‖.‖). (N1), (N2), (N3) and (N4)
are said to be soft norm axioms.

Theorem 2.34 ([7]). If a soft norm ‖.‖ satisfies the condition
(N5). For ξ ∈ X, and λ ∈ A, {‖x̃‖ (λ) : x̃ (λ) = ξ} is a singleton set.

And if for each λ ∈ A, ‖.‖λ : X → R+ be a mapping such that for each ξ ∈
X, ‖ξ‖λ = ‖x̃‖ (λ), where x̃ ∈̃ X̌ such that x̃ (λ) = ξ. Then for each λ ∈ A, ‖.‖λ is
a norm on X.
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Definition 2.35 ([7]). A sequence of soft elements {x̃n} in a soft normed linear space
(X̌, ‖.‖ , A) is said to be convergent and converges to a soft element x̃ if ‖x̃n − x̃‖ → 0
as n → ∞. This means for every ε̃>̃0, chosen arbitrarily, ∃ a natural number
N = N(ε̃), such that 0≤̃ ‖x̃n − x̃‖ <̃ε̃ , whenever n > N .
i.e., n > N =⇒ x̃n ∈ B(x̃, ε̃). We denote this by x̃n → x̃ as n → ∞ or by
limn→∞ x̃n = x̃. x̃ is said to be the limit of the sequence x̃n as n →∞.

Theorem 2.36 ([7]). Let (X̌, ‖.‖ , A) be a soft normed linear space. Then
(i) if x̃n → x̃ and ỹn → ỹ then x̃n + ỹn → x̃ + ỹ.
(ii) if x̃n → x̃ and λ̃n → λ̃ then λ̃n.x̃n → λ̃.x̃, where {λ̃n} is a sequence of soft

scalars.
(iii) if {x̃n} and {ỹn} are Cauchy sequences in X̌ and {λ̃n} is a Cauchy sequence

of soft scalars, then {x̃n + ỹn} and {λ̃n.x̃n} are also Cauchy sequences in X̌.

Definition 2.37 ([7]). Let (X̌, ‖.‖ , A) be a soft normed linear space. Then X̌ is
said to be complete if every Cauchy sequence in X̌ converges to a soft element of X̌
. Every complete soft normed linear space is called a soft Banach Space.

Theorem 2.38 ([7]). Every Cauchy sequence in R(A), where A is a finite set of
parameters, is convergent, i.e., the set of all soft real numbers with its usual modulus
soft norm with respect to a finite set of parameters, is a soft Banach space.

Definition 2.39 ([7]). A soft linear space X̌ is said to be of finite dimensional if
there is a finite set of linearly independent soft vectors in X̌ which also generates X̌,
i.e., any soft element of X̌ can be expressed as a linear combination of those linearly
independent soft vectors.

The set of those linearly independent soft vectors is said to be the basis for X̌
and the number of soft vectors of the basis is called the dimension of X̌.

Theorem 2.40 ([7]). Every finite dimensional soft normed linear space which sat-
isfies (N5) and have a finite set of parameters, is complete.

Definition 2.41 ([6]). For two soft real numbers r̃, s̃ we define
(i) r̃≤̃s̃ if r̃ (λ) ≤ s̃ (λ) , for all λ ∈ A;
(ii) r̃≥̃s̃ if r̃ (λ) ≥ s̃ (λ) , for all λ ∈ A;
(iii) r̃<̃s̃ if r̃ (λ) < s̃ (λ) , for all λ ∈ A;
(iv) r̃>̃s̃ if r̃ (λ) > s̃ (λ) , for all λ ∈ A.

3. Soft inner product and soft inner product spaces

Let X be a vector space over a field C of complex numbers, X is also our initial
universal set and A be a non-empty set of parameters. Let X̌ be the absolute soft
vector space i.e., X̌ (λ) = X, ∀λ ∈ A. We use the notation x̃, ỹ, z̃ to denote soft
vectors of a soft vector space and r̃, s̃, t̃ to denote soft real numbers whereas r, s, t
will denote a particular type of soft real numbers such that r (λ) = r, for all λ ∈ A
etc. For example 0 is the soft real number where 0 (λ) = 0, for all λ ∈ A.

Definition 3.1. Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X, ∀λ ∈ A.
Then a mapping 〈.〉 : SE(X̌) × SE(X̌) → C (A) is said to be a soft inner product
on the soft vector space X̌ if 〈.〉 satisfies the following conditions:
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(I1). 〈x̃, x̃〉 ≥̃0, for all x̃ ∈̃ X̌ and 〈x̃, x̃〉 = 0 if and only if x̃ = Θ;
(I2). 〈x̃, ỹ〉 = 〈ỹ, x̃〉 where bar denote the complex conjugate of soft complex

numbers;
(I3). 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for all x̃, ỹ∈̃ X̌ and for every soft scalar α̃;
(I4). For all x̃, ỹ∈̃ X̌, 〈x̃ + ỹ, z̃〉 = 〈x̃, z̃〉+ 〈ỹ, z̃〉.
The soft vector space X̌ with a soft inner product 〈.〉 on X̌ is said to be a soft

inner product space and is denoted by (X̌, 〈.〉 , A) or (X̌, 〈.〉). (I1), (I2), (I3) and
(I4) are said to be soft inner product axioms.

Example 3.2. Let X = l2. Then X is an inner product space with respect to
the inner product 〈x, y〉 =

∑∞
i=1 ξiηi for x = {ξi} , y = {ηi} of l2. Let x̃, ỹ be soft

elements of the absolute soft vector space X̌. Then x̃ (λ) = {ξλ
i }, ỹ (λ) = {ηλ

i } are
elements of l2. The mapping 〈.〉 : SE(X̌)× SE(X̌) → C (A) defined by 〈x̃, ỹ〉 (λ) =∑∞

i=1 ξλ
i ηλ

i = 〈x̃ (λ) , ỹ(λ)〉 , ∀λ ∈ A, is a soft inner product on the soft vector space
X̌.
Let us verify (I1), (I2), (I3) and (I4) for soft inner product.
(I1). We have 〈x̃, x̃〉 (λ) = 〈x̃ (λ) , x̃(λ)〉 =

∑∞
i=1 ξλ

i ηλ
i ≥ 0, ∀λ ∈ A, ∀x̃ ∈̃ X̌,

∴ 〈x̃, x̃〉 ≥̃0, for all x̃ ∈̃ X̌.
Also, 〈x̃, x̃〉 = 0 ⇐⇒ 〈x̃, x̃〉 (λ) = 0, ∀λ ∈ A ⇐⇒ x̃ (λ) = θ, ∀λ ∈ A ⇐⇒ x̃ = Θ
∴ (I1) is satisfied.
(I2). We have, 〈x̃, ỹ〉 (λ) = 〈x̃ (λ) , ỹ(λ)〉 = 〈ỹ (λ) , x̃(λ)〉
= 〈ỹ, x̃〉 (λ) , ∀λ ∈ A, ∀x̃, ỹ ∈̃ X̌. ∴ 〈x̃, ỹ〉 = 〈ỹ, x̃〉.
(I3) We have, 〈α̃.x̃, ỹ〉 (λ) = 〈α̃ (λ) .x̃ (λ) , ỹ(λ)〉
= α̃ (λ) . 〈x̃ (λ) , ỹ(λ)〉 , ∀λ ∈ A
= (α̃. 〈x̃, ỹ〉) (λ) , ∀λ ∈ A.
∴ 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for all x̃, ỹ∈̃ X̌ and for every soft scalar α̃.
(I4). For all x̃, ỹ, z̃ ∈̃ X̌,
〈x̃ + ỹ, z̃〉 (λ) = 〈x̃ (λ) + ỹ (λ) , z̃ (λ)〉
= 〈x̃ (λ) , z̃ (λ)〉+ 〈ỹ (λ) , z̃ (λ)〉
= 〈x̃, z̃〉 (λ) + 〈ỹ, z̃〉 (λ), [by the property of 〈.〉 on X]
= (〈x̃, z̃〉+ 〈ỹ, z̃〉) (λ) ,∀λ ∈ A.
∴ 〈x̃ + ỹ, z̃〉 = 〈x̃, z̃〉+ 〈ỹ, z̃〉 . Thus (I4) is satisfied.
∴ 〈.〉 is a soft inner product on X̌ and consequently (X̌, 〈.〉)) is a soft inner product
space.

Proposition 3.3. Let {〈.〉λ, λ ∈ A} be a family of crisp inner products on a crisp
vector space X. Then the mapping 〈.〉 : SE(X̌) × SE(X̌) → C (A) by 〈x̃, ỹ〉 (λ) =
〈x̃ (λ) , ỹ(λ)〉λ, ∀λ ∈ A, ∀x̃, ỹ ∈̃ X̌ is a soft inner product on the soft vector space
X̌.

Proof. The proof of this proposition is similar to the above example and hence
omitted. ¤
Corollary 3.4. Every crisp inner product 〈.〉X on a crisp vector space X can be
extended to a soft inner product on the soft vector space X̌.

Proof. First we construct the absolute soft vector space X̌ using a non-empty set of
parameters A.
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Let us define a mapping 〈.〉 : SE
(
X̌

)× SE
(
X̌

) → C (A) by
〈x̃, ỹ〉 (λ) = 〈x̃ (λ) , ỹ (λ)〉X , ∀λ ∈ A, ∀x̃, ỹ ∈̃ X̌.
Then using the same procedure as in Example 3.2, it can be easily proved that 〈.〉
is a soft inner product on X̌.
This soft inner product is generated using the crisp inner product ‖.‖X and it is said
to be the soft inner product generated by ‖.‖X . ¤

Remark 3.5. The soft inner product 〈.〉 as defined in Example 3.2, satisfies the
condition

(I5). For (ξ, η) ∈ X ×X and λ ∈ A,{〈x̃, ỹ〉 (λ) : x̃, ỹ∈̃X̌ such that x̃ (λ) = ξ, ỹ (λ) = η
}

is a singleton set.

Theorem 3.6. (Decomposition Theorem). If a soft inner product 〈.〉 satisfies the
condition (I5), and if for each λ ∈ A, 〈.〉λ : X ×X → C be a mapping such that for
all (ξ, η) ∈ X ×X, 〈ξ, η〉λ = 〈x̃, ỹ〉 (λ), where x̃, ỹ∈̃X̌ such that x̃ (λ)= ξ, ỹ (λ) = η.
Then for each λ ∈ A, 〈.〉λ is an inner product on X.

Proof. Clearly 〈.〉λ : X × X → C is a rule that assigns an ordered pair of X to
a crisp complex number ∀λ ∈ A. Now the well defined property of 〈.〉λ , ∀λ ∈ A
follows from the condition (I5) and the soft inner product axioms gives the inner
product conditions of 〈.〉λ , ∀λ ∈ A. Thus the soft inner product satisfying (I5)
gives a parameterized family of crisp inner products. With this point of view, it also
follows that, a soft inner product, satisfying (I5) is a particular ‘soft mapping’ as
defined by P. Majumdar, et al. in [15] where 〈.〉 : A → (C)X×X . ¤

Proposition 3.7. Let (X̌, 〈.〉 , A) be a soft inner product space, x̃, ỹ, z̃ ∈̃ X̌ and
α̃, β̃ etc. be soft scalars. Then

(i)
〈
α̃x̃ + β̃ỹ, z̃

〉
= α̃ 〈x̃, z̃〉+ β̃ 〈ỹ, z̃〉 ;

(ii) 〈x̃, α̃ỹ〉 = α̃. 〈x̃, ỹ〉 ;
(iii)

〈
x̃, α̃ỹ + β̃z̃

〉
= α̃. 〈x̃, ỹ〉+ β̃. 〈x̃, z̃〉 .

Proof. (i) We have,
〈
α̃x̃ + β̃ỹ, z̃

〉
= 〈α̃x̃, z̃〉+

〈
β̃ỹ, z̃

〉
= α̃ 〈x̃, z̃〉+ β̃ 〈ỹ, z̃〉.

(ii) 〈x̃, α̃ỹ〉 = 〈α̃ỹ, x̃〉 = α̃.〈ỹ, x̃〉 = α̃. 〈x̃, ỹ〉.
(iii)

〈
x̃, α̃ỹ + β̃z̃

〉
=

〈
α̃ỹ + β̃z̃, x̃

〉
= 〈α̃ỹ, x̃〉+

〈
β̃z̃, x̃

〉
= α̃.〈ỹ, x̃〉+ β̃.〈z̃, x̃〉 =

α̃. 〈x̃, ỹ〉+ β̃. 〈x̃, z̃〉. ¤

Theorem 3.8. (Schwarz inequality). Let (X̌, 〈.〉 , A) be a soft inner product space
satisfying (I5). Let x̃, ỹ, z̃ ∈̃ X̌ and α̃, β̃ etc. be soft scalars. Then |〈x̃, ỹ〉| ≤̃ ‖x̃‖ . ‖ỹ‖.
Proof. (i) If α̃ be a soft scalar, then 〈x̃ + α̃ỹ, x̃ + α̃ỹ〉 ≥̃0 i.e.,

(3.1) 〈x̃, x̃〉+ α̃ 〈ỹ, x̃ 〉+ α̃. 〈x̃, ỹ〉+ |α̃|2 〈ỹ, ỹ〉 ≥̃0

If 〈ỹ, ỹ〉 = 0 then ỹ = Θ and so 〈x̃, ỹ〉 = 〈x̃, Θ〉 =
〈
x̃, 0. Θ

〉
= 0 and in this case

the inequality is proved.
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In case 〈ỹ, ỹ〉 >̃0; Let α̃ = − 〈x̃, ỹ〉
〈ỹ, ỹ〉 . Then we obtain from (3.1)

‖x̃‖2 − |〈x̃, ỹ〉|2
‖ỹ‖2 − 〈x̃, ỹ〉 .〈x̃, ỹ〉

‖ỹ‖2 +
|〈x̃, ỹ〉|2
‖ỹ‖2 ≥̃0

i.e., ‖x̃‖2 − 〈x̃, ỹ〉.〈x̃, ỹ〉
‖ỹ‖2 ≥̃0, i.e., |〈x̃, ỹ〉| ≤̃ ‖x̃‖ . ‖ỹ‖ .

Next let ỹ 6= Θ be such that 〈ỹ, ỹ〉 ≯̃0, then 〈ỹ, ỹ〉 6= 0. Let C ⊂ A be a set of
parameters such that 〈ỹ, ỹ〉 (λ) = 〈ỹ (λ) , ỹ (λ)〉λ > 0; for λ ∈ C and 〈ỹ, ỹ〉 (λ) =
0 = 〈ỹ (λ) , ỹ (λ)〉λ, i.e., ỹ (λ) = θ ; for λ ∈ A\C. In this case both the sets C and
A\C are non-empty. For λ ∈ A\C, 〈x̃, ỹ〉 (λ) = 〈x̃ (λ) , ỹ (λ)〉λ = 〈x̃ (λ) , θ〉λ =
〈x̃ (λ) , 0.θ〉λ = 0 = 0 (λ) .
Thus,

(3.2) |〈x̃, ỹ〉| (λ) = (‖x̃‖ . ‖ỹ‖) (λ) , ∀λ ∈ A\C.

Since (X̌, 〈.〉 , A) satisfies (I5), we get from (3.1), for all λ ∈ C, 〈x̃ (λ) , x̃ (λ)〉λ +
α̃ (λ) 〈ỹ (λ) , x̃ (λ)〉λ + α̃ (λ) 〈x̃ (λ) , ỹ (λ)〉λ + |α̃|2(λ) 〈ỹ (λ) , ỹ (λ)〉λ ≥ 0
let α̃ (λ) = − 〈x̃(λ),ỹ(λ)〉λ

〈ỹ(λ),ỹ(λ)〉λ . Then from (3.1) we get,

‖x̃ (λ)‖λ
2− |〈x̃ (λ) , ỹ (λ)〉λ|2

‖ỹ (λ)‖λ
2 − 〈x̃ (λ) , ỹ (λ)〉λ.〈x̃ (λ) , ỹ (λ)〉λ

‖ỹ (λ)‖λ
2 +

|〈x̃ (λ) , ỹ (λ)〉λ|2
‖ỹ (λ)‖λ

2 ≥ 0

i.e., ‖x̃ (λ)‖λ
2− 〈x̃(λ),ỹ(λ)〉λ.〈x̃(λ),ỹ(λ)〉λ

‖ỹ(λ)‖λ
2 ≥ 0, i.e., |〈x̃ (λ) , ỹ (λ)〉λ|2 ≤ ‖x̃ (λ)‖λ

2
.‖ỹ (λ)‖λ

2
.

i.e.,

(3.3) |〈x̃, ỹ〉| (λ) ≤ (‖x̃‖ . ‖ỹ‖) (λ) , ∀λ ∈ C.

From (3.2) and (3.3), it follows that |〈x̃, ỹ〉| (λ) ≤ (‖x̃‖ . ‖ỹ‖) (λ) , ∀λ ∈ A.

∴ |〈x̃, ỹ〉| ≤̃ ‖x̃‖ . ‖ỹ‖ . ¤

Proposition 3.9. Let (X̌, 〈.〉 , A) be a soft inner product space satisfying (I5). Let
x̃, ỹ, z̃ ∈̃ X̌ and α̃, β̃ etc. be soft scalars. Then

(i) ‖x̃ + ỹ‖2 + ‖x̃− ỹ‖2 = 2‖x̃‖2 + 2‖ỹ‖2 (Parallelogram law);
(ii) 〈x̃, ỹ〉 = 1

4{‖x̃ + ỹ‖2 − ‖x̃− ỹ‖2 + i
∥∥x̃ + iỹ

∥∥2 − i
∥∥x̃− iỹ

∥∥2} (Polarization
identity).

(iii) limn→∞ x̃n = x̃, limn→∞ ỹn = ỹ, then 〈x̃n, ỹn〉 → 〈x̃, ỹ〉 as n →∞.

Proof. (i) ‖x̃ + ỹ‖2 + ‖x̃− ỹ‖2 = 〈x̃ + ỹ, x̃ + ỹ〉+ 〈x̃− ỹ, x̃− ỹ〉
= 〈x̃, x̃〉+ 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉+ 〈ỹ, ỹ〉+ 〈x̃, x̃〉 − 〈ỹ, x̃ 〉 − 〈x̃, ỹ〉+ 〈ỹ, ỹ〉
= 2 〈x̃, x̃〉+ 2 〈ỹ, ỹ〉 = 2‖x̃‖2 + 2‖ỹ‖2.

(ii) We have

(3.4) ‖x̃ + ỹ‖2 = 〈x̃ + ỹ, x̃ + ỹ〉 = ‖x̃‖2 + ‖ỹ‖2 + 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉
In (3.4) replace y by −y, iy, −iy then we obtain
‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 〈ỹ, x̃ 〉 − 〈x̃, ỹ〉∥∥x̃ + iỹ

∥∥2
= ‖x̃‖2 + ‖ỹ‖2 + i 〈ỹ, x̃ 〉 − i 〈x̃, ỹ〉 and
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∥∥x̃− iỹ
∥∥2

= ‖x̃‖2 + ‖ỹ‖2 − i 〈ỹ, x̃ 〉+ i 〈x̃, ỹ〉 Or what are same as

(3.5) −‖x̃− ỹ‖2 = −‖x̃‖2 − ‖ỹ‖2 + 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉

(3.6) i
∥∥x̃ + iỹ

∥∥2
= i‖x̃‖2 + i‖ỹ‖2 − 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉

and

(3.7) i
∥∥x̃− iỹ

∥∥2
= −i‖x̃‖2 − i‖ỹ‖2 − 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉

After adding (3.4), (3.5), (3.6) and (3.7) the right hand side becomes 4 〈x̃, ỹ〉 and
that proves the identity.

(iii) If limn→∞ x̃n = x̃, then the sequence {‖x̃n‖} is bounded. Let ‖x̃n‖ ≤̃M̃ for
n = 1, 2, 3, . . .
Now, |〈x̃n, ỹn〉 − 〈x̃, ỹ〉| ≤̃ |〈x̃n, ỹn〉 − 〈x̃n, ỹ〉+ 〈x̃n, ỹ〉 − 〈x̃, ỹ〉|
= |〈x̃n, ỹn − ỹ〉 − 〈x̃n − x̃, ỹ〉| ≤̃ ‖x̃n‖ . ‖ỹn − ỹ‖+ ‖x̃n − x̃‖ . ‖ỹ‖
≤̃M̃. ‖ỹn − ỹ‖+ ‖x̃n − x̃‖ . ‖ỹ‖ → 0 as n →∞. So, 〈x̃n, ỹn〉 → 〈x̃, ỹ〉. ¤

Theorem 3.10. Let (X̌, 〈.〉 , A) be a soft inner product space satisfying (I5). Let us
define ‖.‖ : X̌ → R (A)∗ by ‖x̃‖ =

√
〈x̃, x̃〉, for all x̃∈̃ X̌. Then ‖.‖ is a soft norm

on X̌ satisfying (N5).

Proof. We have, (N1, N2). ‖x̃‖ =
√
〈x̃, x̃〉≥̃0, for all x̃∈̃X̌, and ‖x̃‖ = 0 ⇐⇒√

〈x̃, x̃〉 = 0 ⇐⇒ x̃ = Θ [using (I1)]

(N3). ‖α̃.x̃‖ =
√
〈α̃.x̃, α̃. x̃〉 =

√
α̃. 〈x̃, α̃. x̃〉 =

√
α̃.α̃. 〈x̃, x̃〉 = |α̃| .

√
〈x̃, x̃〉 =

|α̃| . ‖x̃‖ for all x̃ ∈̃ X̌ and for every soft scalar α̃. [using (I2)].
(N4). We have, ‖x̃ + ỹ‖2 = 〈x̃ + ỹ, x̃ + ỹ〉 = 〈x̃, x̃〉+ 〈x̃, ỹ〉+ 〈ỹ, x̃〉+ 〈ỹ, ỹ〉

(3.8) = ‖x̃‖2 + ‖ỹ‖2 + 〈ỹ, x̃ 〉+ 〈x̃, ỹ〉
Now, since 〈.〉 satisfies (I5), we have |〈x̃, ỹ〉| ≤̃ ‖x̃‖ . ‖ỹ‖ and so

| 〈ỹ, x̃〉 | = |〈x̃, ỹ〉|≤̃ ‖x̃‖ . ‖ỹ‖
So, |〈x̃, ỹ〉+ 〈ỹ, x̃〉| ≤̃ |〈x̃, ỹ〉|+ | 〈ỹ, x̃〉 |≤̃2 ‖x̃‖ . ‖ỹ‖. But

〈x̃, ỹ〉+ 〈ỹ, x̃〉 = 〈x̃, ỹ〉+ 〈x̃, ỹ〉
is a soft real number. Hence, 〈x̃, ỹ〉+ 〈ỹ, x̃〉 ≤̃2 ‖x̃‖ . ‖ỹ‖. So, from (3.8),

‖x̃ + ỹ‖2≤̃‖x̃‖2 + ‖ỹ‖2 + 2 ‖x̃‖ . ‖ỹ‖ = (‖x̃‖+ ‖ỹ‖)2.
Hence, ‖x̃ + ỹ‖ ≤̃ ‖x̃‖+‖ỹ‖. Hence ‖.‖ is a soft norm on X̌. Further since 〈.〉 satisfies
(I5). For (ξ, η) ∈ X ×X and λ ∈ A, {〈x̃, ỹ〉 (λ) : x̃ (λ) = ξ, ỹ (λ) = η} is a singleton
set. Therefore, For ξ ∈ X and λ ∈ A, {‖x̃‖ (λ) = 〈x̃, x̃〉 (λ) : x̃ (λ) = ξ} is a singleton
set. Thus, ‖.‖ satisfies (N5). ¤
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Remark 3.11. From the above theorem it follows that every ‘soft inner product
space’ which satisfies (I5) is also a ‘soft normed linear space’ which satisfies (N5) with
the soft norm defined as above. With the help of this soft norm, we can introduce a
‘soft metric’ on X̌ by the formula d (x̃, ỹ) = ‖x̃− ỹ‖ =

√
〈x̃− ỹ, x̃− ỹ〉.In a similar

way as above, it can be proved that, this soft metric satisfies (M5).

Remark 3.12. The converse of the above theorem is however not true. For example
consider X = lp(p ≥ 1, p 6= 2). Then X is a normed linear space with respect to the
norm ‖x‖ = (

∑∞
i=1 |ξi|p)1/p for x = {ξi} of lp. Let x̃ be a soft element of the absolute

soft vector space X̌. Then x̃ (λ) = {ξλ
i } is an element of lp. Then it is easy to verify

that the mapping ‖.‖ : SE(X̌) → R (A) defined by ‖x̃‖ (λ) = (
∑∞

i=1 |ξi|p)1/p =
‖x̃ (λ)‖ , ∀λ ∈ A, is a soft norm on the soft vector space X̌. Obviously this soft
norm satisfy (N5). Let us define d : SE(X̌)×SE(X̌) → R (A) by d (x̃, ỹ) = ‖x̃− ỹ‖,
∀x̃, ỹ∈̃X̌. Then it is simple to verify that (X̌, d) is a soft metric space satisfying
(M5).

We now show that the soft norm ‖.‖ of X̌ cannot be obtained from a soft inner
product. We verify this by showing that such a norm does not satisfy parallelogram
law. Let us consider soft elements x̃1, ỹ1 of X̌ such that for each λ ∈ A, x̃1 (λ) =
{1, 1, 0, 0, . . . .} ∈ lp, ỹ1 (λ) = {1,−1, 0, 0, . . . .} ∈ lp. Then ‖x̃1‖ = ‖ỹ1‖ = 21/p and
‖x̃1 + ỹ1‖ = ‖x̃1 − ỹ1‖ = 2. We see that if p 6= 2, then the parallelogram law does
not hold. Hence for p 6= 2, X̌ is not a soft inner product space.

4. Soft Hilbert Space and its properties

Definition 4.1. A soft inner product space which satisfies (I5), is said to be com-
plete if it is complete with respect to the soft metric defined by soft inner product.
A complete soft inner product space is said to be a soft Hilbert space.

Example 4.2. The soft inner product space (X̌, 〈.〉 , A) defined as in Example 3.2,
with the parameter set A being a finite set, is a soft Hilbert space. Obviously
(X̌, 〈.〉 , A) satisfies (I5). We recall that l2 is a complete metric space with respect

to the metric d (x, y) = (
∑∞

i=1 |ξi − ηi|2)
1
2 for x = {ξi} , y = {ηi} of l2. Let x̃, ỹ be

any two soft elements of X̌, then x̃ (λ) = {ξλ
i }, ỹ (λ) = {ηλ

i } are elements of l2. It
can be easily verified that the mapping d : SE(X̌) × SE(X̌) → R (A) defined by

d(x̃, ỹ) (λ)= (
∑∞

i=1

∣∣ξλ
i − ηλ

i

∣∣2)
1
2 = d(x̃ (λ) , ỹ(λ)), ∀λ ∈ A, is a soft metric on the

absolute soft set X̌.
Let {x̃n} be a Cauchy sequence of soft elements in

(
X̌, d

)
. Then corresponding

to every ε̃>̃0, ∃ m ∈ N such that d (x̃i, x̃j) ≤̃ε̃, ∀ i, j ≥ m; i.e., d (x̃i, x̃j) (λ) =
d (x̃i (λ) , x̃j (λ)) ≤ ε̃ (λ), ∀λ ∈ A and ∀ i, j ≥ m. Thus {x̃n (λ)} is a Cauchy
sequence of elements in X. Since X is complete, {x̃n (λ)} is convergent for each
λ ∈ A. Let ε̃>̃0 be arbitrary. Then corresponding to every λ ∈ A there are elements
xλ ∈ X and a positive integer Nλ such that d(x̃n (λ) , xλ) < ε̃ (λ) for n ≥ Nλ. Let
us consider the soft element x̃ of X̌ such that x̃ (λ) = xλ, ∀λ ∈ A and a positive
integer N such that N = max {Nλ, λ ∈ A}. Such N exists, since A is finite. Then
(x̃n, x̃)<̃ε̃ , whenever n > N . This proves that {x̃n} is convergent and hence

(
X̌, d

)
is complete.
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Now we have
√
〈x̃− ỹ, x̃− ỹ〉 (λ) = (

∑∞
i=1 (ξλ

i − ηλ
i )(ξλ

i − ηλ
i ))

1/2

= (
∑∞

i=1

∣∣ξλ
i − ηλ

i

∣∣2)
1
2 = d (x̃, ỹ) (λ) , ∀λ ∈ A.

Therefore, d (x̃, ỹ) =
√
〈x̃− ỹ, x̃− ỹ〉, ∀x̃, ỹ∈̃X̌. Thus the soft metric d is induced

by soft inner product 〈.〉 and the soft metric space
(
X̌, d

)
is complete. Hence

(X̌, 〈.〉 , A) is a soft Hilbert space.

Theorem 4.3. A soft Banach space which satisfies (N5) is a soft Hilbert space if
and only if the parallelogram law holds.

Proof. For simplicity, we consider the underlying soft linear space of a real vector
space. We have already noted that in every soft inner product space which satisfies
(I5), parallelogram law holds and also every soft inner product space which satisfies
(I5), is also a soft normed linear space which satisfies (N5) and in both spaces
completeness is based on the completeness of the soft metric obtain from them.
Thus, it is clear that a soft Hilbert space is a soft Banach space which satisfies (N5),
where the parallelogram law holds.
We now suppose that X̌ be a soft Banach space which satisfies (N5), where the
parallelogram law holds. We introduce a soft inner product on X̌ by 〈x̃, ỹ〉 =
1
4

{
‖x̃ + ỹ‖2 − ‖x̃− ỹ‖2

}
.

Clearly, 〈x̃, x̃〉 ≥̃0, and 〈x̃, x̃〉 = 0 if and only if x̃=Θ; Also, 〈x̃, x̃〉 = ‖x̃‖2 and
〈x̃, ỹ〉 = 〈ỹ, x̃ 〉; therefore we should verify the other two axioms
(I3). 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for all x̃, ỹ∈̃ X̌
and for every soft scalar α̃;
(I4). For all x̃, ỹ∈̃ X̌, 〈x̃ + ỹ, z̃〉 = 〈x̃, z̃〉+ 〈ỹ, z̃〉.
By parallelogram law we obtain,
‖ũ + ṽ + w̃‖2 + ‖ũ + ṽ − w̃‖2 = 2‖ũ + ṽ‖2 + 2‖w̃‖2 and
‖ũ− ṽ + w̃‖2 + ‖ũ− ṽ − w̃‖2 = 2‖ũ− ṽ‖2 + 2‖w̃‖2. On subtraction, we obtain

‖ũ + ṽ + w̃‖2+‖ũ + ṽ − w̃‖2−‖ũ− ṽ + w̃‖2−‖ũ− ṽ − w̃‖2 = 2‖ũ + ṽ‖2−2‖ũ− ṽ‖2

By the definition of soft inner product we have

〈ũ + ṽ, w̃〉+ 〈ũ− ṽ, w̃〉 = 2 〈ũ, ṽ〉 .
If we set x̃ = ũ + ṽ, ỹ = ũ− ṽ and z̃ = w̃, then we obtain

〈x̃, z̃〉+ 〈ỹ, z̃〉 = 〈x̃ + ỹ, z̃〉 .
The relation 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for all x̃, ỹ∈̃ X̌ and for every soft scalar α̃; may be
proved similarly. This proves the theorem.
In the complex case, we take the inner product of x̃, ỹ as

〈x̃, ỹ〉 =
1
4
{‖x̃ + ỹ‖2 − ‖x̃− ỹ‖2 + i

∥∥x̃ + iỹ
∥∥2 − i

∥∥x̃− iỹ
∥∥2}.

¤

5. Orthogonality in soft Hilbert spaces

In the rest of this paper the symbol H̃ stands for a soft Hilbert space.
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Definition 5.1. Let L̃ be a non-null soft subset of H̃ such that L̃ (λ) 6= ∅, ∀λ ∈ A.
Two soft vectors x̃, ỹ of H̃ are said to be orthogonal if 〈x̃, ỹ〉 = 0. In symbol,
we write x̃⊥ỹ. If x̃ is orthogonal to every soft vectors of L̃ then we say that x̃ is
orthogonal to L̃ and we write x̃⊥L̃.

Example 5.2. Consider the soft Hilbert space (X̌, 〈.〉 , A) as in Example 4.2. Let
us consider soft elements x̃1, x̃2, . . . x̃n, . . . ∈̃ X̌ such that for each λ ∈ A, x̃1 (λ) =
{2, 0, 0, . . . } , x̃2 (λ) = {0, 2, 0, . . . } , . . . , x̃n (λ) = {0, 0, 0, . . . , 2, . . . } , . . .
Then we have 〈x̃i, x̃j〉 = 0 for i 6= j.
So, x̃i is an orthogonal to x̃j for i 6= j.

Theorem 5.3. (Pythagorean theorem). If x̃, ỹ ∈̃ H̃ and x̃⊥ỹ, then ‖x̃ + ỹ‖2 =
‖x̃‖2 + ‖ỹ‖2 and ‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2.
Proof. We have ‖x̃ + ỹ‖2 = 〈x̃ + ỹ, x̃ + ỹ〉 = 〈x̃, x̃〉 + 〈x̃, ỹ〉 + 〈 ỹ, x̃〉 + 〈ỹ, ỹ〉 =
〈x̃, x̃〉 + 〈ỹ, ỹ〉 = ‖x̃‖2 + ‖ỹ‖2 and ‖x̃− ỹ‖2 = 〈x̃− ỹ, x̃− ỹ〉 = 〈x̃, x̃〉 − 〈x̃, ỹ〉 −
〈 ỹ, x̃〉+ 〈ỹ, ỹ〉 = 〈x̃, x̃〉+ 〈ỹ, ỹ〉 = ‖x̃‖2 + ‖ỹ‖2. ¤

Definition 5.4. Let S̃ be a non-null soft subset of H̃ such that S̃ (λ) 6= ∅, ∀λ ∈
A. Then the set of all soft vectors of H̃ orthogonal to S̃ is called the orthogonal
complement of S̃ and is denoted by S̃⊥. SS(S̃⊥) will be called the soft orthogonal
complement of S̃.

Theorem 5.5. (i) {Θ}⊥ = H̃,
{

H̃
}⊥

= Θ;

(ii) If S̃ be a non-null soft subset of H̃ such that S̃ (λ) 6= ∅, ∀λ ∈ A, then
SE

(
S̃

)
∩ S̃⊥ = {Θ} ;

(iii) If S̃1⊂̃S̃2⊂̃H̃ then S̃⊥1 ⊃ S̃⊥2 and hence SS(S̃⊥1 )⊃̃SS(S̃⊥2 ).

Proof. We prove only (iii). For x̃∈̃S̃⊥2 =⇒ x̃ is orthogonal to every soft vectors of
S̃2 =⇒ x̃ is orthogonal to every soft vectors of S̃1(since S̃1⊂̃S̃2⊂̃H̃ ) =⇒ x̃∈̃S̃⊥1 .
Hence S̃⊥1 ⊃ S̃⊥2 and consequently SS(S̃⊥1 )⊃̃SS(S̃⊥2 ). ¤

To prove the next proposition we first prove the following lemma.

Lemma 5.6. Let (X̌, d) be a soft metric space satisfying (M5). Then for every soft
closed set (Y, A) ∈ S(X̌), the sets Y (λ) is closed in (X, dλ) for each λ ∈ A.

Proof. Let (Y, A) ∈ S(X̌) be soft closed in (X̌, d) satisfying (M5).Then (Y, A)c is a
member of S(X̌) and is soft open in (X̌, d). Now by Proposition 2.28, it follows that
(Y, A)c (λ) = Y c (λ) is open in (X, dλ) for each λ ∈ A. Then
[Y c (λ) ]c= Y (λ) is closed in (X, dλ) for each λ ∈ A. ¤

Proposition 5.7. Let C̃ be a soft closed subset of a soft inner product space (X̌, 〈.〉 , A)
satisfying (I5). Then C̃ (λ) is a closed subset of the inner product space (X, 〈.〉λ), ∀λ ∈
A.

Proof. From the Remark 3.11, we know that Every soft inner product space satis-
fying (I5) is also a soft metric space satisfying (M5). Also using the above lemma it
follows that for a soft closed set C̃ of a soft inner product space (X̌, 〈.〉) satisfying
(I5), C̃ (λ) is a closed set for each λ ∈ A. ¤
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Theorem 5.8. Let C̃ be a soft closed convex soft subset of a soft Hilbert space H̃
and having a finite set of parameters A. Then C̃ contains a unique soft vector of
smallest soft norm.

Proof. Since H̃ is a soft Hilbert space, it satisfies (I5) and hence C̃ (λ) is a closed
convex subset of the Hilbert space H̃ (λ) , ∀λ ∈ A. Let us consider the soft real
number d̃ defined by d̃ (λ) =inf {‖x̃‖ (λ) (= ‖x̃ (λ)‖λ), x̃∈̃ C̃} , ∀λ ∈ A. Then for
each λ ∈ A, there exists a sequence {x̃n,λ} of soft vectors of C̃ such that ‖x̃n,λ‖ (λ) =
‖x̃n,λ (λ)‖λ → d̃ (λ). Let us consider the sequence {ỹn} of soft vectors of C̃ such that
ỹn (µ) = x̃n,µ (µ) ∀µ ∈ A. Let ε̃>̃0 be chosen arbitrarily. Then ε̃ (λ) > 0, ∀λ ∈ A.
Since ‖x̃n,λ (λ)‖λ → d̃ (λ) , ∃ a natural number Nλ = Nλ(ε̃ (λ)), such that 0 ≤
|‖x̃n,λ (λ)‖λ − d̃ (λ) | < ε̃ (λ) , whenever n > Nλ i.e., 0 ≤ | ‖ỹn‖ (λ) − d̃ (λ) | < ε̃ (λ)
i.e., | ‖ỹn‖− d̃| (λ) < ε̃ (λ) , whenever n > Nλ. Let N be a positive integer such that
N > Nλ, ∀λ ∈ A, (such an N exists because A is a finite set) then | ‖ỹn‖ − d̃| (λ) <

ε̃ (λ) , whenever n > N , for all λ ∈ A i.e., | ‖ỹn‖ − d̃|<̃ε̃ whenever n > N . Thus
‖ỹn‖ → d̃ as n → ∞. Now ỹn, ỹm∈̃C̃ and since C̃ is convex, (ỹn+ ỹm)/2∈̃C̃ and
therefore ‖(ỹn+ ỹm)/2‖ ≥̃d̃ i.e.,

(5.1) ‖ỹn+ ỹm‖ ≥̃2d̃

Using parallelogram law, we get

(5.2) ‖ỹn− ỹm‖2 = 2‖ỹn‖2 + 2‖ ỹm‖2 − ‖ỹn+ ỹm‖2≤̃2‖ỹn‖2 + 2‖ ỹm‖2 − 4d̃2

from (5.1).
Since ‖ỹn‖ → d̃ as n →∞, ‖ỹm‖ → d̃ as m →∞, the right hand side of (5.2) tends
to 2d̃2 + 2d̃2− 4d̃2 = 0 as m,n → ∞. So {ỹn} is a Cauchy sequence. Since H̃ is
complete, ∃ ỹ∈̃H̃ such that ỹn → ỹ. Then ỹn (λ) → ỹ (λ), ∀λ ∈ A. Since C̃ (λ) is a
closed, ỹ (λ) ∈ C̃ (λ) , ∀λ ∈ A. i.e., ỹ∈̃C̃. So, ‖ỹ‖ = limn→∞ ‖ỹn‖ = d̃.
∴ ỹ is a soft vector of C̃ with the smallest norm.
Let ỹ/ be a soft vector of C̃ such that

∥∥ỹ/
∥∥ = d̃. Then C̃ being convex, we have,

(ỹ+ ỹ/)/2∈̃C̃ and also,

(5.3)
∥∥∥(ỹ+ ỹ/)/2

∥∥∥ ≥̃d̃

Applying the parallelogram law, we obtain
∥∥(ỹ+ ỹ/)/2

∥∥2
= ‖ỹ‖2/2 +

∥∥ỹ/
∥∥2

/2 −∥∥(ỹ− ỹ/)/2
∥∥2 �̃ ‖ỹ‖2/2 +

∥∥ỹ/
∥∥2

/2 = d̃2 (if ỹ 6= ỹ/)

Giving that,
∥∥(ỹ+ ỹ/)/2

∥∥ �̃d̃. This contradicts (5.3) and so ỹ= ỹ/. This proves the
theorem. ¤

6. Orthonormality in soft Hilbert spaces

Definition 6.1. Let H̃ be a Hilbert space. Then a collection B of soft vectors of
H̃ is said to be orthonormal if for all x̃, ỹ ∈ B

〈x̃, ỹ〉 =
{

0
1

if x̃ 6= ỹ

if x̃ = ỹ,
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If the soft set B contains only a countable number of soft vectors then we can arrange
it in a sequence of soft vectors and call it an orthonormal sequence.

Example 6.2. Consider the soft Hilbert space (X̌, 〈.〉 , A) as in Example 4.2. Let
us consider soft elements x̃1, x̃2, . . . x̃n, . . . ∈̃ X̌ such that for each λ ∈ A, x̃1 (λ) =
{1, 0, 0, . . . } , x̃2 (λ) = {0, 1, 0, . . . } , . . . , x̃n (λ) = {0, 0, 0, . . . , 1, . . . } , . . .
Then we have 〈x̃i, x̃i〉 = 1 and 〈x̃i, x̃j〉 = 0 for i 6= j.
So, {x̃i} is an orthogonal sequence in (X̌, 〈.〉 , A).

Theorem 6.3. An orthonormal set of soft vectors is linearly independent.

Proof. Let B be an orthonormal set and B = {α̃1, α̃2, . . . , α̃n}. Suppose that c̃1. α̃1+
c̃2. α̃2 + .. + c̃n. α̃n = Θ, where c̃1, c̃2, . . . , c̃n are soft scalars. Then if 1 ≤ j ≤ n

0 = 〈Θ, α̃j〉 =

〈
n∑

k=1

c̃k. α̃k, α̃j

〉
=

n∑

k=1

c̃k 〈α̃k, α̃j〉 = c̃j 〈α̃j , α̃j〉 = c̃j .

So c̃j = 0 for each j = 1, 2, .., n. This proves that any orthonormal set consists of
a finite number of soft vectors is linearly independent. If B consists of an infinite
number of soft vectors then from definition of linearly independence of soft vectors
it follows that B is linearly independent. ¤
Theorem 6.4. (Bessel’s inequality). Let α̃1, α̃2, . . . , α̃n, . . . . be an orthonormal se-
quence in a soft Hilbert space H̃. Then for every x̃ ∈̃ H̃,

∑∞
i=1 | 〈x̃, α̃i〉 |2≤̃ ‖x̃‖2.

Proof. Let n be any positive integer and let ξ̃i = 〈x̃, α̃i〉 . Then
0≤̃

〈
x̃−∑n

i=1 ξ̃iα̃i, x̃−∑n
j=1 ξ̃jα̃j

〉

= 〈x̃, x̃〉 −
〈
x̃,

∑n
j=1 ξ̃jα̃j

〉
−

〈∑n
i=1 ξ̃iα̃i, x̃

〉
+

〈∑n
i=1 ξ̃iα̃i,

∑n
j=1 ξ̃jα̃j

〉

= 〈x̃, x̃〉 −∑n
j=1 ξ̃j 〈x̃, α̃j 〉 −

∑n
i=1 ξ̃i 〈α̃i, x̃〉+

∑n
i=1 ξ̃i

〈
α̃i,

∑n
j=1 ξ̃jα̃j

〉

= 〈x̃, x̃〉 −∑n
j=1 ξ̃j ξ̃j −

∑n
i=1 ξ̃iξ̃i +

∑n
i=1

∑n
j=1 ξ̃iξ̃j 〈α̃i, α̃j〉

= ‖x̃‖2 −∑n
j=1

∣∣∣ξ̃j

∣∣∣
2

−∑n
i=1

∣∣∣ξ̃i

∣∣∣
2

+
∑n

i=1

∣∣∣ξ̃i

∣∣∣
2

= ‖x̃‖2 −∑n
j=1

∣∣∣ξ̃j

∣∣∣
2

So,
∑n

j=1

∣∣∣ξ̃j

∣∣∣
2

≤̃ ‖x̃‖2 i.e.,
∑n

i=1 | 〈x̃, α̃i〉 |2≤̃ ‖x̃‖2. Since this is true for any positive
integer n, the infinite series∑∞

i=1 | 〈x̃, α̃i〉 |2 is convergent and
∑∞

i=1 | 〈x̃, α̃i〉 |2≤̃ ‖x̃‖2. ¤

Lemma 6.5. If {x̃1, x̃2, . . . .., x̃n} be an orthogonal set of soft vectors in H̃, i.e.,
x̃i⊥x̃j,i 6= j, i, j = 1, 2, .., n, then

‖x̃1 + x̃2 + · · ·+ x̃n‖2 = ‖x̃1‖2 + ‖x̃2‖2 + · · ·+ ‖x̃n‖2.
Proof. We have 〈x̃i, x̃j〉 = 0 for i 6= j and so ‖∑n

i=1 x̃i‖2 =
〈∑n

i=1 x̃i,
∑n

j=1 x̃j

〉
=

∑n
i=1

∑n
j=1 〈x̃i, x̃j〉 =

∑n
i=1 ‖x̃i‖2. ¤

Definition 6.6. Let {x̃n} be a sequence of soft vectors in a soft normed linear space
(X̌, ‖.‖ , A). If s̃n = x̃1+x̃2+ · · ·+x̃n and if there exists s̃∈̃X̌ such that ‖s̃n − s̃‖ → 0
as n →∞, then the infinite series x̃1+x̃2+· · ·+x̃n+· · · = ∑∞

k=1 x̃k is said to converge
to s̃ in the soft norm of X̌ and we write s̃ = x̃1 + x̃2 + · · ·+ x̃n + · · · = ∑∞

k=1 x̃k.
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Theorem 6.7. If α̃1, α̃2, . . . , α̃n, . . . . be an orthonormal sequence in a soft Hilbert
space H̃ having a finite set of parameters. Then the infinite series∑∞

k=1 c̃kα̃k ———-(*)

where c̃1, c̃2, . . . , c̃n . . . are soft scalars, is convergent if and only if the series∑∞
k=1 |c̃k|2 is convergent.

Proof. Let s̃n = c̃1α̃1 + c̃2α̃2 + · · · + c̃nα̃n and σ̃n =
∑n

i=1 |c̃i|2. Now, {α̃n} is
orthonormal, so using the technique of Lemma 6.5, we obtain for n > m

‖s̃n − s̃m‖2 = ‖c̃m+1α̃m+1 + c̃m+2α̃m+2 + · · ·+ c̃nα̃n‖2 =
n∑

i=m+1

|c̃i|2 = σ̃n − σ̃m.

So, {s̃n} is a Cauchy sequence in H̃ if and only if {σ̃n} is a Cauchy sequence of soft
real numbers. Since the set of all soft real number with a finite set of parameters is
Complete and H̃ is also complete, it follows that {s̃n} is convergent if and only if
{σ̃n} is convergent. ¤

Theorem 6.8. If the series (*) converges to x̃ then c̃k = 〈x̃, α̃k〉 , k = 1, 2, .., n.

Proof. For any positive integer n, let s̃n = c̃1α̃1 + c̃2α̃2 + · · · + c̃nα̃n. We take
the soft inner product of s̃n and α̃j . Then using the orthonormality of {α̃j}, we get
〈s̃n, α̃j〉 = c̃j for j = 1, 2, ., k and k ≤ n. Since s̃n → x̃ as n → ∞ and using the
properties of soft inner product, we have c̃j = 〈s̃n, α̃j〉 → 〈x̃, α̃j〉.
So, α̃j = 〈x̃, α̃j〉, for j = 1, 2, ., k. Since k may be taken as large as we please
because n →∞, we have α̃j = 〈x̃, α̃j〉, for j = 1, 2, . . . . ¤

Theorem 6.9. If the series (*) converges to x̃ then ‖x̃‖2 =
∑∞

k=1 |c̃k|2.
Proof. Let s̃n = c̃1α̃1 + c̃2α̃2 + · · ·+ c̃nα̃n. Then, by assumption, s̃n → x̃ as n →∞.
So, 〈s̃n, s̃n〉 → 〈x̃, x̃〉 = ‖x̃‖2. But

〈s̃n, s̃n〉 =

〈
n∑

i=1

c̃iα̃i,

n∑

j=1

c̃jα̃j

〉

=
n∑

i=1

n∑

j=1

c̃ic̃j 〈α̃i, α̃j〉

=
n∑

i=1

c̃ic̃j

=
n∑

i=1

|c̃i|2.

Therefore we have ‖x̃‖2 =
∑∞

k=1 |c̃k|2. ¤

Theorem 6.10. If α̃1, α̃2, . . . , α̃n, . . . . be an orthonormal sequence in a soft Hilbert
space H̃ having a finite set of parameters.
Then for any x̃ ∈̃ H̃, (x̃−∑∞

i=1 〈x̃, α̃i〉 α̃i)⊥α̃j for each j.
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Proof. By Theorem 2.17 and Theorem 6.7, the series
∑∞

i=1 〈x̃, α̃i〉 α̃i is convergent.
Let s̃ =

∑∞
i=1 〈x̃, α̃i〉 α̃i and s̃n =

∑n
i=1 〈x̃, α̃i〉 α̃i.

Then if 1 ≤ j ≤ n 〈x̃, α̃j〉− 〈s̃n, α̃j〉 = 〈x̃, α̃j〉− 〈
∑n

i=1 〈x̃, α̃i〉 α̃i, α̃j〉 = 〈x̃, α̃j〉−
〈x̃, α̃j〉 = 0, giving that 〈x̃, α̃j〉 = 〈s̃n, α̃j〉. Now we have

〈
x̃−

∞∑

i=1

〈x̃, α̃i〉 α̃i, α̃j

〉
= 〈x̃− s̃, α̃j〉 = 〈x̃, α̃j〉 − 〈s̃, α̃j〉

= 〈x̃, α̃j〉 − 〈lims̃n, α̃j〉 = 〈x̃, α̃j〉 − lim 〈s̃n, α̃j〉
= 〈x̃, α̃j〉 − 〈x̃, α̃j〉 = 0.

Thus the result follows. ¤

Definition 6.11. Let B be a non-null collection of orthonormal soft elements of
H̃. Then B is said to be complete orthonormal if there exists no orthonormal set D
such that D is a proper subset of B.
If the set B contains only a countable number of soft elements then we call it an
complete orthonormal sequence.
Let S be the collection of all soft vectors x̃ of H̃ such that x̃ (λ) 6= θ, ∀λ ∈ A,
together with the null soft vector Θ.
Then for a non-null soft vector ỹ ∈ S implies ỹ (λ) 6= θ, ∀λ ∈ A.

Theorem 6.12. Let α̃1, α̃2, . . . , α̃n, . . . . be an orthonormal sequence in a soft Hilbert
space H̃ having a finite set of parameters. Then the following conditions are equiv-
alent:

(i) {α̃n} is complete;
(ii) ∀x̃ ∈ S, x̃⊥α̃i for i = 1, 2, .. implies x̃ = Θ;
(iii) For all x̃ ∈̃ H̃, with (x̃−∑∞

i=1 〈x̃, α̃i〉 α̃i) ∈ S, x̃ =
∑∞

i=1 〈x̃, α̃i〉 α̃i;
(iv) For all x̃ ∈̃ H̃, with (x̃−∑∞

i=1 〈x̃, α̃i〉 α̃i) ∈ S, ‖x̃‖2 =
∑∞

i=1 | 〈x̃, α̃i〉 |2.
Proof. (i) ⇒ (ii). If (ii) is not true, then there exists a soft element x̃ ∈ S such that
x̃ 6= Θ and x̃⊥α̃i for i = 1, 2, .. Then x̃ (λ) 6= θ, ∀λ ∈ A. Since H̃ satisfies (I5), we
must have ‖x̃ (λ)‖λ = ‖x̃‖ (λ) 6= 0, ∀λ ∈ A, i.e., ‖x̃‖ >̃0. Let α̃ = x̃/‖x̃‖. Then ‖α̃‖ =
1 and α̃⊥α̃i for = 1, 2, . . . . . So {α̃, α̃1, α̃2, . . . , α̃n, . . . .} is a orthonormal set such
that {α̃1, α̃2, . . . , α̃n, . . . .} ⊂ {α̃, α̃1, α̃2, . . . , α̃n, . . . .} and {α̃1, α̃2, . . . , α̃n, . . . .} 6=
{α̃, α̃1, α̃2, . . . , α̃n, . . . .}. That contradicts that {α̃n} is complete. Hence (ii) holds.

(ii) ⇒ (iii). By Theorem 6.10, (x̃ −∑∞
i=1 〈x̃, α̃i〉 α̃i)⊥α̃j for each j and by the

given condition (x̃ −∑∞
i=1 〈x̃, α̃i〉 α̃i) ∈ S, so by (ii) x̃ −∑∞

i=1 〈x̃, α̃i〉 α̃i = Θ i.e.,
x̃ =

∑∞
i=1 〈x̃, α̃i〉 α̃i.

(iii) ⇒ (iv). Since {α̃n} is orthonormal and (x̃ −∑∞
i=1 〈x̃, α̃i〉 α̃i) ∈ S, we have

‖x̃‖2 = 〈x̃, x̃〉 =
〈∑∞

i=1 〈x̃, α̃i〉 α̃i,
∑∞

j=1 〈x̃, α̃j〉 α̃j

〉

=
〈
lim

∑n
i=1 〈x̃, α̃i〉 α̃i, lim

∑n
j=1 〈x̃, α̃j〉 α̃j

〉

= lim
〈∑n

i=1 〈x̃, α̃i〉 α̃i,
∑n

j=1 〈x̃, α̃j〉 α̃j

〉

= lim
∑n

i=1 〈x̃, α̃i〉 〈x̃, α̃i〉 = lim
∑n

i=1 | 〈x̃, α̃i〉 |2 =
∑∞

i=1 | 〈x̃, α̃i〉 |2.
(iv) ⇒ (i). If {α̃n} is not complete, then {α̃1, α̃2, . . . , α̃n, . . . .} is a subset of an

orthonormal subset say {α̃, α̃1, α̃2, . . . , α̃n, . . . .} such that {α̃1, α̃2, . . . , α̃n, . . . .} 6=
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{α̃, α̃1, α̃2, . . . , α̃n, . . . .}, where ‖α̃‖ = 1. Now α̃⊥α̃i for = 1, 2, . . . . . So 〈α̃, α̃i〉 = 0,
i.e., 〈α̃, α̃i〉 α̃i = Θ, for i = 1, 2, . . . . .and hence

∑∞
i=1 〈α̃, α̃i〉 α̃i = Θ but since H̃

satisfy (I5) and ‖α̃‖ = 1 so α̃ (λ) 6= θ for any λ ∈ A. Thus (α̃ −∑∞
i=1 〈α̃, α̃i〉 α̃i) ∈

S and then from (iv) we get ‖α̃‖2 =
∑∞

i=1 | 〈α̃, α̃i〉 |2 = 0 ⇒ α̃ = Θ and that
contradicts ‖α̃‖ = 1. So (i) is true. ¤
Definition 6.13. Let α̃1, α̃2, . . . , α̃n, . . . . be a complete orthonormal sequence of soft
vectors in a soft Hilbert space H̃. Then 〈x̃, α̃i〉 are called the Fourier coefficients
of x̃, the expansion x̃ =

∑∞
i=1 〈x̃, α̃i〉 α̃i is called the Fourier expansion of x̃ and

‖x̃‖2 =
∑∞

i=1 | 〈x̃, α̃i〉 |2 is called Parseval’s equation, all with respect to the sequence
{α̃n}.

7. Conclusions

In this paper we have introduced a concept of soft inner product on a soft linear
space. Some basic properties of soft inner product spaces has been investigated with
examples and counter examples. Soft Hilbert spaces has been defined and some basic
properties of soft Hilbert spaces are also investigated. Properties of orthogonal and
orthonormal sets in soft Hilbert spaces are studied. There is an ample scope for
further research on soft vector spaces and soft inner product spaces.
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