Annals of Fuzzy Mathematics and Informatics Volume 5, No. 3, (May 2013), pp. 571–582 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

A new view on intuitionistic fuzzy % structure compactification

R. NARMADA DEVI, E. ROJA, M. K. UMA

Received 9 April 2012; Revised 21 October 2011; Accepted 30 October 2012

ABSTRACT. In this paper, the notions of an intuitionistic fuzzy T^c prefilter, intuitionistic fuzzy T^c ultrafilter, intuitionistic fuzzy normal family, intuitionistic fuzzy F^* space, intuitionistic fuzzy \mathscr{C} structure and intuitionistic fuzzy \mathscr{C} space are introduced. The concept of \mathscr{C} structure compactification in an intuitionistic fuzzy topological space is introduced. In this connection, some interesting propositions are established.

2010 AMS Classification: 54A40, 03E72

Keywords: Intuitionistic fuzzy T^c prefilter, Intuitionistic fuzzy T^c ultrafilter, Intuitionistic fuzzy normal family, Intuitionistic fuzzy F^* space, Intuitionistic fuzzy \mathscr{C} structure, Intuitionistic fuzzy \mathscr{C} space, Intuitionistic fuzzy $\mathscr{C}st$ prefilter.

Corresponding Author: R. Narmada Devi (narmadadevi23@gmail.com)

1. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [6] in 1965. The theory of fuzzy topological spaces was introduced and developed by Chang [3] in 1968. Atanassov [1] introduced and studied intuitionistic fuzzy sets. On the otherhand, Coker [4] introduced the notions of an intuitionistic fuzzy topological space and some other concepts. Later N.Blasco Mardones, M.Macho Stadler and M. A. de Prada Vincente [2] were introduced the concepts of fuzzy compactifications. In this paper, the concepts of intuitionistic fuzzy T^c prefilter, intuitionistic fuzzy T^c ultrafilter, intuitionistic fuzzy prime T^c prefilter, intuitionistic fuzzy normal family, intuitionistic fuzzy F^* space, intuitionistic fuzzy \mathcal{C} structure, intuitionistic fuzzy \mathcal{C} space and intuitionistic fuzzy $\mathcal{C}st$ prefilter are discused. Also a new process of \mathcal{C} structure compactification for an intuitionistic fuzzy topological space is established. In this connection, some interesting propositions are discussed.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set and I be the closed interval [0,1]. An intuitionistic fuzzy set(IFS) A is an object of the following form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, where the mappings $\mu_A : X \longrightarrow I$ and $\gamma_A : X \longrightarrow I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) for each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form, $A = \{\langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X\}$. For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$.

Definition 2.2 ([1]). Let X be a nonempty set and the IFSs A and B in the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$. Then

(i) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;

- (ii) $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \};$
- (iii) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \};$
- (iv) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \}.$

Definition 2.3 ([1]). The IFSs 0_{\sim} and 1_{\sim} are defined by $0_{\sim} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle : x \in X\}$.

Definition 2.4 ([4]). An intuitionistic fuzzy topology (IFT) in Coker's sense on a nonempty set X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau;$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$;
- (iii) $\cup G_i \in \tau$ for arbitrary family $\{G_i \mid i \in I\} \subseteq \tau$.

In this paper by (X, τ) or simply by X we will denote the Coker's intuitionistic fuzzy topological space (IFTS). Each IFS in τ is called intuitionistic fuzzy open set (IFOS) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.5 ([4]). Let A be an IFS in IFTS X. Then

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in X and } G \subseteq A\}$ is called an intuitionistic fuzzy interior of A;

 $clA = \bigcap \{G \mid G \text{ is an IFCS in X and } G \supseteq A\}$ is called an intuitionistic fuzzy closure of A.

Definition 2.6 ([4]). Let (X, τ) and (Y, σ) be two IFTSs and let $f : X \to Y$ be a function. Then f is said to be intuitionistic fuzzy continuous function iff the preimage of each IFS in σ is an IFS in τ .

Definition 2.7 ([4]). $f : X \to Y$ is intuitionistic fuzzy continuous function iff the preimage of each IFCS in σ is an IFCS in τ .

Definition 2.8 ([4]). Let (X, τ) and (Y, σ) be two IFTSs and let $f : X \to Y$ be a function. Then f is said to be intuitionistic fuzzy closed function iff the image of each IFCS in τ is an IFCS in σ .

Definition 2.9 ([5]). Let X be a nonempty set and $x \in X$ a fixed element in X. If $r \in I_0$, $s \in I_1$ are fixed real numbers such that $r + s \leq 1$, then the IFS

 $x_{r,s} = \langle x, x_r, 1 - x_{1-s} \rangle$ is called an intuitionistic fuzzy point(IFP) in X, where r denotes the degree of membership of $x_{r,s}$, s denotes the degree of nonmembership of $x_{r,s}$ and $x \in X$ the support of $x_{r,s}$. The IFP $x_{r,s}$ is contained in the IFS $A(x_{r,s} \in A)$ if and only if $r < \mu_A(x), s > \gamma_A(x)$.

Definition 2.10 ([4]). Let (X, τ) be an IFTS. If a family $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle : i \in J\}$ of IFOSs in X satisfies the condition $\bigcup \{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle : i \in J\} = 1_{\sim}$ then it is called a intuitionistic fuzzy open cover of X.

Definition 2.11 ([4]). Let (X, τ) be an IFTS. If a family $\{\langle x, \mu_{K_i}, \gamma_{K_i} \rangle : i \in J\}$ of IFCSs in X satisfies the finite intersection property(FIP for short) iff every finite subfamily $\{\langle x, \mu_{K_i}, \gamma_{K_i} \rangle : i = 1, 2, ..., n\}$ of the family satisfies the condition $\bigcap_{i=1}^{n} \{\langle x, \mu_{K_i}, \gamma_{K_i} \rangle\} \neq 0_{\sim}$.

Definition 2.12 ([4]). An IFTS (X, τ) is called intuitionistic fuzzy compact iff every intuitionistic fuzzy open cover of X has a finite subcover.

Corollary 2.13 ([4]). An IFTS (X, τ) is intuitionistic fuzzy compact iff every family $\{\langle x, \mu_{K_i}, \gamma_{K_i} \rangle : i \in J\}$ of IFCSs in X having the FIP has a nonempty intersection.

3. T^c prefilters in an intuitionistic fuzzy topological space

In the following sections, the collection of all intuitionistic fuzzy closed sets in an intuitionistic fuzzy topological space(IFTS) is denoted by T^c .

Definition 3.1. Let (X, T) be an intuitionistic fuzzy topological space. Let $\mathscr{F} \subset T^c$ satisfying the following conditions.

- (i) \mathscr{F} is a nonempty family and $0_{\sim} \notin \mathscr{F}$
- (ii) If $A_1, A_2 \in \mathscr{F}$ the $A_1 \cap A_2 \in \mathscr{F}$
- (iii) If $A \in \mathscr{F}$ and $B \in T^c$ with $A \subseteq B$, then $B \in \mathscr{F}$.

 \mathscr{F} is called an intuitionistic fuzzy T^c prefilter on X.

- Notation 3.1. (i) If \mathscr{F} and \mathscr{G} are two intuitionistic fuzzy T^c prefilters on X. Then we say they are intuitionistic fuzzy compatible (in short, $\mathscr{F} \sim \mathscr{G}$) if every element of \mathscr{F} meets every element of \mathscr{G} . In other words $\mathscr{F} \sim \mathscr{G}$ if and only if for every $A \in \mathscr{F}$, for every $B \in \mathscr{G}$ such that $A \cap B \neq 0_{\sim}$. If $\mathscr{F} \sim \mathscr{G}$ we can construct an intuitionistic fuzzy T^c prefilters which contains them both.
 - (ii) If \mathscr{F} and \mathscr{G} are two intuitionistic fuzzy T^c prefilters on X. Then we say that \mathscr{G} is finer than \mathscr{F} or \mathscr{F} is coarser than \mathscr{G} if $\mathscr{F} \subseteq \mathscr{G}$.
 - (iii) The collection of all intuitionistic fuzzy T^c prefilters on X is denoted by \mathscr{P}^{T^c}

Example 3.2. Let $X = \{a, b\}$ be a nonempty set. Let $A = \langle x, (\frac{a}{0.5}, \frac{b}{0.4}), (\frac{a}{0.5}, \frac{b}{0.6}) \rangle$, $B = \langle x, (\frac{a}{0.2}, \frac{b}{0.4}), (\frac{a}{0.5}, \frac{b}{0.6}) \rangle$, $C = \langle x, (\frac{a}{0.5}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.7}) \rangle$, $D = \langle x, (\frac{a}{0.2}, \frac{b}{0.3}), (\frac{a}{0.8}, \frac{b}{0.7}) \rangle$ and $F = \langle x, (\frac{a}{1}, \frac{b}{0.4}), (\frac{a}{0}, \frac{b}{0.6}) \rangle$ be intuitionistic fuzzy sets of X. Then the family $T = \{0_{\sim}, A, B, C, D, F, 1_{\sim}\}$ is an intuitionistic fuzzy topology on X. Consider $\mathscr{G}_1 = \{\overline{C}, \overline{D}, 1_{\sim}\}$ and $\mathscr{G}_2 = \{\overline{A}, \overline{C}, \overline{D}, 1_{\sim}\}$ are intuitionistic fuzzy T^c prefilters on X. Therefore, $\mathscr{G}_1 \sim \mathscr{G}_2$.

Definition 3.3. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter and let $\mathscr{B} \subset \mathscr{F}$. \mathscr{B} is called an intuitionistic fuzzy base for \mathscr{F} if for each intuitionistic fuzzy set $A \in \mathscr{F}$, there is an intuitionistic fuzzy set $B \in \mathscr{B}$ such that $B \subseteq A$.

Definition 3.4. Let (X,T) be an intuitionistic fuzzy topological space.Let $\mathcal{H} \subset T^c.\mathcal{H}$ is an intuitionistic fuzzy subbase for some intuitionistic fuzzy T^c prefilter if the collection $\{\bigcap_{i=1}^n A_i : A_i \in \mathcal{H}\}$ is an intuitionistic fuzzy base for some intuitionistic fuzzy T^c prefilter.

Proposition 3.5. Let (X,T) be an intuitionistic fuzzy topological space. Let $\mathscr{B} \subset T^c$. Then the following statements are equivalent.

- (i) There is a unique intuitionistic fuzzy T^c prefilter \mathscr{F} such that \mathscr{B} is an intuitionistic fuzzy base for it.
- (ii) (a) B is a nonempty family and 0~ ∉ B.
 (b) If B₁, B₂ ∈ B, there is an intuitionistic fuzzy set B₃ ∈ B with B₃ ⊆ B₁ ∩ B₂.

Proof. Follows from the Definitions 3.1, 3.3 and 3.4.

Definition 3.6. Let (X, T) be an intuitionistic fuzzy topological space. Let \mathscr{B} be an intuitionistic fuzzy base satisfying the above conditions (a) and (b). Then the generated intuitionistic fuzzy T^c prefilter \mathscr{F} is defined by $\mathscr{F} = \{A \in T^c : \exists B \in \mathscr{B}$ with $B \subseteq A\}$.

Definition 3.7. Let (X,T) be an intuitionistic fuzzy topological space. Let $\mathscr{G} \subset T^c$ with the property that the intersection of any finite subcollection from \mathscr{G} is nonempty. There exists a unique intuitionistic fuzzy T^c prefilter containing \mathscr{G} , whose intuitionistic fuzzy base is the set of all finite intersections of elements in \mathscr{G} . Such an intuitionistic fuzzy T^c prefilter is called an intuitionistic fuzzy T^c prefilter generated by \mathscr{G} .

Proposition 3.8. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter and $A \in T^c$. Then the following statements are equivalent.

- (i) There is an intuitionistic fuzzy T^c prefilter \mathscr{F}_1 which is finer than \mathscr{F} such that $A \in \mathscr{F}_1$.
- (ii) For each $B \in \mathscr{F}$, we have $A \cap B \neq 0_{\sim}$.

Proof. (i) \Rightarrow (ii) Let $A \in T^c$ and \mathscr{F}_1 be an intuitionistic fuzzy T^c prefilter such that \mathscr{F}_1 which is finer than \mathscr{F} such that $A \in \mathscr{F}_1$. Suppose that $A \cap B = 0_{\sim}$, for each $B \in \mathscr{F}$. This implies that $A \cap B = 0_{\sim} \in \mathscr{F}_1$. which is contradiction. Thus (ii) is proved.

(ii) \Rightarrow (i) Let $A \cap B \neq 0_{\sim}$, for each $B \in \mathscr{F}$. Suppose that there is an intuitionistic fuzzy T^c prefilter \mathscr{F}_1 which is not finer than \mathscr{F} such that $A \in \mathscr{F}_1$. This implies that $A \in \mathscr{F}$. But by assumption $A \notin \mathscr{F}$, which is contradiction. Thus (i) is proved. \Box

Definition 3.9. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter. \mathscr{F} is an intuitionistic fuzzy T^c ultrafilter if \mathscr{F} is a maximal element in the set of an intuitionistic fuzzy T^c prefilters ordered by the inclusion relation.

Proposition 3.10. Every intuitionistic fuzzy T^c prefilter is contained in some intuitionistic fuzzy T^c ultrafilter.

Proof. Let \mathscr{F} be any intuitionistic fuzzy T^c prefilter on a set X. Define $\Phi = \{\mathscr{G}/\mathscr{G} \in \mathscr{P}^{T^c} \text{ and } \mathscr{F} \subseteq \mathscr{G}\}$. Inclusion is a partial ordering on Φ . Let \mathscr{G}_i be a chain in Φ . Then it is easy to check that $\mathscr{E} = \bigcup \mathscr{G}_i$ is an intuitionistic fuzzy T^c prefilter on X. Then by applying Zorn's Lemma to deduce that Φ has a maximal element \mathscr{G} . Then $\mathscr{F} \subseteq \mathscr{G}$ and \mathscr{G} is maximal.

Proposition 3.11. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter on X. Then the following statements are equivalent

- (i) \mathscr{F} is an intuitionistic fuzzy T^c ultrafilter.
- (ii) If A is an element of intuitionistic fuzzy T^c prefilter such that $A \cap B \neq 0_{\sim}$ for each $B \in \mathscr{F}$, then $A \in \mathscr{F}$.
- (iii) If $A \in T^c$ and $A \notin \mathscr{F}$, then there is $B \in \mathscr{F}$ such that $A \cap B = 0_{\sim}$.

Proof. (i) \Rightarrow (ii) Suppose $A \in T^c$ and $A \cap B \neq 0_{\sim}$ for each $B \in \mathscr{F}$. By Proposition 3.8, there is an intuitionistic fuzzy T^c prefilter \mathscr{F}^* generated by $\mathscr{F} \cup \{A\}$. Then $\mathscr{F} \subset \mathscr{F}^*$. Since \mathscr{F} is an intuitionistic fuzzy T^c ultrafilter, it must be $\mathscr{F} = \mathscr{F}^*$. Therefore $A \in \mathscr{F}$.

(ii) \Rightarrow (iii) Let $A \in T^c$. Suppose $A \notin \mathscr{F}$. By assumption, there exists $B \in \mathscr{F}$ such that $A \cap B = 0_{\sim}$.

(iii) \Rightarrow (i) Let \mathscr{G} be an intuitionistic fuzzy T^c prefilter with $\mathscr{F} \subset \mathscr{G}$ and $\mathscr{F} \neq \mathscr{G}$. Let $A \in \mathscr{G}$ such that $A \notin \mathscr{F}$. By assumption, there exists $B \in \mathscr{F}$ such that $A \cap B = 0_{\sim}$. Since $A, B \in \mathscr{G}$ then $A \cap B \in \mathscr{G}$ implies that $0_{\sim} \in \mathscr{G}$, which is a contradiction. Therefore $\mathscr{F} = \mathscr{G}$. Hence \mathscr{F} is an intuitionistic fuzzy T^c ultrafilter.

Proposition 3.12. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{U}_1 and \mathscr{U}_2 be a pair of different intuitionistic fuzzy T^c ultrafilters on X. Then

$$\bigcap_{A_i \in \mathscr{U}_1} A_i \cap \bigcap_{A_j \in \mathscr{U}_2} A_j = 0_{\sim}$$

Proof. Suppose $\bigcap_{A_i \in \mathscr{U}_1} A_i \cap \bigcap_{A_j \in \mathscr{U}_2} A_j \neq 0_{\sim}$. Then for some $x \in X$,

$$\mu_{(\bigcap_i A_i \cap \bigcap_i A_i)}(x) > 0$$

and

$$\gamma_{(\bigcap_i A_i \cap \bigcap_j A_j)}(x) < 1,$$

for all i, j. This implies that $\mu_{A_i}(x) \wedge \mu_{A_j}(x) > 0$ and $\gamma_{A_i}(x) \vee \gamma_{A_j}(x) < 1$, for all i, j. This implies that $A_i \cap A_j \neq 0_{\sim}$. By Proposition 3.11, $A_i \in \mathscr{U}_2$ and $A_j \in \mathscr{U}_1$, for all i, j. Thus $\mathscr{U}_1 = \mathscr{U}_2$, which is contradiction. Hence, $\bigcap_{A_i \in \mathscr{U}_1} A_i \cap \bigcap_{A_j \in \mathscr{U}_2} A_2 = 0_{\sim}$. \Box

Definition 3.13. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter on X. \mathscr{F} is called an intuitionistic fuzzy prime T^c prefilter if for each $A, B \in T^c$ such that $A \cup B \in \mathscr{F}$ then $A \in \mathscr{F}$ (or) $B \in \mathscr{F}$.

Proposition 3.14. Every intuitionistic fuzzy T^c ultrafilter \mathscr{U} on X is an intuitionistic fuzzy T^c prefilter. *Proof.* Let $A, B \in T^c$ such that $A \cup B \in \mathscr{U}$. Suppose $A, B \notin \mathscr{U}$. Then there exist $A^*, B^* \in \mathscr{U}$ with $A^* \cap A = 0_{\sim} = B^* \cap B$. Since $A \cup B, A^*$ and $B^* \in \mathscr{U}$, we have $(A \cup B) \cap A^* \cap B^* \in \mathscr{U}$. Then

$$(A \cup B) \cap A^* \cap B^* = (A \cup B) \cap A^* \cap B^*$$
$$= ((A \cap A^*) \cup (B \cap A^*)) \cap B^*$$
$$= (A \cap A^* \cap B^*) \cup (B \cap A^* \cap B^*)$$
$$= 0_{\sim}$$

which is a contradiction. Hence \mathscr{U} is an intuitionistic fuzzy prime T^c prefilter. \Box

Proposition 3.15. Let (X,T) be an intuitionistic fuzzy topological space. Let \mathscr{F} be an intuitionistic fuzzy T^c prefilter. Let $\mathscr{P}(\mathscr{F})$ be the family of all intuitionistic fuzzy prime T^c prefilters which contains \mathscr{F} . Then

$$\mathscr{F} = \bigcap_{\mathscr{G} \in \mathscr{P}(\mathscr{F})} \mathscr{G}$$

Proof. It is clear that

$$(3.1) \qquad \qquad \mathscr{F} \subset \bigcap_{\mathscr{G} \in \mathscr{P}(\mathscr{F})} \mathscr{G}$$

Let $A \in T^c$ such that $A \notin \mathscr{F}$. Consider the family $\mathscr{L} = \{\mathscr{G} \in \mathscr{P}^{T^c} : \mathscr{F} \subset \mathscr{G} \text{ and } A \notin \mathscr{G}\}$. Now, \mathscr{L} is an inductive set and there exist maximal elements. Let \mathscr{U} be a maximal element in \mathscr{L} . Let $C_1, C_2 \in T^c$ with $C_1 \cup C_2 \in \mathscr{U}$ such that $C_1, C_2 \notin \mathscr{U}$. Let the family $\mathscr{I} = \{B \in T^c : B \cup C_2 \in \mathscr{U}\}$.

- (i) Since $C_1 \in T^c$ then $C_1 \cup A_2 \in \mathscr{U}$ implies that $C_1 \in \mathscr{I}$. Hence \mathscr{I} is an nonempty family. Suppose $0_{\sim} \in \mathscr{I}$. By Definition of $\mathscr{I}, C_2 \in \mathscr{I}$ which is a contradiction. Hence $0_{\sim} \notin \mathscr{I}$.
- (ii) If $B_1, B_2 \in \mathscr{I}$, then $B_1 \cup C_2 \in \mathscr{U}$ and $B_2 \cup C_2 \in \mathscr{U}$. Since \mathscr{U} is an intuitionistic fuzzy T^c prefilter, $(B_1 \cup C_2) \cap (B_2 \cup C_2) \in \mathscr{U}$ that is, $((B_1 \cap B_2) \cup C_2) \in \mathscr{U}$. Therefore $(B_1 \cap B_2) \in \mathscr{I}$.
- (iii) If $B \in \mathscr{I}$ and $C \in T^c$ such that $B \subseteq C$ then $B \cup C_2 \subseteq C \cup C_2$. Since \mathscr{U} is an intuitionistic fuzzy T^c prefilter and $C \cup C_2 \in \mathscr{U}$ implies that $C \in \mathscr{I}$. Hence \mathscr{I} is an intuitionistic fuzzy T^c prefilter.

If $B \in \mathscr{U}$ then $B \cup C_2 \in \mathscr{U}$ implies that $B \in \mathscr{I}$. Hence $\mathscr{U} \subset \mathscr{I}$. Since $A_1 \in \mathscr{I}$ and $A_1 \notin \mathscr{U}$. Therefore $\mathscr{U} \neq \mathscr{I}$.

Let $\mathscr{K} = \{ C \in T^c : A \cup C_2 \in \mathscr{U} \}.$

- (i) Suppose $0_{\sim} \in \mathscr{K}$. By Definition of \mathscr{K} , $C_2 \in \mathscr{U}$ which is a contradiction to our assumption $\mathscr{U} \in \mathscr{L}$ and $C_2 \notin \mathscr{U}$. Hence $0_{\sim} \notin \mathscr{K}$. Since $1_{\sim} \in \mathscr{U}$ implies that $1_{\sim} \in \mathscr{K}$. Thus \mathscr{K} is an nonempty family and $0_{\sim} \notin \mathscr{K}$.
- (ii) If $C^*, C^{**} \in \mathscr{H}$, then $B \cup C^* \in \mathscr{U}$ and $B \cup C^{**} \in \mathscr{U}$. Since \mathscr{U} is an intuitionistic fuzzy T^c prefilter, $(B \cup C^*) \cap (B \cup C^{**}) \in \mathscr{U}$ that is, $B \cup (C^* \cap C^{**}) \in \mathscr{U}$. Therefore $(C^* \cap C^{**}) \in \mathscr{H}$.
- (iii) If $C \in \mathscr{K}$ and $C^* \in T^c$ such that $C^* \supseteq C$ then $C^* \in \mathscr{K}$.

Hence \mathscr{K} is an intuitionistic fuzzy T^c prefilter. Now,

(i) $\mathscr{F} \subset \mathscr{K}$ follows from $\mathscr{F} \subset \mathscr{U}$ and $\mathscr{U} \subset \mathscr{K}$

(ii) $A \notin \mathscr{K}$, for $A \notin \mathscr{U}$.

Thus $\mathscr{H} \in \mathscr{L}$ and $\mathscr{U} \subset \mathscr{H}$. Maximality of \mathscr{U} implies that $\mathscr{U} = \mathscr{H}$. Suppose $A \in \mathscr{I}$. Then $A \cup C_2 \in \mathscr{U}$ implies that $C_2 \in \mathscr{H} = \mathscr{U}$, which is contradiction to $C_2 \notin \mathscr{U}$. Therefore $A \notin \mathscr{I}$. Since $\mathscr{F} \subset \mathscr{I}$ and $A \notin \mathscr{I}$, $\mathscr{I} \in \mathscr{L}$. Since $\mathscr{U} \subset \mathscr{I}$ and $A \neq \mathscr{I}$, which is contradiction to the maximality of \mathscr{U} . Thus, $C_1, C_2 \in \mathscr{U}$. Therefore \mathscr{U} is an intuitionistic fuzzy prime T^c prefilter and $A \notin \mathscr{U}$. This proves

$$(3.2) \qquad \qquad \bigcap_{\mathscr{G}\in\mathscr{P}(\mathscr{F})}\mathscr{G}\subset\mathscr{F}$$

From (3.1) and (3.2), it follows $\bigcap_{\mathscr{G}\in\mathscr{P}(\mathscr{F})}\mathscr{G}=\mathscr{F}$

Proposition 3.16. Let (X,T) be an intuitionistic fuzzy topological space. Then the following statements are equivalent:

- (i) (X,T) is an intuitionistic fuzzy compact space.
- (ii) every intuitionistic fuzzy T^c prefilter \mathscr{F} satisfies $\bigcap_{A \in \mathscr{F}} A \neq 0_{\sim}$.
- (iii) every intuitionistic fuzzy prime T^c prefilters \mathscr{F} satisfies $\bigcap_{A \in \mathscr{F}} A \neq 0_{\sim}$.
- (iv) every intuitionistic fuzzy T^c ultrafilter \mathscr{U} satisfies $\bigcap_{A \in \mathscr{U}} A \neq 0_{\sim}$.

Proof. (i) \Rightarrow (ii) Suppose $\bigcap_{A \in \mathscr{F}} A = 0_{\sim}$. Then $\bigcup_{A \in \mathscr{F}} \overline{A} = 1_{\sim}$. Since $\overline{A} \in T$ and (X,T) is an intuitionistic fuzzy compact space, there must exist a finite subcollection $\{\overline{A_1}, \overline{A_2}, ..., \overline{A_n}\}$ such that $1_{\sim} = \bigcup_{i=1}^n \overline{A_i}$. That is $\bigcap_{i=1}^n \overline{A_i} = 0_{\sim}$ which is contradiction to the Definition 3.1. Therefore $\bigcap_{A \in \mathscr{F}} A \neq 0_{\sim}$.

(ii) \Rightarrow (iii) Suppose that every intuitionistic fuzzy prime T^c prefilter satisfies $\bigcap_{A \in \mathscr{F}} A = 0_{\sim}$. Since every intuitionistic fuzzy prime T^c prefilter is an intuitionistic fuzzy T^c prefilter, which is a contradiction. Hence every intuitionistic fuzzy prime T^c prefilters \mathscr{F} satisfies $\bigcap_{A \in \mathscr{F}} A \neq 0_{\sim}$.

(iii) \Rightarrow (iv) Suppose that every intuitionistic fuzzy T^c ultrafilter \mathscr{U} satisfies $\bigcap_{A \in \mathscr{U}} A = 0_{\sim}$. Since every intuitionistic fuzzy T^c ultrafilter is an intuitionistic fuzzy prime T^c prefilter, which is a contradiction. Hence every intuitionistic fuzzy T^c ultrafilters \mathscr{U} satisfies $\bigcap_{A \in \mathscr{U}} A \neq 0_{\sim}$.

(iv) \Rightarrow (i) Suppose \mathscr{H} is a family of intuitionistic fuzzy closed sets on X with the finite intersection property. For each $B \in \mathscr{H}$, we consider the family $\mathscr{G}_B = \{A \in T^c : A \supseteq B\}$. Then, $B \in \mathscr{G}_B$. Let $\mathscr{G} = \bigcup_{B \in \mathscr{H}} \mathscr{G}_B$. Since \mathscr{H} has the finite intersection property, \mathscr{G} has as well. Thus \mathscr{H} and \mathscr{G} aremintuitionistic fuzzy T^c prefilters. Therefore, there exists an intuitionistic fuzzy T^c ultrafilter \mathscr{U} such that $\mathscr{H} \subseteq \mathscr{G} \subseteq \mathscr{U}$. Therefore, $\bigcap_{A \in \mathscr{U}} A \subseteq \bigcap_{A \in \mathscr{G}} A \subseteq \bigcap_{A \in \mathscr{H}} A$. By (iv), $\bigcap_{A \in \mathscr{U}} A \neq 0_{\sim}$. Therefore $\bigcap_{A \in \mathscr{H}} A \neq 0_{\sim}$. Hence (X, T) is an intuitionistic fuzzy compact space. \Box

Definition 3.17. Let (X, T) be an intuitionistic fuzzy topological space. Let $x_{r,s}$ be any intuitionistic fuzzy point. The nonempty collection $\mathscr{F}_{x_{r,s}} = \{A \in T^c : x_{r,s} \in A\}$ is an intuitionistic fuzzy prime T^c prefilter on X. Then $\mathscr{F}_{x_{r,s}}$ is called an intuitionistic fuzzy T^c prefilter generated by $x_{r,s}$.

Definition 3.18. Let (X,T) be an intuitionistic fuzzy topological space. The collection T^c is said to be an intuitionistic fuzzy normal if given $A_1, A_2 \in T^c$ such that $A_1 \cap A_2 = 0_{\sim}$, there exist $B_1, B_2 \in T^c$ with $B_1 \cup B_2 = 1_{\sim}$, $A_1 \cap B_1 = 0_{\sim}$ and $A_2 \cap B_2 = 0_{\sim}$.

Proposition 3.19. Let (X,T) be an intuitionistic fuzzy topological space and T^c be an intuitionistic fuzzy normal family. Every intuitionistic fuzzy prime T^c prefilter \mathscr{F} is contained in an unique intuitionistic fuzzy T^c ultrafilter.

Proof. Let \mathscr{U}_1 and \mathscr{U}_2 be an intuitionistic fuzzy T^c ultrafilters such that $\mathscr{F} \subset \mathscr{U}_1$ and $\mathscr{F} \subset \mathscr{U}_2$. Suppose $\mathscr{U}_1 \neq \mathscr{U}_2$. Then, there exist $A_1 \in \mathscr{U}_1$ and $A_2 \in \mathscr{U}_2$ with $A_1 \cap A_2 = 0_{\sim}$. Thus, there exist $B_1, B_2 \in T^c$ with $B_1 \cup B_2 = 1_{\sim}, A_1 \cap B_1 = 0_{\sim}$ and $A_2 \cap B_2$. Since $B_1 \cup B_2 = 1_{\sim}$ and \mathscr{F} is an intuitionistic fuzzy prime T^c prefilter, $B_1 \in \mathscr{F}$ (or) $B_2 \in \mathscr{F}$. Suppose $B_1 \in \mathscr{F}$. Then $B_1 \in \mathscr{U}_1$ and $B_1 \in \mathscr{U}_2$. Thus $A_1 \cap B_1 = 0_{\sim}$ with $A_1, B_1 \in \mathscr{U}_2$, which is a contradiction. Similarly, $B_2 \in \mathscr{F}$, $A_2, B_2 \in \mathscr{U}_2$ with $A_2 \cap B_2 = 0_{\sim}$, which is a contradiction. Hence $\mathscr{U}_1 = \mathscr{U}_2$. Thus, every intuitionistic fuzzy prime T^c prefilter \mathscr{F} is contained in an unique intuitionistic fuzzy T^c ultrafilter.

Corollary 3.20. Let (X,T) be an intuitionistic fuzzy topological space. Let T^c be an intuitionistic fuzzy normal family. Then for each $x \in X$, an intuitionistic fuzzy point $x_{r,s}$, there exists an unique intuitionistic fuzzy T^c ultrafilter $\mathscr{U}_{x_{r,s}}$ which contains $\mathscr{F}_{x_{r,s}}$.

Proof. Let $x_{r,s}$ be any intuitionistic fuzzy point. Then $\mathscr{F}_{x_{r,s}}$ is an intuitionistic fuzzy T^c prefilter generated by $x_{r,s}$. By Definition 3.17 and Proposition 3.19, $\mathscr{F}_{x_{r,s}}$ is an intuitionistic fuzzy prime T^c prefilter contained in an unique intuitionistic fuzzy T^c ultrafilter $\mathscr{U}_{x_{r,s}}$.

Corollary 3.21. Let (X,T) be an intuitionistic fuzzy topological space. Let T^c be an intuitionistic fuzzy normal family. Suppose $x_{r,s}$ and $y_{m,n}$ are the intuitionistic fuzzy points of (X,T) with x = y, then $\mathscr{U}_{x_{r,s}} = \mathscr{U}_{y_{m,n}}$.

Proof. Suppose $x_{r,s}$ and $y_{m,n}$ are intuitionistic fuzzy points of (X,T) with x = y. Let $\mathscr{U}_{x_{r,s}} \neq \mathscr{U}_{y_{m,n}}$. By Proposition 3.5, $\bigcap_i A_i \cap \bigcap_j A_j = 0_{\sim}$, for all $A_i \in \mathscr{U}_{x_{r,s}}$ and $A_j \in \mathscr{U}_{y_{m,n}}$. Thus $x_{r,s} \in \mathscr{U}_{x_{r,s}}$ and $y_{m,n} \in \mathscr{U}_{y_{m,n}}$. Since x = y, $x_{r,s} \cap y_{m,n} \neq 0_{\sim}$ which is a cotradiction. Hence $\mathscr{U}_{x_{r,s}} = \mathscr{U}_{y_{m,n}}$.

Definition 3.22. Let (X,T) be an intuitionistic fuzzy topological space. For each $x \in X$, the collection of intuitionistic fuzzy points $\mathscr{P}_x = \{x_{r,s} : r \in (0,1] \text{ and } s \in [0,1)\}$. For each $x_{r,s} \in \mathscr{P}_x$, the only intuitionistic fuzzy T^c ultrafilter which contains $\mathscr{F}_{x_{r,s}}$ is denoted by \mathscr{U}^x

Definition 3.23. An intuitionistic fuzzy topological space (X, T) is said to be an intuitionistic fuzzy F^* space, if for each $x \in X$, there exists a minimum value $r \in (0, 1]$ and a maximum value $s \in [0, 1)$ such that intuitionistic fuzzy point $x_{r,s}$ belongs to T^c .

Proposition 3.24. Let (X,T) be an intuitionistic fuzzy F^* space and T^c be an intuitionistic fuzzy normal family. For each $x \in X$ and an intuitionistic fuzzy T^c ultrafilter \mathscr{U}^x , $\bigcap_{A \in \mathscr{U}^x} A$ is an atmost intuitionistic fuzzy point $x_{r,s}$.

Proof. Let $x \in X$. Since (X,T) is an intuitionistic fuzzy F^* space, there exists a minimum value $r \in (0,1]$ and a maximum value $s \in [0,1)$ such that $x_{r,s} \in T^c$. By Definition 3.10, $x_{r,s} \in \mathscr{U}^x$. Hence $\bigcap_{A \in \mathscr{U}^x} A = x_{r,s}$.

4. C Structure Compactification in an Intuitionistic Fuzzy Topological Space

Let (X,T) be an intuitionistic fuzzy noncompact space. Let $\gamma(X)$ be the collection of all intuitionistic fuzzy T^c ultrafilters on X. Suppose (X,T) is an intuitionistic fuzzy F^* space and T^c is an intuitionistic fuzzy normal family. Associated with each $A \in T^c$, we define an intuitionistic fuzzy set $A^* = \langle \mathcal{U}, \mu_{A^*}, \gamma_{A^*} \rangle$. For each $\mathcal{U} \in \gamma(X)$, the membership function $\mu_{A^*} : \gamma(X) \to I$ is defined by

$$\mu_{A^*}(\mathscr{U}) = \begin{cases} 0 & \text{if } \forall x \in X \text{ and } \mu_A \notin \mathscr{U}, \ \mathscr{U} \neq \mathscr{U}^x, \\ 1 & \text{if } \forall x \in X \text{ and } \mu_A \in \mathscr{U}, \ \mathscr{U} \neq \mathscr{U}^x, \\ \mu_A(x) & \text{if } \exists x \in X \text{ with } \mathscr{U} = \mathscr{U}^x. \end{cases}$$

and the nonmembership function $\gamma_{A^*}: \gamma(X) \to I$ is defined by

$$\gamma_{A^*}(\mathscr{U}) = \begin{cases} 1 & \text{if } \forall x \in X \text{ and } \gamma_A \notin \mathscr{U}, \ \mathscr{U} \neq \mathscr{U}^x, \\ 0 & \text{if } \forall x \in X \text{ and } \gamma_A \in \mathscr{U}, \ \mathscr{U} \neq \mathscr{U}^x, \\ \gamma_A(x) & \text{if } \exists x \in X \text{ with } \mathscr{U} = \mathscr{U}^x. \end{cases}$$

Notation 4.1. For each $\mathscr{U}^x \in \gamma(X)$, the intuitionistic fuzzy point(IFP) of $\gamma(X)$ is denoted by $\mathscr{U}^x_{r,s}$

Proposition 4.1. Under the previous conditions, the following identities holds:

(i)
$$0^*_{\sim X} = 0_{\sim \gamma(X)}$$

(ii)
$$1^*_{\sim X} = 1_{\sim \gamma(X)}$$

(iii)
$$(x_{r,s})^* = \mathscr{U}_{r,s}^x$$

Proof. Obvious.

Definition 4.2. An intuitionistic fuzzy \mathscr{C} structure(in short, $IF\mathscr{C}st$) consists of all intuitionisitic fuzzy sets of the form A^* . An intuitionistic fuzzy \mathscr{C} space $(\gamma(X), IF\mathscr{C}st)$ is a space which admits intuitionistic fuzzy \mathscr{C} structure.

Definition 4.3. An intuitionistic fuzzy \mathscr{C} closure of an intuitionistic fuzzy set A in an intuitionistic fuzzy \mathscr{C} space is defined by $IFcl_{\mathscr{C}st}(A^*) = \bigcap \{B^* \in IF\mathscr{C}st/A^* \subseteq B^*\}$.

Proposition 4.4. Let $e: X \to \gamma(X)$ is defined by $e(x) = \mathscr{U}^x$, for each $x \in X$. Then $e(1_{\sim X})$ is an intuitionistic fuzzy \mathscr{C} dense in an intuitionistic fuzzy \mathscr{C} space $(\gamma(X), IF\mathscr{C}st)$ that is, $IFcl_{\mathscr{C}st}(e(1_{\sim X})) = 1_{\sim \gamma(X)}$.

Proof. Let A be an intuitionistic fuzzy set with $\mu, \gamma \in I^X$. Now, e(A) is an intuitionistic fuzzy set in an intuitionistic fuzzy \mathscr{C} space with $e(A) \in I^{\gamma(X)}$ and it is defined for each $\mathscr{U} \in \gamma(X)$,

$$e(\mu_A(\mathscr{U})) = \begin{cases} \mu_A(x) & \text{if } \exists x \in X \text{ such that } \mathscr{U} = \mathscr{U}^x, \\ 0 & \text{if } \forall x \in X, \ \mathscr{U} \neq \mathscr{U}^x. \end{cases}$$

and

$$e(\gamma_A(\mathscr{U})) = \begin{cases} \gamma_A(x) & \text{if } \exists x \in X \text{ such that } \mathscr{U} = \mathscr{U}^x, \\ 1 & \text{if } \forall x \in X, \ \mathscr{U} \neq \mathscr{U}^x. \end{cases}$$

Let $C = IFcl_{\mathscr{C}st}(e(1_{\sim X}))$. We know that $e(1_{\sim X}) \subseteq C$, then for each $x \in X$ and $\mathscr{U}^x \in \gamma(X), 1_{\sim \gamma(X)} \subseteq C$. Therefore $C = 1_{\sim \gamma(X)}$. Hence $IFcl_{\mathscr{C}st}(e(1_{\sim X})) = 1_{\sim \gamma(X)}$. Thus $e(1_{\sim X})$ is an intuitionistic fuzzy \mathscr{C} dense in an intuitionistic fuzzy \mathscr{C} space. \Box 579 **Definition 4.5.** Let (X,T) be an intuitionistic fuzzy topological space and $(\gamma(X), IF\mathscr{C}st)$ be an intuitionistic fuzzy \mathscr{C} space. Then $f : (X,T) \to (\gamma(X), IF\mathscr{C}st)$ is said to be intuitionistic fuzzy $\mathscr{C}st$ continuous^{*} function, if the inverse image of every intuitionistic fuzzy set in $(\gamma(X), IF\mathscr{C}st)$ is an intuitionistic fuzzy closed set in (X,T).

Definition 4.6. Let (X,T) be an intuitionistic fuzzy topological space and $(\gamma(X), IF \mathscr{C}st)$ be an intuitionistic fuzzy \mathscr{C} space. Then $f : (X,T) \to (\gamma(X), IF \mathscr{C}st)$ is said to be

intuitionistic fuzzy $\mathscr{C}st$ closed* function, if the image of every intuitionistic fuzzy closed set in (X, T) is an intuitionistic fuzzy set in $(\gamma(X), IF\mathscr{C}st)$.

Notation 4.2. For an intuitionistic fuzzy point $x_{r,s}$,

- (i) the degree of membership is denoted by r_x .
- (ii) the degree of nonmembership is denoted by s_x .

Proposition 4.7. The function e is an intuitionistic fuzzy embedding^{*} of X into $\gamma(X)$.

Proof. (i) Let $x, y \in X$ and $x \neq y$, then $\mathscr{U}^x \neq \mathscr{U}^y$. Let $x_{r,s}$ and $y_{m,n}$ be any two distinct intuitionistic fuzzy points.

(a) If $x \neq y$, for each $\mathscr{U} \in \gamma(X)$,

$$e(r_x)(\mathscr{U}) = \begin{cases} r_x & \text{if } \mathscr{U} = \mathscr{U}^x, \\ 0 & \text{if } \mathscr{U} \neq \mathscr{U}^x. \end{cases}$$

and

$$e(s_x)(\mathscr{U}) = \begin{cases} s_x & \text{if } \mathscr{U} = \mathscr{U}^x, \\ 1 & \text{if } \mathscr{U} \neq \mathscr{U}^x. \end{cases}$$

Similarly,

$$e(m_y)(\mathscr{U}) = \begin{cases} m_y & \text{if } \mathscr{U} = \mathscr{U}^y, \\ 0 & \text{if } \mathscr{U} \neq \mathscr{U}^y. \end{cases}$$

and

$$e(n_y)(\mathscr{U}) = \begin{cases} n_y & \text{if } \mathscr{U} = \mathscr{U}^y, \\ 1 & \text{if } \mathscr{U} \neq \mathscr{U}^y. \end{cases}$$

Therefore $e(x_{r,s}) \neq e(y_{m,n})$.

(b) If x = y then $(r, s) \neq (m, n)$. Thus $e(x_{r,s}) = \mathscr{U}_{r,s}^x = \mathscr{U}_{r,s}^y \neq \mathscr{U}_{m,n}^y$ Therefore $e(x_{r,s}) \neq e(y_{m,n})$. Hence e is an intuitionistic fuzzy $\mathscr{C}st$ 1-1 function.

(ii) For each $A^* \in IF\mathscr{C}st$, $\mathscr{U}^x \in \gamma(X)$ and $x \in X$, $e^{-1}(\mu_{A^*})(x) = \mu_{A^*}(e(x)) = \mu_{A^*}(\mathscr{U}^x) = \mu_A(x)$ and $e^{-1}(\gamma_{A^*})(x) = \gamma_{A^*}(e(x)) = \gamma_{A^*}(\mathscr{U}^x) = \gamma_A(x)$. Then, for each $A \in T^c$, $e^{-1}(A^*) = A$. Thus the inverse image of every intuitionistic fuzzy set A^* in $(\gamma(X), IF\mathscr{C}st)$ is an intuitionistic fuzzy closed set A in (X, T). Hence e is an intuitionistic fuzzy $\mathscr{C}st$ continuous^{*} function.

(iii) For each $\mathscr{U} \in \gamma(X)$ and $A \in T^c$,

$$e(\mu_A(\mathscr{U})) = \begin{cases} 0 & \text{if } \forall x \in X, \mathscr{U} \neq \mathscr{U}^x, \\ \mu_A(x) & \text{if } \exists x \in X \text{ such that } \mathscr{U} = \mathscr{U}^x \end{cases}$$

and

$$e(\gamma_A(\mathscr{U})) = \begin{cases} 1 & \text{if } \forall x \in X, \mathscr{U} \neq \mathscr{U}^x, \\ \gamma_A(x) & \text{if } \exists x \in X \text{ such that } \mathscr{U} = \mathscr{U}^x \\ 580 \end{cases}$$

e(A) is an intuitionistic fuzzy set in $(\gamma(X), IF \mathscr{C}st)$. Hence e is an intuitionistic fuzzy $\mathscr{C}st$ closed* function. Hence the function e is an intuitionistic fuzzy embedding* of X into $\gamma(X)$.

Definition 4.8. Let $(\gamma(X), IF\mathscr{C}st)$ be an intuitionistic fuzzy \mathscr{C} space. Let $\mathscr{F} \subset IF\mathscr{C}st$ satisfying the following conditions.

- (i) \mathscr{F} is a nonempty family and $0_{\sim} \notin \mathscr{F}$
- (ii) If $A_1^*, A_2^* \in \mathscr{F}$ the $A_1^* \cap A_2^* \in \mathscr{F}$
- (iii) If $A^* \in \mathscr{F}$ and $B^* \in IF\mathscr{C}st$ with $A^* \subseteq B^*$ then $B^* \in \mathscr{F}$.

 \mathscr{F} is called an intuitionistic fuzzy $\mathscr{C}st$ prefilter (in short, $(T_{\gamma(X)})^c$) on $\gamma(X)$.

Definition 4.9. An intuitionistic fuzzy \mathscr{C} space $(\gamma(X), IF\mathscr{C}st)$ is said to be an intuitionistic fuzzy \mathscr{C} compact^{*} space if whenever $\bigcup_{i \in I} A_i^* = 1_{\sim \gamma}(X), A_i^* \in IF\mathscr{C}st$, $i \in I$, there is a finite subfamily J of I with $\bigcup_{j \in J} A_j^* = 1_{\sim \gamma}(X)$.

Definition 4.10. An intuitionistic fuzzy \mathscr{C} space $(\gamma(X), IF\mathscr{C}st)$ is an intuitionistic fuzzy \mathscr{C} compact^{*} space if and only if for any family of intuitionistic fuzzy sets

 $\{A_i^*: i \in I\}$ in an intuitionistic fuzzy \mathscr{C} structure with the property that $\bigcap_{j \in J} A_j^* \neq 0_{\sim}$, for any finite subfamily J of I, we have $\bigcap_{i \in I} A_i^* \neq 0_{\sim}$.

Proposition 4.11. An intuitionistic fuzzy C space $(\gamma(X), IFCst)$ is an intuitionistic fuzzy Cst compact^{*} space.

Proof. Let \mathscr{F} be an intuitionistic fuzzy $\mathscr{C}st$ prefilter on $\gamma(X)$. Let $B \in \mathscr{F}$. Since $B \in IF\mathscr{C}st$, there is an index family I_B such that $B = \bigcap_{i \in I_B} A_i^*$ for $A_i \in T^c$. Since $B \subseteq A_i^*$ for each $i \in I_B$. Therefore for each $B \in \mathscr{F}$ and $i \in I_B$, $A_i^* \in \mathscr{F}$. Consider the family of intuitionistic fuzzy closed sets in (X,T), $\mathcal{C} = \{A \in T^c : A^* \in \mathscr{F}\}$. Since $1_{\mathcal{C}X}^* = 1_{\sim \gamma}(X) \in \mathscr{F}$ implies $1_{\sim X} \in \mathcal{C}$. Thus \mathcal{C} is nonempty family.

(i) $0^*_{\sim X} \notin \mathscr{F}$ implies that $0_{\sim} \notin \mathcal{C}$

(ii) If $A_1, A_2 \in \mathcal{C}$, then $A_1^*, A_2^* \in \mathscr{F}$. By Definition 4.6, $A_1^* \cap A_2^* = (A_1 \cap A_2)^* \in \mathscr{F}$ implies that $A_1 \cap A_2 \in \mathcal{C}$. Hence \mathcal{C} is an intuitionistic fuzzy base for an intuitionistic fuzzy T^c prefilter on X.

Let \mathscr{U}_0 be an intuitionistic fuzzy T^c ultrafilter contains \mathcal{C} . Then, for each $A \in \mathcal{C}$,

$$\mu_{A^*}(\mathscr{U}_0) = \begin{cases} 0 & \text{if } \forall x \in X \text{ and } \mu_A \notin \mathscr{U}_0, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ 1 & \text{if } \forall x \in X \text{ and } \mu_A \in \mathscr{U}_0, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \mu_A(x) & \text{if } \exists x \in X \text{ with } \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$
$$= \begin{cases} 1 & \text{if } \forall x \in X, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \mu_A(x) & \text{if } \exists x \in X, \ \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$

and

$$\gamma_{A^*}(\mathscr{U}_0) = \begin{cases} 1 & \text{if } \forall x \in X \text{ and } \gamma_A \notin \mathscr{U}_0, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ 0 & \text{if } \forall x \in X \text{ and } \gamma_A \in \mathscr{U}_0, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \gamma_A(x) & \text{if } \exists x \in X \text{ with } \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$
$$= \begin{cases} 0 & \text{if } \forall x \in X, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \gamma_A(x) & \text{if } \exists x \in X, \ \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$

This implies that

$$\bigwedge_{A \in \mathcal{C}} \mu_{A^*}(\mathscr{U}_0) = \bigwedge_{A^* \in \mathscr{F}} \mu_{A^*}(\mathscr{U}_0) = \begin{cases} 1 & \text{if } \forall x \in X, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \bigwedge_{A \in \mathcal{C}} \mu_A(x), & \text{if } \exists x \in X, \ \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$
581

and

$$\bigvee_{A \in \mathcal{C}} \gamma_{A^*}(\mathscr{U}_0) = \bigwedge_{A^* \in \mathscr{F}} \gamma_{A^*}(\mathscr{U}_0) = \begin{cases} 0 & \text{if } \forall x \in X, \ \mathscr{U}_0 \neq \mathscr{U}^x, \\ \bigvee_{A \in \mathcal{C}} \gamma_A(x), & \text{if } \exists x \in X, \ \mathscr{U}_0 = \mathscr{U}^x. \end{cases}$$

Hence $\bigcap_{A \in \mathcal{C}} A^* \neq 0_{\sim}$. Now, $\bigcap_{B \in \mathscr{F}} B = \bigcap_{B \in \mathscr{F}} (\bigcap_{i \in I_B} A^*) = \bigcap_{A \in \mathcal{C}} A^* \neq 0_{\sim}$ implies that $\bigcap_{B \in \mathscr{F}} B \neq 0_{\sim}$. Therefore $(\gamma(X), IF \mathscr{C}st)$ is an intuitionistic fuzzy $\mathscr{C}st$ compact* space.

Proposition 4.12. Let (X,T) be an intuitionistic fuzzy F^* space. Suppose T^c is an intuitionistic fuzzy normal family. Under these conditions, the intuitionistic fuzzy \mathscr{C} space $(\gamma(X), IF\mathscr{C}st)$ is an intuitionistic fuzzy $\mathscr{C}st$ compactification of an intuitionistic fuzzy topological space (X,T).

Proof. Follows from the Propositions 4.1, 4.4, 4.7 and 4.11.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] N. Blasco Mardones, M. Macho Stadler and M. A. de Prada, On fuzzy compactifications, Fuzzy Sets and Systems 43 (1991) 189–197.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1) (1997) 81–89.
- [5] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes IFS 1(2) (1995) 79-84.

[6] L. A. Zadeh, Fuzzy sets, Information and Control 9 (1965) 338–353.

<u>R. NARMADA DEVI</u> (narmadadevi23@gmail.com)

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India.

E. ROJA (arudhay@yahoo.co.in)

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India.

M. K. UMA (arudhay@yahoo.co.in)

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India.