Annals of Fuzzy Mathematics and Informatics Volume 5, No. 3, (May 2013), pp. 549–558 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic fuzzy \mathcal{V} basically disconnected spaces

R. NARMADA DEVI, E. ROJA, M. K. UMA

Received 18 July 2012; Revised 20 July 2012; Accepted 14 October 2012

ABSTRACT. In this paper we introduce the new concept of an intuitionistic fuzzy \mathcal{V} space and intuitionistic fuzzy \mathcal{V} basically disconnected spaces. Besides giving some interesting propositions of these spaces. We also prove Tietze extension theorem for an intuitionistic fuzzy \mathcal{V} basically disconnected spaces

2010 AMS Classification: 54A40, 03E72

Keywords: Intuitionistic fuzzy \mathcal{V} space, Intuitionistic fuzzy \mathcal{V} basically disconnected spaces, Intuitionistic fuzzy real line, Intuitionistic fuzzy unit interval, Lower(resp. upper) intuitionistic fuzzy \mathcal{V} continuous function, Strongly intuitionistic fuzzy \mathcal{V} continuous function.

Corresponding Author: R. Narmada Devi (narmadadevi230gmail.com)

1. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [13]. Fuzzy sets have applications in many fields such as information [10] and control [11]. The theory of fuzzy topological spaces was introduced and developed by Chang [4]. The concept of fuzzy basically disconnected spaces was introduced and studied in [12]. Bruce Hutton [7] constructed an interesting L-fuzzy topological space called the L-fuzzy unit interval which plays the same role in fuzzy topology that the unit interval plays in general topology. Using the concept of L-fuzzy unit interval, Tomasz Kubiaz [8, 9] extended the Urysohn lemma and Tietze extension theorem for the L-fuzzy normal spaces. Atanassov [1] introduced and studied intuitionistic fuzzy topological space and some other concepts. In this paper, we introduced the concept of an intuitionistic fuzzy \mathcal{V} space, intuitionistic fuzzy \mathcal{V} basically disconnected spaces, intuitionistic fuzzy \mathcal{V} continuous function and strongly intuitionistic fuzzy \mathcal{V} continuous function and strongly intuitionistic fuzzy \mathcal{V} continuous function and strongly intuitionistic fuzzy \mathcal{V} continuous function are introduced and strongly intuitionistic fuzzy \mathcal{V} continuous function are interesting Propositions and Remarks are also

discussed. Tietze extension theorem for intuitionistic fuzzy \mathcal{V} basically disconnected spaces has been established.

2. Preliminaries

Definition 2.1 ([5]). Let X be a nonempty fixed set and I is the closed interval [0,1]. An intuitionistic fuzzy set(IFS) A is an object having the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, where the mapping $\mu_A : X \longrightarrow I$ and $\gamma_A : X \longrightarrow I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) for each element $x \in X$ to the set A respectively and $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$ for each $x \in X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form, $A = \{\langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X\}$. For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$. For a given nonempty set X, the family of all IFSs in X is denoted by ζ^X .

Definition 2.2 ([5]). Let X be a nonempty set and the IFSs A and B in the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$. Then

(i) $A \subseteq B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$; (ii) $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \}.$

Definition 2.3 ([5]). The IFSs 0_{\sim} and 1_{\sim} are defined by $0_{\sim} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle : x \in X\}$.

Definition 2.4 ([5]). An intuitionistic fuzzy topology (IFT) in Coker's sense on a nonempty set X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau;$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$;

(iii) $\cup G_i \in \tau$ for arbitrary family $\{G_i \mid i \in I\} \subseteq \tau$.

In this paper by (X, τ) or simply by X we will denote the Coker's intuitionistic fuzzy topological space (IFTS). Each IFS in τ is called intuitionistic fuzzy open set (IFOS) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.5 ([5]). Let A be an IFS in IFTS X. Then

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in X and } G \subseteq A\}$ is called an intuitionistic fuzzy interior of A;

 $clA = \bigcap \{G \mid G \text{ is an IFCS in X and } G \supseteq A\}$ is called an intuitionistic fuzzy closure of A.

Definition 2.6 ([6]). Let *a* and *b* be two real numbers in [0, 1] satisfying the inequality $a + b \leq 1$. Then the pair $\langle a, b \rangle$ is called an intuitionistic fuzzy pair. Let $\langle a_1, b_1 \rangle$, $\langle a_2, b_2 \rangle$ be two intuitionistic fuzzy pairs. Then

- (i) $\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle$ if and only if $a_1 \leq a_2$ and $b_1 \geq b_2$,
- (ii) $\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle$ if and only if $a_1 = a_2$ and $b_1 = b_2$,
- (iii) if $\{\langle a_i, b_i \rangle : i \in J\}$ is a family of intuitionistic fuzzy pairs, then $\forall \langle a_i, b_i \rangle = \langle \forall a_i, \land b_i \rangle$ and $\land \langle a_i, b_i \rangle = \langle \land a_i, \forall b_i \rangle$,
- (iv) the complement of an intuitionistic fuzzy pair $\langle a, b \rangle$ is the intuitionistic fuzzy pair defined by $\overline{\langle a, b \rangle} = \langle b, a \rangle$,

(v) $1^{\sim} = \langle 1, 0 \rangle$ and $0^{\sim} = \langle 0, 1 \rangle$.

Definition 2.7 ([4]). Let X be a nonempty set and $A \subset X$. The characteristic function of A is denoted and defined by $\chi_A(x) = \begin{cases} 1 & if \quad x \in A \\ 0 & if \quad x \notin A \end{cases}$

Definition 2.8 ([2]). Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. Then λ is called fuzzy G_{δ} if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$. The complement of fuzzy G_{δ} is fuzzy F_{σ} .

Definition 2.9 ([3]). A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy basically disconnected if τ_1 -closure of each τ_2 -fuzzy open , τ_2 -fuzzy F_{σ} is τ_2 fuzzy open and τ_2 -closure of each τ_1 -fuzzy open, τ_1 -fuzzy F_{σ} is τ_1 -fuzzy open.

3. Properties of an intuitionistic fuzzy \mathcal{V} basically disconnected spaces

Definition 3.1. Let (X,T) be an intuitionistic fuzzy noncompact space. Let \mathscr{C} be a collection of all intuitionistic fuzzy sets which are both intuitionistic fuzzy closed set and intuitionistic fuzzy compact set in X. Let $U^+ = \{A \in \mathscr{C} : A \cap U \neq 0_{\sim}, U \in T\}$ and $K^- = \{A \in \mathscr{C} : A \cap K = 0_{\sim}, K \text{ is an intuitionistic fuzzy compact set in } X\}$. Then the collection $\mathcal{V} = \{A : \overline{A} \in U^+\} \cup \{B : \overline{B} \in K^-\}$ is said to be intuitionistic fuzzy \mathcal{V} structure on X and the pair (X, \mathcal{V}) is said to be an intuitionistic fuzzy \mathcal{V} space.

Notation 3.2. Each member of an intuitionistic fuzzy \mathcal{V} structure is an intuitionistic fuzzy \mathcal{V} open set. The complement of an intuitionistic fuzzy \mathcal{V} open set is an intuitionistic fuzzy \mathcal{V} closed set.

Example 3.3. Let $X = \{a, b\}$ be a nonempty set. Let $A = \langle x, (\frac{a}{0.4}, \frac{b}{0.4}), (\frac{a}{0.4}, \frac{b}{0.4}) \rangle$ and $B = \langle x, (\frac{a}{0.5}, \frac{b}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}) \rangle$ be intuitionistic fuzzy sets of X. Then the family $T = \{0_{\sim}, 1_{\sim}, A, B\}$ is an intuitionistic fuzzy topology on X. Thus (X, T) is an intuitionistic fuzzy noncompact space. Now, $\mathscr{C} = \{0_{\sim}, \overline{A}, \overline{B}, 1_{\sim}\}$ is the collection of all intuitionistic fuzzy sets which are both intuitionistic fuzzy closed set and intuitionistic fuzzy compact set in X. Consider $U^+ = \{\overline{A}, \overline{B}, 1_{\sim}\}$ and $K^- = \{0_{\sim}, \overline{A}, \overline{B}, 1_{\sim}\}$. Then $\mathcal{V} = \{0_{\sim}, 1_{\sim}, A, B\}$ is an intuitionistic fuzzy \mathcal{V} structure. Thus, (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} space.

Definition 3.4. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. For an intuitionistic fuzzy set A on X, the intuitionistic fuzzy \mathcal{V} closure of A and the intuitionistic fuzzy \mathcal{V} interior of A are defined by

 $IF\mathcal{V}cl(A) = \bigcap \{B : B = \langle x, \mu_B, \gamma_B \rangle \text{ is an intuitionistic fuzzy } \mathcal{V}closed \text{ set in } X \text{ and } A \subseteq B \}$

$$IFVint(A) = \bigcup \{B : B = \langle x, \mu_B, \gamma_B \rangle \text{ is an intuitionistic fuzzy Vopen set in } X$$

and $B \subseteq A \}.$

Remark 3.5. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Then for any intuitionistic fuzzy set A in X,

(i) $IFVint(A) \subseteq A \subseteq IFVcl(A)$

(ii)
$$IF\mathcal{V}cl(A) = IF\mathcal{V}int(A)$$

(ii) $IFVint(\overline{A}) = \overline{IFVcl(A)}$

Definition 3.6. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. An intuitionistic fuzzy set A is said to be intuitionistic fuzzy $\mathcal{V}G_{\delta}$ set(inshort, $IF\mathcal{V}G_{\delta}S$) if $A = \bigcap_{i=1}^{\infty} A_i$, where each $A_i \in \mathcal{V}$. The complement of intuitionistic fuzzy $\mathcal{V}G_{\delta}$ set is said to be an intuitionistic fuzzy $\mathcal{V}F_{\sigma}(\text{inshort}, IF\mathcal{V}F_{\sigma}S)$ set.

Notation 3.7. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space.

- (i) An intuitionistic fuzzy \mathcal{V} open $F_{\sigma}(\text{inshort}, IF\mathcal{V}oF_{\sigma})$ set is an intuitionistic fuzzy set which is both intuitionistic fuzzy \mathcal{V} open and intuitionistic fuzzy $\mathcal{V}F_{\sigma}$.
- (ii) An intuitionistic fuzzy \mathcal{V} closed G_{δ} (inshort, $IF\mathcal{V}cG_{\delta}$)set is an intuitionistic fuzzy set which is both intuitionistic fuzzy \mathcal{V} closed and intuitionistic fuzzy $\mathcal{V}G_{\delta}$
- (iii) An intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ (inshort, $IF\mathcal{VCOGF}$)set is an intuitionistic fuzzy set which is both intuitionistic fuzzy \mathcal{V} open F_{σ} and intuitionistic fuzzy \mathcal{V} closed G_{δ}

Definition 3.8. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Then (X, \mathcal{V}) is said to be an intuitionistic fuzzy \mathcal{V} basically disconnected space if the intuitionistic fuzzy \mathcal{V} closure of every intuitionistic fuzzy \mathcal{V} open F_{σ} set is an intuitionistic fuzzy \mathcal{V} open set.

Example 3.9. In the above Example 3.3, (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space.

Proposition 3.10. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Then the following statements are equivalent

- (i) (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space
- (ii) For each intuitionistic fuzzy \mathcal{V} closed G_{δ} set A, we have $IF\mathcal{V}$ int(A) is an intuitionistic fuzzy \mathcal{V} closed set
- (iii) For each \mathcal{V} open F_{σ} set A, we have $IF\mathcal{V}cl(IF\mathcal{V}int(\overline{A})) = \overline{IF\mathcal{V}cl(A)}$
- (iv) For an intuitionistic fuzzy \mathcal{V} open F_{σ} set A and for any intuitionistic fuzzy set B with $IF\mathcal{V}cl(A) = \overline{B}$, we have $IF\mathcal{V}cl(B) = \overline{IF\mathcal{V}cl(A)}$

Proof. (i) \Rightarrow (ii) Let A be any intuitionistic fuzzy \mathcal{V} closed G_{δ} set. Then \overline{A} is an intuitionistic fuzzy \mathcal{V} open F_{σ} set. By assumption(i) $IF\mathcal{V}cl(\overline{A})$ is an intuitionistic fuzzy \mathcal{V} open set. Now, $IF\mathcal{V}cl(\overline{A}) = \overline{IF\mathcal{V}int(A)}$. Hence $IF\mathcal{V}int(A)$ is an an intuitionistic fuzzy \mathcal{V} closed set.

(ii) \Rightarrow (iii) Let A be any intuitionistic fuzzy \mathcal{V} open F_{σ} set. Then A is an intuitionistic fuzzy \mathcal{V} closed G_{δ} set. By assumption(ii) $IF\mathcal{V}int(\overline{A})$ is an intuitionistic fuzzy \mathcal{V} closed set. Consider $IF\mathcal{V}cl(IF\mathcal{V}int(\overline{A})) = IF\mathcal{V}int(\overline{A}) = \overline{IF\mathcal{V}cl(A)}$.

(iii) \Rightarrow (iv) Let A be an intuitionistic fuzzy \mathcal{V} open F_{σ} set and for any intuitionistic fuzzy set B such that $IF\mathcal{V}cl(A) = \overline{B}$. By (iii),

$$IF\mathcal{V}cl(IF\mathcal{V}int(\overline{A})) = \overline{IF\mathcal{V}cl(A)} = IF\mathcal{V}int(\overline{A})$$

That is,

$$IF\mathcal{V}cl(B) = IF\mathcal{V}int(\overline{A})$$

552

(iv) \Rightarrow (i) Let A be any intuitionistic fuzzy \mathcal{V} open F_{σ} set. Let $\overline{IF\mathcal{V}cl(A)} = B$. By (iv), it follow that $IF\mathcal{V}cl(B) = \overline{IF\mathcal{V}cl(A)}$. That is, $\overline{IF\mathcal{V}cl(A)}$ is an intuitionistic fuzzy \mathcal{V} closed set. This implies that $IF\mathcal{V}cl(A)$ is an intuitionistic fuzzy \mathcal{V} open set. Hence, (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space. \Box

Proposition 3.11. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Then (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space if and only if for each intuitionistic fuzzy \mathcal{V} open F_{σ} set A and intuitionistic fuzzy \mathcal{V} closed G_{δ} set B such that $A \subseteq B$, $IF\mathcal{V}cl(A) \subseteq IF\mathcal{V}int(B)$.

Proof. Let A be intuitionistic fuzzy \mathcal{V} open F_{σ} set and B be intuitionistic fuzzy \mathcal{V} closed G_{δ} set such that $A \subseteq B$. Then by (ii) of Proposition 3.10, $IF\mathcal{V}int(B)$ is an intuitionistic fuzzy \mathcal{V} closed set. Also, since A is an intuitionistic fuzzy \mathcal{V} open F_{σ} set, $IF\mathcal{V}cl(A) \subseteq IF\mathcal{V}int(B)$. Conversely, let B be any intuitionistic fuzzy \mathcal{V} closed G_{δ} set. Then $IF\mathcal{V}int(B)$ is an intuitionistic fuzzy \mathcal{V} open set and $IF\mathcal{V}int(B) \subseteq B$. By assumption, $IF\mathcal{V}cl(IF\mathcal{V}int(B)) \subseteq IF\mathcal{V}int(B)$. Also we know that $IF\mathcal{V}int(B) \subseteq IF\mathcal{V}int(B)$. This implies that $IF\mathcal{V}cl(IF\mathcal{V}int(B)) = IF\mathcal{V}int(B)$. Therefore, $IF\mathcal{V}int(B)$ is an intuitionistic fuzzy \mathcal{V} closed set. Hence by (ii) of Proposition 3.10, it follows that (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space. \Box

Remark 3.12. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} basically disconnected space. Let $\{A_i, \overline{B_i}/i \in N\}$ be collection such that A_i 's are intuitionistic fuzzy \mathcal{V} open F_{σ} sets and B_i intuitionistic fuzzy \mathcal{V} closed G_{δ} sets and let A and B be intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ sets. If $A_i \subseteq A \subseteq B_j$ and $A_i \subseteq B \subseteq B_j$ for all $i, j \in N$, then there exists an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set C such that $IF\mathcal{V}cl(A_i) \subseteq C \subseteq IF\mathcal{V}int(B_j)$ for all $i, j \in N$.

Proof. By Proposition 3.11, $IF\mathcal{V}cl(A_i) \subseteq IF\mathcal{V}cl(A) \cap IF\mathcal{V}int(B) \subseteq IF\mathcal{V}int(B_j)$ for all $i, j \in N$. Letting $C = IF\mathcal{V}cl(A) \cap IF\mathcal{V}int(B)$ in the above, we have C is an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set satisfying the required conditions. \Box

Proposition 3.13. Let (X, \mathcal{V}) be intuitionistic fuzzy \mathcal{V} basically disconnected space. Let $\{A_q\}_{q\in Q}$ and $\{B_q\}_{q\in Q}$ be monotone increasing collections of an intuitionistic fuzzy \mathcal{V} open F_{σ} sets and intuitionistic fuzzy \mathcal{V} closed G_{δ} sets of (X, \mathcal{V}) . Suppose that $A_{q_1} \subseteq B_{q_2}$ whenever $q_1 < q_2$ (Q is the set of all rational numbers). Then there exists a monotone increasing collection $\{C_q\}_{q\in Q}$ of an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ sets of (X, \mathcal{V}) such that $IF\mathcal{V}$ cl $(A_{q_1}) \subseteq C_{q_2}$ and $C_{q_1} \subseteq$ $IF\mathcal{V}$ int (B_{q_2}) whenever $q_1 < q_2$.

Proof. Let us arrange all rational numbers into a sequence $\{q_n\}$ (without repetitions). For every $n \geq 2$, we shall define inductively a collection $\{C_{q_i}/1 \leq i < n\} \subset \zeta^X$ such that

$$IF\mathcal{V}cl(A_q) \subseteq C_{q_i}$$
 if $q < q_i, C_{q_i} \subseteq IF\mathcal{V}int(B_q)$ if $q_i < q$, for all $i < n$ (S_n)

By Proposition 3.11, the countable collections $\{IF\mathcal{V}cl(A_q)\}\$ and $\{IF\mathcal{V}int(B_q)\}\$ satisfy $IF\mathcal{V}cl(A_{q_1}) \subseteq IF\mathcal{V}int(B_{q_2})\$ if $q_1 < q_2$. By Remark 3.12, there exists an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set D_1 such that

$$IF\mathcal{V}cl(A_{q_1}) \subseteq D_1 \subseteq IF\mathcal{V}int(B_{q_2})$$

553

Letting $C_{q_1} = D_1$, we get (S_2) . Assume that intuitionistic fuzzy sets C_{q_i} are already defined for i < n and satisfy (S_n) . Define $E = \bigcup \{C_{q_i}/i < n, q_i < q_n\} \cup A_{q_n}$ and $F = \cap \{C_{q_j}/j < n, q_j > q_n\} \cap B_{q_n}$. Then $IF\mathcal{V}cl(C_{q_i}) \subseteq IF\mathcal{V}cl(E) \subseteq IF\mathcal{V}int(C_{q_j})$ and $IF\mathcal{V}cl(C_{q_i}) \subseteq IF\mathcal{V}int(F) \subseteq IF\mathcal{V}int(C_{q_j})$ whenever $q_i < q_n < q_j(i, j < n)$, as well as $A_q \subseteq IF\mathcal{V}cl(E) \subseteq B_{q'}$ and $A_q \subseteq IF\mathcal{V}int(F) \subseteq B_{q'}$ whenever $q < q_n < q'$. This shows that the countable collections $\{C_{q_i}/i < n, q_i < q_n\} \cup \{A_q/q < q_n\}$ and $\{C_{q_j}/j < n, q_j > q_n\} \cup \{B_q/q > q_n\}$ together with E and F fulfil the conditions of Remark 3.12. Hence, there exists an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set D_n such that $IF\mathcal{V}cl(D_n) \subseteq B_q$ if $q_n < q$, $A_q \subseteq IF\mathcal{V}int(D_n)$ if $q < q_n$, $IF\mathcal{V}cl(C_{q_i}) \subseteq$ $IF\mathcal{V}int(D_n)$ if $q_i < q_n$ $IF\mathcal{V}cl(D_n) \subseteq IF\mathcal{V}int(C_{q_i})$ if $q_n < q_j$ where $1 \le i, j \le$ n-1. Letting $C_{q_n} = D_n$ we obtain an intuitionistic fuzzy sets $C_{q_1}, C_{q_2}, C_{q_3}, \dots, C_{q_n}$ that satisfy $(\mathbf{S_{n+1}})$. Therefore, the collection $\{C_{q_i}/i = 1, 2, ...\}$ has the required property.

4. Tietze extension theorem for an intuitionistic fuzzy \mathcal{V} basically disconnected spaces

Notation 4.1. The family of all intuitionistic fuzzy sets in \mathbb{R} is denoted by $\zeta^{\mathbb{R}}$

Definition 4.2. An intuitionistic fuzzy real line $\mathbb{R}_{\mathbb{I}}(I)$ is the set of all monotone decreasing intuitionistic fuzzy set $A \in \zeta^{\mathbb{R}}$ satisfying $\cup \{A(t) : t \in \mathbb{R}\} = 1^{\sim}$ and $\cap \{A(t) : t \in \mathbb{R}\} = 0^{\sim}$ after the identification of an intuitionistic fuzzy sets $A, B \in \mathbb{R}_{\mathbb{I}}(I)$ if and only if A(t-) = B(t-) and A(t+) = B(t+) for all $t \in \mathbb{R}$ where $A(t-) = \cap \{A(s) : s < t\}$ and $A(t+) = \cup \{A(s) : s > t\}$.

The intuitionistic fuzzy unit interval $\mathbb{I}_{\mathbb{I}}(I)$ is a subset of $\mathbb{R}_{\mathbb{I}}(I)$ such that $[A] \in \mathbb{I}_{\mathbb{I}}(I)$ if the membership and nonmembership of an intuitionistic fuzzy set $A \in \zeta^{\mathbb{R}}$ are defined by $\mu_A(t) = \begin{cases} 1, & t < 0; \\ 0, & t > 1. \end{cases}$ and $\gamma_A(t) = \begin{cases} 0, & t < 0; \\ 1, & t > 1. \end{cases}$ respectively.

The natural intuitionistic fuzzy topology on $\mathbb{R}_{\mathbb{I}}(I)$ is generated from the subbasis $\{L^{\mathbb{I}}_t, R^{\mathbb{I}}_t : s < t\}$ where $L^{\mathbb{I}}_t, R^{\mathbb{I}}_t : \mathbb{R}_{\mathbb{I}}(I) \to \mathbb{I}_{\mathbb{I}}(I)$ are given by $L^{\mathbb{I}}_t[A] = \overline{A(t-)}$ and $R^{\mathbb{I}}_t[A] = A(t+)$ respectively.

Definition 4.3. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. A function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ is said be lower (resp. upper) intuitionistic fuzzy \mathcal{V} continuous function if $f^{-1}(R_t^{\mathbb{I}})(f^{-1}(L_t^{\mathbb{I}}))$ is an intuitionistic fuzzy \mathcal{V} open F_{σ} (intuitionistic fuzzy \mathcal{V} open F_{σ} and intuitionistic fuzzy \mathcal{V} closed G_{δ}) set, for each $t \in \mathbb{R}$.

Notation 4.4. Let X be any nonempty set and $A \in \zeta^X$. Then for $x \in X$, $\langle \mu_A(x), \gamma_A(x) \rangle$ is denoted by A^{\sim} .

Definition 4.5. Let X be any nonempty set. An intuitionistic fuzzy characteristic function of an intuitionistic fuzzy set $A \in \zeta^X$ is a map $\psi_A : X \to \mathbb{I}_{\mathbb{I}}(I)$ is defined by $\psi_A(x) = A^{\sim}$, for each $x \in X$.

Proposition 4.6. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space and let A be an intuitionistic fuzzy set in X. Let $f : X \to \mathbb{R}_{\mathbb{I}}(I)$ be such that

$$f(x)(t) = \begin{cases} 1^{\sim} & if \quad t < 0\\ A^{\sim} & if \quad 0 \le t \le 1\\ 0^{\sim} & if \quad t > 1 \end{cases}$$
554

for all $x \in X$ and $t \in \mathbb{R}$. Then f is an lower(resp. upper) intuitionistic fuzzy \mathcal{V} continuous function if and only if A is an intuitionistic fuzzy \mathcal{V} open F_{σ} (intuitionistic fuzzy \mathcal{V} open F_{σ} and intuitionistic fuzzy \mathcal{V} closed G_{δ})set.

Proof.

$$f^{-1}(R_t^{\mathbb{I}}) = \begin{cases} 1_{\sim} & \text{if } t < 0\\ A & \text{if } 0 \le t \le 1\\ 0_{\sim} & \text{if } t > 1 \end{cases}$$

implies that f is an lower intuitionistic fuzzy \mathcal{V} continuous function if and only if A is an intuitionistic fuzzy \mathcal{V} open F_{σ} set.

$$f^{-1}(\overline{L_t^{\mathbb{I}}}) = \begin{cases} 1_{\sim} & \text{if} \quad t < 0\\ A & \text{if} \quad 0 \le t \le 1\\ 0_{\sim} & \text{if} \quad t > 1 \end{cases}$$

implies that f is an upper intuitionistic fuzzy \mathcal{V} continuous function if and only if A is an intuitionistic fuzzy \mathcal{V} closed G_{δ} set. Hence the proof is complete.

Remark 4.7. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Let ψ_A be an intuitionistic fuzzy characteristic function of an intuitionistic fuzzy set A in X. Then ψ_A is an lower(resp. upper) intuitionistic fuzzy \mathcal{V} continuous function if and only if Ais an intuitionistic fuzzy \mathcal{V} open F_{σ} (intuitionistic fuzzy \mathcal{V} open F_{σ} and intuitionistic fuzzy \mathcal{V} closed G_{δ})set.

Proof. The proof follows from Proposition 4.6.

Definition 4.8. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. A function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ is said to be an strongly intuitionistic fuzzy \mathcal{V} continuous function if $f^{-1}(R_t^{\mathbb{I}})$ is an intuitionistic fuzzy \mathcal{V} open F_{σ} and $f^{-1}(L_t^{\mathbb{I}})$ is both intuitionistic fuzzy \mathcal{V} open F_{σ} and intuitionistic fuzzy \mathcal{V} closed G_{δ} set, for each $t \in \mathbb{R}$.

Notation 4.9. The collection of all strongly intuitionistic fuzzy \mathcal{V} continuous functions in an intuitionistic fuzzy \mathcal{V} space (X, \mathcal{V}) with values in $\mathbb{I}_{\mathbb{I}}(I)$ is denoted by $\mathbb{S}_{\mathcal{V}}$.

Proposition 4.10. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} space. Then the following conditions are equivalent

- (i) (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space
- (ii) If g, h : X → ℝ_I(I), g is lower intuitionistic fuzzy V continuous function, h is upper intuitionistic fuzzy V continuous function and g ⊆ h, then there exists an f ∈ S_V such that g ⊆ f ⊆ h
- (iii) If \overline{A} and B are intuitionistic fuzzy \mathcal{V} open F_{σ} sets such that $B \subseteq A$, then there exists strongly intuitionistic fuzzy \mathcal{V} continuous function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ such that $B \subseteq f^{-1}(\overline{L_{\mathbb{I}}^{\mathbb{I}}}) \subseteq f^{-1}(R_{\mathbb{I}}^{\mathbb{I}}) \subseteq A$.

Proof. (i) \Rightarrow (ii) Define $A_r = h^{-1}(L_r^{\mathbb{I}})$ and $B_r = g^{-1}(\overline{R_r^{\mathbb{I}}})$, for all $r \in \mathbb{Q}$ (\mathbb{Q} is the set of all rationals). Clearly, $\{A_r\}_{r\in\mathbb{Q}}$ and $\{B_r\}_{r\in\mathbb{Q}}$ are monotone increasing families of an intuitionistic fuzzy \mathcal{V} open F_{σ} sets and intuitionistic fuzzy \mathcal{V} closed G_{δ} sets of (X, \mathcal{V}) . Moreover $A_r \subseteq B_s$ if r < s. By Proposition 3.13, there exists a monotone increasing family $\{C_r\}_{r\in\mathbb{Q}}$ of an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ sets of (X, \mathcal{V}) such that $IF\mathcal{V}cl(A_r) \subseteq C_s$ and $C_r \subseteq IF\mathcal{V}int(B_s)$ whenever r < s

 $(r, s \in \mathbb{Q})$. Letting $V_t = \bigcap_{r < t} \overline{C_r}$ for $t \in \mathbb{R}$, we define a monotone decreasing family $\{V_t \mid t \in \mathbb{R}\} \subseteq \zeta^X$. Moreover we have $IF\mathcal{V}cl(V_t) \subseteq IF\mathcal{V}int(V_s)$ whenever s < t. We have.

$$\bigcup_{t \in \mathbb{R}} V_t = \bigcup_{t \in \mathbb{R}} \bigcap_{r < t} \overline{C_r} \supseteq \bigcup_{t \in \mathbb{R}} \bigcap_{r < t} \overline{B_r} = \bigcup_{t \in \mathbb{R}} \bigcap_{r < t} g^{-1}(R_r^{\mathbb{I}})$$
$$= \bigcup_{t \in \mathbb{R}} g^{-1}(\overline{L_t^{\mathbb{I}}}) = g^{-1}(\bigcup_{t \in \mathbb{R}} \overline{L_t^{\mathbb{I}}}) = 1_{\sim}$$

Similarly, $\bigcap_{t\in\mathbb{R}} V_t = 0_{\sim}$. Now define a function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ possessing required conditions. Let $f(x)(t) = V_t(x)$, for all $x \in X$ and $t \in \mathbb{R}$. By the above discussion, it follows that f is well defined. To prove f is an strongly intutionistic fuzzy \mathcal{V} continuous function. Observe that $\bigcup_{s>t} V_s = \bigcup_{s>t} IF\mathcal{V}int(V_s)$ and $\bigcap_{s<t} V_s =$ $\bigcap_{s < t} IF\mathcal{V}cl(V_s). \text{ Then } f^{-1}(R_t^{\mathbb{I}}) = \bigcup_{s > t} V_s = \bigcup_{s > t} IF\mathcal{V}int(V_s) \text{ is an intuitionistic}$ fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set and $f^{-1}(\overline{L_t^{\mathbb{I}}}) = \bigcap_{s < t} V_s = \bigcap_{s < t} IF\mathcal{V}cl(V_s)$ is an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set. Therefore, f is strongly intuitionistic fuzzy \mathcal{V} continuous function. To conclude the proof it remains to show that $g \subseteq f \subseteq h$. That is $g^{-1}(\overline{L_t^{\mathbb{I}}}) \subseteq f^{-1}(\overline{L_t^{\mathbb{I}}}) \subseteq h^{-1}(\overline{L_t^{\mathbb{I}}})$ and $g^{-1}(R_t^{\mathbb{I}}) \subseteq f^{-1}(R_t^{\mathbb{I}}) \subseteq h^{-1}(R_t^{\mathbb{I}})$ for each $t \in \mathbb{R}$. We have,

$$g^{-1}(\overline{L_t^{\mathbb{I}}}) = \bigcap_{s < t} g^{-1}(\overline{L_s^{\mathbb{I}}}) = \bigcap_{s < t} \bigcap_{r < s} g^{-1}(R_r^{\mathbb{I}})$$
$$= \bigcap_{s < t} \bigcap_{r < s} \overline{B_r} \subseteq \bigcap_{s < t} \bigcap_{r < s} \overline{C_r} = \bigcap_{s < t} V_s = f^{-1}(\overline{L_t^{\mathbb{I}}})$$

and

Similarly,

$$g^{-1}(R_t^{\mathbb{I}}) = \bigcup_{s>t} g^{-1}(R_s^{\mathbb{I}}) = \bigcup_{s>t} \bigcup_{r>s} g^{-1}(R_r^{\mathbb{I}})$$
$$= \bigcup_{s>t} \bigcup_{r>s} \overline{B_r} \subseteq \bigcup_{s>t} \bigcap_{rt} V_s = f^{-1}(R_t^{\mathbb{I}})$$

and

$$f^{-1}(R_t^{\mathbb{I}}) = \bigcup_{s>t} V_s = \bigcup_{s>t} \bigcap_{r< s} \overline{C_r} \subseteq \bigcup_{s>t} \bigcup_{r>s} \overline{A_r}$$
$$= \bigcup_{s>t} \bigcup_{r>s} h^{-1}(\overline{L_r^{\mathbb{I}}}) = \bigcup_{s>t} h^{-1}(R_s^{\mathbb{I}}) = h^{-1}(R_t^{\mathbb{I}})$$

Hence, the condition (ii) is proved.

(ii) \Rightarrow (iii) Let \overline{A} be an intuitionistic fuzzy Vopen F_{σ} set and B be an intuitionistic fuzzy \mathcal{V} closed G_{δ} set such that $B \subseteq A$. Then $\psi_B \subseteq \psi_A$ where ψ_B, ψ_A are lower and upper intuitionistic fuzzy \mathcal{V} continuous functions respectively. By (ii), there exists a strongly intuitionistic fuzzy \mathcal{V} continuous function $f: X \to \mathbb{I}_{\mathbb{I}}(I)$ such that

 $\psi_B \subseteq f \subseteq \psi_A$. Clearly, $f(x) \in \mathbb{I}_{\mathbb{I}}(I)$ for all $x \in X$ and $B = \psi_B^{-1}(\overline{L_1^{\mathbb{I}}}) \subseteq f^{-1}(\overline{L_1^{\mathbb{I}}}) \subseteq f^{-1}(\overline{L_1^{\mathbb{I}}}) \subseteq f^{-1}(\overline{R_0^{\mathbb{I}}}) \subseteq \psi_A^{-1}(R_0^{\mathbb{I}}) = A$. Therefore, $B \subseteq f^{-1}(\overline{L_1^{\mathbb{I}}}) \subseteq f^{-1}(R_0^{\mathbb{I}}) \subseteq A$.

(iii) \Rightarrow (i) Since $f^{-1}(L_1^{\mathbb{I}})$ and $f^{-1}(R_0^{\mathbb{I}})$ are intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ sets and by Proposition 3.11, (X, \mathcal{V}) is an intuitionistic fuzzy \mathcal{V} basically disconnected space.

Notation 4.11. Let X be any nonempty set. Let $A \subset X$. Then an intuitionistic fuzzy set χ_A^* is of the form $\langle x, \chi_A(x), 1 - \chi_A(x) \rangle$.

Proposition 4.12. Let (X, \mathcal{V}) be an intuitionistic fuzzy \mathcal{V} basically disconnected space. Let $A \subset X$ such that χ_A^* is an intuitionistic fuzzy \mathcal{V} open F_{σ} set in X. Let $f: (A, \mathcal{V}/A) \to \mathbb{I}_{\mathbb{I}}(I)$ be an strongly intuitionistic fuzzy \mathcal{V} continuous function. Then f has an strongly intuitionistic fuzzy \mathcal{V} continuous extension over (X, \mathcal{V}) .

Proof. Let $g, h: X \to \mathbb{I}_{\mathbb{I}}(I)$ be such that g = f = h on A and $g(x) = 0^{\sim}$, $h(x) = 1^{\sim}$ if $x \notin A$. For every $t \in \mathbb{R}$, We have,

$$g^{-1}(R_t^{\mathbb{I}}) = \begin{cases} B_t \cap \chi_A^* & \text{if } t \ge 0, \\ 1_{\sim} & \text{if } t < 0, \end{cases}$$

where B_t is an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set such that $B_t/A = f^{-1}(R_t^{\mathbb{I}})$ and

$$h^{-1}(L_t^{\mathbb{I}}) = \begin{cases} C_t \cap \chi_A^* & \text{if } t \le 1 \\ 1_{\sim} & \text{if } t > 1, \end{cases}$$

where C_t is an intuitionistic fuzzy \mathcal{V} closed open $G_{\delta}F_{\sigma}$ set such that $C_t/A = f^{-1}(L_t^{\mathbb{I}})$ and. Thus, g is lower intuitionistic fuzzy \mathcal{V} continuous function and h is upper intuitionistic fuzzy \mathcal{V} continuous function with $g \subseteq h$. By Proposition 4.10, there is an strongly intuitionistic fuzzy \mathcal{V} continuous function $F : X \to \mathbb{I}_{\mathbb{I}}(I)$ such that $g \subseteq F \subseteq h$. Hence $F \equiv f$ on A.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] G. Balasubramanian, Maximal fuzzy topologies, Kybernetika (Prague) 31(5) (1995) 459–464.
- [3] G. Balasubramanian and V. Chandrasekar, On pairwise fuzzy basically disconnectd spaces, East Asian Math. J. 18 (2002) 85–93.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81–89.
- [6] D. Coker and M. Demirci, On fuzzy inclusion in the intuitionistic sense, J. Fuzzy Math. 4(3) (1996) 701–714.
- [7] B. Hutton, Normality in fuzzy topological Spaces, J. Math. Anal. Appl. 50 (1975) 74–79.
- [8] T. Kubiak, L-fuzzy noraml spaces and Tietze extension theorem, J. Math. Anal. Appl. 25 (1987) 141–153.
- [9] T. Kubiak, Extending continuous L-real functions, Math. Japon. 31(6) (1986) 875-887.
- [10] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.
- [11] M. Sugeno, An introductory survey of control, Inform. Sci. 36 (1985) 59–83.
- [12] G. Thangaraj and G. Balasubramanian, On fuzzy basically disconnected spaces, J. Fuzzy Math. 9 (2001) 103–110.
- [13] L. A. Zadeh, Fuzzy Sets, Information and Control 9 (1965) 338–353.

 $\underline{R. \ NARMADA \ DEVI} \ (\texttt{narmadadevi230gmail.com})$

Department of mathemathics, Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.

 $\underline{E. ROJA} (\texttt{arudhay@yahoo.co.in})$

Department of mathemathics,Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.

 $\underline{M.~K.~UMA}~(\texttt{arudhay@yahoo.co.in})$

Department of mathemathics,Sri Saradha College for Women, Salem - 16, Tamil Nadu, India.