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1. Introduction

A classic paper of Z. pawlak [9] of Rough Sets, published in 1982, which declared
the birth of the rough set theory. A lot of mathematicians, logicians, and researchers
of computers have become interested in the theory and have done a lot of research
work of rough set theory [5, 7] and applications. Its applications are shown in wide
fields such as machine learning [4], data mining [3], decision- making support and
analysis [8, 10, 11] and expert system [12]. In this paper, a new definitions of lower
and upper approximations via ideal have been introduced. These new definitions
are compared with Pawlak’s, Yao’s and Allam’s definitions. It’s therefore shown
that the current definitions are more generally. It’s shown that the present method
decreases the boundary region and we get a topology finer than Allam’s one which
is a generalization of that obtained by Yao’s method. In addition, T1 topological
spaces are obtained by relations and ideals which are not discrete.

2. Preliminaries

2.1. Pawlak approximation space.

Definition 2.1 ([9]). Let R be an equivalence relation on a universe X, [x]R be the
equivalence class containing x. For any set A ⊆ X, the lower approximation R(A)
and the upper approximation R(A) are defined by:

(2.1) R(A) = {x ∈ X : [x]R ⊆ A}
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(2.2) R(A) = {x ∈ X : [x]R ∩A 6= φ}

Theorem 2.2 ([14]). The upper approximation, defined by (2.2), have the following
properties: for subsets A, B ⊆ X,

(i) R(φ) = φ,
(ii) A ⊆ R(A),
(iii) R(A ∪B) = R(A) ∪R(B),
(iv) R(R(A)) = R(A),
(v) R(A) = (R(A

′
))

′
.

where A′ denotes the complement of A.

Corollary 2.3. Let R be an equivalence relation on X. Then the operator R on
P (X) defined by (2.2) satisfies the Kuratowski’s axioms and induces a topology on
X called τR given by

(2.3) τR = {A ⊆ X : R(A′) = A′}

2.2. Yao approximation space.

Definition 2.4 ([13]). Let R be a binary relation on X. For any set A ⊆ X, a pair
of lower and upper approximations, R(A) and R(A), are defined by:

(2.4) R(A) = {x ∈ X : xR ⊆ A}

(2.5) R(A) = {x ∈ X : xR ∩A 6= φ}
where xR, which is called the after set of x, is

(2.6) xR = {y ∈ X : xRy}

Theorem 2.5. If R is a Preorder relation on X (a reflexive and a transitive relation
on X), then the upper approximation, defined by (2.5), satisfies the properties in
Theorem 2.2.

2.3. Allam approximation space.

Definition 2.6 ([1]). Let R be a reflexive binary relation on X. For any set A ⊆ X,
a pair of lower and upper approximations, R(A) and R(A), are defined by:

(2.7) R(A) = {x ∈ X : 〈x〉R ⊆ A}

(2.8) R(A) = {x ∈ X : 〈x〉R ∩A 6= φ}
where,

(2.9) 〈x〉R = ∩{pR : x ∈ pR}

Proposition 2.7 ([1]). Let R be a binary relation on X and y ∈ 〈x〉R. Then

(2.10) 〈y〉R ⊆ 〈x〉R
Theorem 2.8 ([2]). Let R be a reflexive relation on X. Then the upper approxima-
tion, defined by (2.8), satisfies the properties in Theorem 2.2.
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Theorem 2.9 ([2]). Let R be a binary relation on X. Then the operator
clR : P (X) → P (X)

given by

(2.11) clR(A) = A ∪ {x ∈ X : 〈x〉R ∩A 6= φ}
satisfies Kuratowski’s axioms.

Definition 2.10 ([6]). A non empty collection I of subsets of a set X is said to be
an ideal on X, if it satisfies the following conditions

(i) A ∈ I and B ∈ I ⇒ A ∪B ∈ I,
(ii) A ∈ I and B ⊆ A ⇒ B ∈ I,

i.e., I is closed under finite unions and under subsets.

Example 2.11 ([6]). Let X be a non empty set. Then the following families are
ideals on X

(i) I = {φ}
(ii) I = P (X) = {A : A ⊆ X}
(iii) If = {A ⊆ X : A is finite}, called ideal of finite subsets of X
(iv) Ic = {A ⊆ X : A is countable}, called ideal of countable subsets of X
(v) IA = {B ⊆ X : B ⊆ A}

3. Rough sets via ideal

Definition 3.1. Let R be a reflexive relation on X, A ⊆ X and I be an ideal on X,
The R∗− upper and R∗− lower approximations of A are defined respectively by:

(3.1) R∗(A) := {x ∈ X : 〈x〉R ∩A 6∈ I}

(3.2) R∗(A) := {x ∈ X : 〈x〉R ∩A′ ∈ I}

Theorem 3.2. Let I = {φ} in Definition 3.1.
(i) If R is an equivalence relation, then we get Pawlak’s Definition 2.1
(ii) If R is a preorder relation, then we get Yao’s Definition 2.4
(iii) If R is reflexive, then we get Allam’s Definition 2.6.

Proof. Straightforward. �

Theorem 3.3. Let R be a reflexive relation on X and I and J be ideals on X. Then
the R∗− upper approximation, defined in (3.1), satisfies the following properties:

(i) R∗(φ) = φ,
(ii) A ⊆ B ⇒ R∗(A) ⊆ R∗(B),
(iii) R∗(A ∪B) = R∗(A) ∪R∗(B),
(iv) R∗(R∗(A)) ⊆ R∗(A),
(v) I ⊆ J ⇒ R∗

J (A) ⊆ R∗
I(A),

(vi) R∗(A) = (R∗(A′))′,
(vii) A * R∗(A), in general.
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Proof. (i) Straightforward.
(ii) Let x ∈ R∗(A). Then 〈x〉R ∩ A 6∈ I. Since 〈x〉R ∩ A ⊆ 〈x〉R ∩ B, it follows

that 〈x〉R ∩B 6∈ I, and hence x ∈ R∗(B). Then the result.
(iii) We want to show that R∗(A ∪B) ⊆ R∗(A) ∪R∗(B) and the other inclusion

follows from part (ii).
Let x ∈ R∗(A ∪B). Then 〈x〉R ∩ (A ∪B) 6∈ I. It follows that
〈x〉R ∩ (A) 6∈ I or 〈x〉R ∩ (B) 6∈ I, and hence x ∈ R∗(A) or x ∈ R∗(B), i.e.
x ∈ R∗(A) ∪R∗(B).

(iv) Let x ∈ R∗(R∗(A)). Then 〈x〉R ∩ R∗(A) 6∈ I, and hence 〈x〉R ∩ R∗(A) 6= φ.
Hence, there exists y ∈ 〈x〉R∩R∗(A). It follows that 〈y〉R ⊆ 〈x〉R by Proposition 2.7,
and 〈y〉R ∩A 6∈ I. Since 〈y〉R ∩A ⊆ 〈x〉R ∩A. Hence 〈x〉R ∩A 6∈ I, i.e. x ∈ R∗(A).

(v) Let x ∈ R∗
J (A). Then 〈x〉R∩A 6∈ J , since I ⊆ J . It follows that 〈x〉R∩A 6∈ I,

i.e. x ∈ R∗
I(A).

(vi) (R∗(A′))′ = {x ∈ X : 〈x〉R ∩A′ 6∈ I}′ = {x ∈ X : 〈x〉R ∩A′ ∈ I} = R∗(A).
(vii) We give an example. Let X = {a, b, c, d}. Then I = {φ, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c}} is ideal on X, and let R = 4∪ {(a, b), (a, c), (b, c), (b, d),
(c, d), (c, a)}, where 4 is the identity relation on X. Then R∗({a}) = φ. �

Definition 3.4. Let R be a reflexive relation on X, A ⊆ X and I be an ideal on
X. The upper approximation of A is defined by

(3.3) R(A) := A ∪R∗(A)

and the lower approximation of A is defined by:

(3.4) R(A) = {x ∈ A : 〈x〉R ∩A′ ∈ I}

With respect to any subset A ⊆ X, the universe can be divided into three disjoint
regions using the lower and upper approximations:

(3.5) BND(A) = R(A)\R(A)

(3.6) POS(A) = R(A)

(3.7) NEG(A) = X\R(A).

Theorem 3.5. Let R be a reflexive relation on X. Then the upper approximation
defined by (3.3) satisfies the following properties:

(i) R(φ) = φ
(ii) A ⊆ R(A)
(iii) A ⊆ B ⇒ R(A) ⊆ R(B)
(iv) R(A ∪B) = R(A) ∪R(B)
(v) R(R(A)) = R(A)
(vi) R(A) = (R(A′))′

Proof. The result follows immediately from Theorem 3.3. �
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Corollary 3.6. Let R be a reflexive relation on X. Then the lower approximation
defined by (3.4) satisfies Kuratowski’s axioms and induces a topology on X called τ∗R
given by

(3.8) τ∗R = {A ⊆ X : R(A) = A}

In such case interior of A, int∗R(A), is identical with R(A) defined in (3.4) and
closure of A, cl∗R(A), is identical with R(A) defined in (3.3).

Proof. The result follows immediately from Theorem 3.5. �

Theorem 3.7. Let (X, τ∗R) be a topological space defined in (3.8). Then
(i) cl∗R(A) ⊆ clR(A), (for clR(A), see (2.11))
(ii) R∗(A) is closed, i.e. cl∗R(R∗(A)) = R∗(A), (for R∗(A), see Definition 3.1)

Proof. (i) Let x ∈ cl∗R(A). Hence x ∈ A or 〈x〉R ∩A 6∈ I. It follows that x ∈ A
or 〈x〉R ∩A 6= φ, and hence x ∈ clR(A).

(ii) We want to prove that cl∗R(R∗(A)) ⊆ R∗(A). Let x ∈ cl∗R(R∗(A)). It implies
that x ∈ R∗(A) or x ∈ R∗(R∗(A)), and hence x ∈ R∗(A) by Theorem 3.3.

�

In the following corollary, we compare between τR and τ∗R, where τR is the topol-
ogy generated by closure operator defined in (2.11) and τ∗R is that one defined in
(3.8).

Corollary 3.8. Let R be a reflexive relation on X. Then τR ⊆ τ∗R, i.e. τ∗R is finer
than τR, where τR is the topology generated by closure operator defined in (2.11) and
τ∗R is that defined in (3.8).

Proof. By Theorem 3.7 (i). �

The following theorem shows that the boundary of a subset decreases as the ideal
on X increases.

Theorem 3.9. Let R be a reflexive relation on X and I and J be two ideals on X.
If I ⊆ J , then BNDJ (A) ⊆ BNDI(A).

Proof. Let x ∈ BNDJ (A). Then x ∈ RJ (A) and x ∈ (RJ (A))
′
, by Theorem 3.3 .

It follows that x ∈ RI(A) and x ∈ (RI(A))
′
. Hence x ∈ BNDI(A). �

In the following example, we see that the current method in Definition 3.4 reduce
the boundary in comparison of Allam’s method [2].

Example 3.10. Let X = {a, b, c, d}, R = {(a, a), (b, b), (c, c), (d, d), (a, b), (a, d), (b, c),
(c, b)} and I = {φ, {a}, {b}, {a, b}} be an ideal on X (See Table 1)

Theorem 3.11. Let R be a reflexive binary relation on X and I be an ideal on X.
Then

(3.9) β = {〈x〉R − I : x ∈ X, I ∈ I}

is a basis for τ∗R.
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Table 1. Comparison between Allam’s method and our method

A
Allam method present method Allam method present method Allam method present method

R(A) RI(A) R(A) RI(A) BND(A) BNDI

φ φ φ φ φ φ φ

X X X X X φ φ

{a} φ φ {a} {a} {a} {a}

{b} {b} {b} {a, b, c} {b} {a, c} φ

{c} φ {c} {c} {c} {c} φ

{d} {d} {d} {a, d} {a, d} {a} {a}

{a, b} {b} {b} {a, b, c} {a, b} {a, c} {a}

{a, c} φ {c} {a, c} {a, c} {a, c} {a}

{a, d} {d} {a, d} {a, d} {a, d} {a} φ

{b, c} {b, c} {b, c} {a, b, c} {b, c} {a} φ

{b, d} {b, d} {b, d} X {a, b, d} {a, c} {a}

{c, d} {d} {c, d} {c, d} {a, c, d} {a, c} {a}

{a, b, c} {b, c} {b, c} {a, b, c} {a, b, c} {a} {a}

{a, b, d} {a, b, d} {a, b, d} X {a, b, d} {c} φ

{a, c, d} {d} {a, c, d} {a, c, d} {a, c, d} {a, c} φ

{b, c, d} {b, c, d} {b, c, d} X X {a} {a}

Proof. We want to prove that every element of β belongs to τ∗R.
i.e, R(〈x〉R − I) = 〈x〉R − I. Let y ∈ 〈x〉R − I. Then 〈y〉R ⊆ 〈x〉R by Proposition
2.7.
We want to prove that 〈y〉R ∩ (〈x〉R − I)′ ∈ I, Now

〈y〉R ∩ (〈x〉R − I)′ = 〈y〉R ∩ ((〈x〉R)′ ∪ I)

= 〈y〉R ∩ I ⊆ I.

It follows that 〈y〉R ∩ (〈x〉R − I)′ ∈ I by Definition 2.10
Now, we prove that β is a basis for τ∗R,

(i) Let 〈x〉R − I1, 〈y〉R − I2 ∈ β such that z ∈ (〈x〉R − I1) ∩ (〈y〉R − I2). It
follows that 〈z〉R ⊆ 〈x〉R and 〈z〉R ⊆ 〈y〉R by Proposition 2.7, and hence
(〈z〉R − (I1 ∪ I2)) ⊆ 〈x〉R − I1 and (〈z〉R − (I1 ∪ I2)) ⊆ 〈y〉R − I1, and hence
∃ (〈z〉R − (I1 ∪ I2)) ∈ β such that z ∈ (〈z〉R − (I1 ∪ I2)) ⊆ (〈x〉R − I1) ∩
(〈y〉R − I2).

(ii) ∪{〈x〉R − I : x ∈ X, I ∈ I} = X.

�

Example 3.12. Let X = {a, b, c, d}, R = ∆ ∪ {(a, b), (a, c), (c, d), (b, d)} and I =
{φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}}. Then 〈a〉R = {a, b, c}, 〈b〉R = {b},
〈c〉R = {c}, 〈d〉R = {d} and the basis of τ∗R is β = {φ, {a, b, c}, {b}, {c}, {d}, {a, c},
{b, c}}. To form τ∗R R(X) = X, R(φ) = φ, R({a}) = φ, R({b}) = {b}, R({c}) = {c},
R({d}) = {d}, R({a, b}) = {b}, R({a, c}) = {a, c}, R({a, d}) = {d}, R({b, c}) =
{b, c}, R({b, d}) = {b, d}, R({c, d}) = {c, d}, R({a, b, c}) = {a, b, c}, R({a, b, d}) =
{b, d}, R({a, c, d}) = {a, c, d}, R({b, c, d}) = {b, c, d}, and hence τ∗R = {X, φ, {b}, {c},
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{d}, {b, c}, {b, d}, {c, d}, {a, c}, {b, c, d}, {a, c, d}, {a, b, c}}. It’s clear that β is a basis
for τ∗R.

Lemma 3.13. If (X, τ) is Alexandrov T1-space. Then (X, τ) is the discrete space.

Proof. We want to prove that every subset of X is closed.

A = ∪x∈A{x} ((X, τ) is Alexandrov topology)

= ∪x∈A{x} ((X, τ) is T1 Space)
= A.

�

In the following theorem, we have non discrete topological spaces generated by
relations and is T1 space, which are not found before.

Theorem 3.14. Let R be a reflexive relation on X and If be an ideal of finite
subsets of X. Then the topological space(X, τ∗R) is T1 space.

Proof. We want to prove that for every x ∈ X, {x} is closed. Since R∗({x}) = φ. It
follows that R({x}) = {x} ∀x ∈ X. �

4. Some important examples

Example 4.1. Let X be an infinite set and R = X ×X. If If is an ideal of finite
subsets of X, then

R(A) =
{

X if A 6∈ If ,
A if A ∈ If .

This means that the induced topology τ∗R, defined by (3.8), is the cofinite topology.

Example 4.2. If Ic is an ideal of countable subsets of X, then

R(A) =
{

X if A 6∈ Ic,
A if A ∈ Ic.

This means that the induced topology τ∗R, defined by (3.8), is the cocountable topol-
ogy.

Example 4.3. If a ∈ X and I(X−{a}), then

R(A) =
{

X if A 6∈ I(X−{a}),
A if A ∈ I(X−{a}).

This means that the induced topology τ∗R, defined by (3.8), is the particular point
topology.
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