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1. Introduction

Zadeh in [11] introduced the fundamental concept of a fuzzy set. The notions
of compactness plays an important role in topological spaces.As in defined in [5,
7, 8, 10], it is a natural problem to consider some degree of compactness in L-
topological spaces. In [2, 8] some weaker forms of gradation of compactness in L-
topological spaces.The present paper studies the degrizations of RS-compactness and
S*-closedness notions based on the quadruble M = (L,≤,⊗, ∗) where (L,≤),⊗ and
∗ respectively denote a complete lattice and binary operations on L, was introduced
by Höhle and Sostak [6, 9, 10].

2. Preliminaries

The notions L-co topological space and L-closure operator are given from Demirci
[6] in his paper as a dual form of the binary operation ⊗ on L. In this study, we
always assume that (L,≤) is a complete lattice, where ∧,∨,>,⊥ respectively denote
the meet operation, join operation, the greatest element of L and the least element
of L.



A. Haydar Eş/Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 441–450

The quadruble M = (L,≤,⊗, ∗) consists of an integral, commutative cl-monoid
(L,≤, ∗) and a cl-quasi-monoid M = (L,≤,⊗). In any integral, commutative cl-
monoid M = (L,≤, ∗), there exists a further binary operation −→ on L, called the
residuum operation on L, such that

α ∗ β ≤ γ ⇐⇒ α ≤ β −→ γ,∀α, β, γ ∈ L.

The residuum operation −→ is explicitly given by the formula

α −→ β = ∨{λ ∈ L : α ∗ λ ≤ β}, ∀α, β ∈ L.

A mapping f : X 7−→ L is called an L-fuzzy set of X. The set of all L-fuzzy
sets of X is denoted by LX . In any integral, commutative cl-monoid (L,≤, ∗), the
negation is defined as an unary operation in the sense of q : L 7−→ L by q(α) =
α −→ ⊥, ∀α ∈ L. [2, 6, 9]

Definition 2.1 ([9]). A subset τ of LX , is called an L-topology on X iff τ satisfies
the following conditions:

L01. 1X , 1∅ ∈ τ ,
L02. f, g ∈ τ ⇒ f ⊗ g ∈ τ, for each f, g ∈ LX ,
L03. {fi : i ∈ I} ⊆ τ ⇒ ∨i∈Ifi ∈ τ, ∀{fi : i ∈ I} ⊆ LX .

For a given L-topology τ on X, the pair (X, τ) is called an L-topological space.

Definition 2.2 ([6]). A map I : LX 7−→ LX is called an L-interior operator on X
iff I satisfies the next conditions :

I1. I(1X) = 1X ,
I2. f ≤ g ⇒ I(f) ≤ I(g),∀f, g ∈ LX ,
I3. I(f)⊗ I(g) ≤ I(f ⊗ g),∀f, g ∈ LX ,
I4. I(f) ≤ f,∀f ∈ LX ,
I5. I(f) ≤ I(I(f)), ∀f ∈ LX .

Remark 2.3 ([6]). Each L-topology τ on X induces an L-interior operator Ir by
Ir(f) = ∨{g ∈ τ : g ≤ f} for each f ∈ LX . Conversely, each L-interior operator I
induces and L-topology τI by the τI = {g ∈ LX : g ≤ I(g)}.
Definition 2.4 ([6]). Let (X, τ) be an L-topological space and f ∈ LX . Then

(i) f is said to be τ -closed iff q(f) ∈ τ
(ii) τ closure f̄ of f is defined by f̄ = ∧{h ∈ LX :q(h) ∈ τ, f ≤ h}.

Definition 2.5 ([2]). A L-fuzzy set f ∈ LX in an L-topological space (X, τ) is said
to be

(i) regular L-open iff f = ¯(f)
0
,

(ii) regular L-closed iff f = ¯(f0)

Definition 2.6 ([6]). The map ⊆̃ : LX × LX 7−→ L defined by

⊆̃(f, g) = ∧x∈Xf(x) → g(x)

for each f, g ∈ LX , is called the L-fuzzy inclusion relation on LX . The element
⊆̃(f, g) of L can be conceived as the degree for which f is included by g.

Definition 2.7. ([1, 2, 3]) Let (X, τ) and (Y, δ) be L-topological spaces. A function
Φ : (X, τ) 7−→ (Y, δ) is called L-continuous iff for each g ∈ δ,Φ−1(g) ∈ τ
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A. Haydar Eş/Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 441–450

Definition 2.8. ([1, 2]) Let (X, τ) and (Y, δ) be L-topological spaces. A function
Φ : (X, τ) 7−→ (Y, δ) is called almost L-continuous iff for each ¯(f)

0 ∈ δ,Φ−1( ¯(f)
0
) ∈ τ

Definition 2.9 ([2]). Let (X, τ) be an L-topological space.
(i) (X, τ) is L-compact iff for every family {fi : i ∈ I} of τ such that ∨i∈Ifi(x) =

>, ∀x ∈ X, there exists a finite subset I0 ⊆ I such that ∨i∈I0fi(x) = >,∀x ∈ X.
(ii) Let f ∈ LX . The L-fuzzy set f is said to be L-compact iff for every family

{fi : i ∈ I} of τ such that f(x) ≤ ∨i∈Ifi(x), ∀x ∈ X, there exists a finite subset
I0 ⊆ I such that f(x) ≤ ∨i∈I0fi(x),∀x ∈ X.

Definition 2.10 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set
in X. The element c(f) of L is defined by c(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0ϑ) :
ϑ0 ⊆′ ϑ}] : ϑ ⊆ τ} is called the degree of compactness of f , where ϑ0 ⊆′ ϑ means
that ϑ0 is a finite subfamily of ϑ.

Definition 2.11. [[2]] Let (X, τ) be an L-topological space and f be an L-fuzzy set
in X.

(i) f is said to be almost L-compact iff for every family {fi : i ∈ I} of τ such
that f ≤ ∨i∈Ifi, there exists a finite subset I0 ⊆ I such that f ≤ ∨i∈I0 f̄i where ’-’
denotes the closure of f in (X, τ).

(ii) f is said to be nearly L-compact iff for every family {fi : i ∈ I} of τ such
that f ≤ ∨i∈Ifi, there exists a finite subset I0 ⊆ I such that f ≤ ∨i∈I0 f̄i

◦, where
’◦’ denotes the interior operation in (X, τ).

Definition 2.12 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set
in X.

(i) The element ac(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0 ϑ̄) : ϑ0 ⊆′ ϑ}] : ϑ ⊆ τ} is
called the degree of almost compactness of f .

(ii) The element nc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0 ϑ̄
◦) : ϑ0 ⊆′ ϑ}] : ϑ ⊆ τ} is

called the degree of near compactness of f .

Proposition 2.13 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy
set in X. Then c(f) ≤ nc(f) ≤ ac(f).

Proposition 2.14 ([2]). Let (X, τ) and (Y, δ) be L-topological spaces and Φ :
(X, τ) → (Y, δ) be a function. If Φ is L-continuous, then c(f) ≤ c(Φ(f)).

Definition 2.15 ([4]). Let (X, τ) be a L-topological space. Then f ∈ LX is called
semiopen if there exists g ∈ τ such that g ≤ f ≤ ¯(g) (f is semiclosed if q(f) is
semiopen).

Definition 2.16 ([1]). Let (X, τ) be a L-topological space. Then (X, τ) is called
regular iff each fuzzy open set of X is a union of fuzzy open sets of X such that
f̄i ≤ f , for each i.

Definition 2.17 ([4]). A L-fuzzy set f ∈ LX in an L-topological space (X, τ) is
said to be

(i) regular semiopen if f = sIntsClf ,
(ii) regular semiclosed if f = sClsIntf .

Let (X, τ) be an L-topological space and f ∈ LX . Then

IntClf ≤ sIntsClf ≤ ClIntClf
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and IntClf ≤ sClf (see [4]).

Definition 2.18 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy
set in X. f is said to be strong L-compact iff for every subfamily ϑ of τ such that
f ≤ ∨ϑ, there exists a finite subfamily Pre-L-open ϑ0 ⊆ ϑ such that f ≤ ∨ϑ∈ϑ0ϑ.

3. Gradation of RS-compactness in L-topological spaces

In this section we shall generalize the degrization of RS-compactness in L-topological
spaces.

Definition 3.1. Let (X, τ) be an L-topological space.
(i) (X, τ) is RS L-compact iff for every regular semiopen family {fi : i ∈ I} of L-

fuzzy sets with ∨i∈Ifi = >, there exists a finite subset I0 ⊂ I such that ∨i∈I0f
◦
i = >

for each x ∈ X, where ’◦’ denotes the interior of f in (X, τ).
(ii) Let f ∈ LX . The L-fuzzy set f is said to be RS L-compact iff for every family

{fi : i ∈ I} of regular semiopen L-fuzzy sets with f(x) ≤ ∨i∈Ifi(x), ∀x ∈ X, there
exist a finite subset I0 ⊂ I such that f(x) ≤ ∨i∈I0f

◦
i (x), ∀x ∈ X.

(iii) (X, τ) is weakly RS L-compact iff for every regular semiopen family {fi : i ∈
I} of L-fuzzy sets with ∨i∈Ifi = >, there exists a finite subset I0 ⊂ I such that
∨i∈I0fi(x) = >, ∀x ∈ X.

(iv) Let f ∈ LX . The L-fuzzy set f is said to be weakly RS L-compact iff for every
family {fi : i ∈ I} of regular semiopen L-fuzzy sets with f(x) ≤ ∨i∈Ifi(x), ∀x ∈ X,
there exists a finite subset I0 ⊂ I such that f(x) ≤ ∨i∈I0fi(x), ∀x ∈ X.

Obviously every RS L-compact set is WRS L-compact set.

Definition 3.2. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.
Then

(i) The element rsc(f) of L is defined by

rsc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0ϑ
◦) : ϑ0 ⊆′ ϑ}] : ϑ ∈ RSO(X)}

is called the degree of RS-compactness of f , where ϑ0 ⊆′ ϑ means that ϑ0 is a finite
subfamily of ϑ and ϑ ∈ RSO(X) means that ϑ is a regular semiopen family of LX .

(ii) The element wrsc(f) of L is defined by

wrsc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] : ϑ ∈ RSO(X)}
is called the degree of weakly RS-compactness of f , where ϑ0 ⊆′ ϑ means that ϑ0 is
a finite subfamily of ϑ and ϑ ∈ RSO(X) means that ϑ is a regular semiopen family
of LX .

Proposition 3.3. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then the following implications are valid:

(i) f is RS L-compact ⇒ rsc(f) = >,
(ii) f is WRS L-compact ⇒ wrsc(f) = >.

Proof. The proofs of (i) and (ii) follow immediately from the Definition 3.2 ¤

Proposition 3.4. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then rsc(f) ≤ wrsc(f).
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Proof. Let ϑ be regular semiopen family of LX . Since ∨ϑ∈ϑ0ϑ
0 ≤ ∨ϑ∈ϑ0ϑ and from

the isotonity of the residum operation, we have

f → ∨ϑ∈ϑ0ϑ
0 ≤ f → ∨ϑ∈ϑ0ϑ.

Moreover we obtain ∧(f → ∨ϑ∈ϑ0ϑ
0) ≤ ∧(f → ∨ϑ∈ϑ0ϑ). Thus

⊆̃(f,∨ϑ◦0) ≤ ⊆̃(f,∨ϑ0)

for every ϑ0 ⊆′ ϑ. Hence

[∨{⊆̃(f,∨ϑ∈ϑ0ϑ
◦) : ϑ0 ⊆′ ϑ} ≤ {⊆̃(f,∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}].

We conclude that rsc(f) ≤ wrsc(f). ¤

Definition 3.5. (i) Let (X, τ) be an L-topological space. (X, τ) is SL-closed iff for
every family {fi : i ∈ I} of semiopen L-fuzzy sets with ∨i∈Ifi = >, there exist a
finite subset I0 ⊆ I such that ∨i∈I f̄i = >, for each x ∈ X.

(ii) Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. f is
said to be SL-closed if for every family {fi : i ∈ I} of semiopen L-fuzzy sets with
f(x) ≤ ∨i∈Ifi(x), there exist a finite subset I0 ⊆ I such that f(x) ≤ ∨i∈I f̄i(x) for
each x ∈ X.

Definition 3.6. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.
Then the element s-cl(f) of L is defined by

s-cl(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0 ϑ̄) : ϑ0 ⊆′ ϑ}] : ϑ ∈ SO(X)}
is called the degree of S-closedness of f , where ϑ ∈ SO(X) means that ϑ is a
semiopen family of LX .

Theorem 3.7. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.
Then the following implications are valid:

f is nearly L-compact
↗ ↓ ↖

f is L-compact → f is almost L-compact← f is WRS L-compact← f is RS L-compact
↑ ↙

f is SL-closed

Proof. It is clear from Definition 3.2, Definition 3.5 and Definition 2.11. ¤

Theorem 3.8. Let (X, τ) and (Y, δ) be L- topological spaces and Φ : (X, τ) 7−→ (Y, δ)
be a function. If Φ is almost L-continuous, then wrsc(f) ≤ wrsc(Φ(f)).

Proof. Let

wrsc(Φ(f)) = ∧{⊆̃(Φ(f),∨ϑ) → [∨{⊆̃(Φ(f)),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] : ϑ ∈ RSO(X)}.
Conversely, we suppose that wrsc(f) > wrsc(Φ(f)). Then there exists ϑ ∈ RSO(X)
such that

⊆̃(Φ(f),∨ϑ) → [∨{⊆̃(Φ(f)),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < wrsc(f).
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Furthermore, from the almost L-continuity of Φ given us Φ−1(ϑ) ∈ τ . From the
definition weakly RS-compactness degree of f is

wrsc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨υ∈υ0υ) : υ0 ⊆′ υ}] : υ ⊆ τ}.
Now we take the family υ = φ−1(ϑ). Hence

[∨{⊆̃(Φ(f)),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < [∨{⊆̃(f,∨υ∈υ0υ) : υ0 ⊆′ υ}].
It follows that there exists ϑ1, ϑ2, . . . , ϑn ∈ ϑ such that

[∨{⊆̃(Φ(f)),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < ⊆̃(f,∨Φ−1(ϑi)).

Thus ⊆̃(Φ(f),∨n
i=1ϑi) < ⊆̃(f,∨n

i=1Φ
−1(ϑi)), which is a contradiction with Proposi-

tion 3.3.(vi) [6], we have

⊆̃(f,∨n
i=1Φ

−1(ϑi)) ≤ ⊆̃(Φ(f),∨n
i=1Φ(Φ−1(ϑi))) ≤ ⊆̃(Φ(f),∨n

i=1ϑi).

Hence wrsc(f) ≤ wrsc(Φ(f)). ¤

Proposition 3.9. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is weakly L-continuous, then rsc(f) ≤ rsc(Φ(f)).

Proof. It can be proved to the previous theorem, similarly. ¤

Proposition 3.10. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then f is SL-closed⇒ s-cl(f) = >.

Proof. Trivial. ¤

Proposition 3.11. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then rsc(f) ≤ wrsc(f) ≤ s-cl(f) ≤ ac(f).

Proof. This follows a similar procedure to the Proposition 3.4 ¤

Theorem 3.12. Let (X, τ) be an L-topological space and let X be an extremally
disconnected space (i.e f̄ ∈ τ for every f ∈ τ). Then the following conditions are
equivalent:

(i) f ∈ LX is almost L-compact,
(ii) f ∈ LX is nearly L-compact,
(iii) f ∈ LX is SL-closed,
(iv) f ∈ LX is weakly RS L-compact.

Proof. It is clear from the previous definitions. ¤

Proposition 3.13. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is weakly L-continuous and almost L-open mapping, then

s-cl(f) ≤ s-cl(Φ(f)).

Proof. It can be proved to the Proposition 3.4, similarly. ¤

Proposition 3.14. Let (X, τ) be an extremally disconnected L-topological space and
L-semiregular topological space. Then c(f) = s-cl(f).

Proof. Similar to Proposition 3.4. ¤
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A. Haydar Eş/Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 441–450

Corollary 3.15. Let (X, τ) be an extremally disconnected L-topological space and
L-semiregular topological space. Then c(f) = nc(f) = ac(f) = s-cl(f) = wrsc(f).

Proof. This result follows from Proposition 3.11 and Proposition 3.14. ¤

4. Gradation of S*-closed spaces in L-topological spaces

In this section we shall generalize the degrization of S*-closedness in L-topological
spaces.

Definition 4.1. Let (X, τ) be an L-topological space.
(i) (X, τ) is SL-compact iff for every semiopen family {fi : i ∈ I} of L-fuzzy sets

with ∨i∈Ifi = >, there exists a finite subset I0 ⊆ I such that ∨i∈I0fi(x) = >,∀x ∈
X.

(ii) Let f ∈ LX . The L-fuzzy set f is said to be SL-compact iff for every family
{fi : i ∈ I} of semiopen L-fuzzy sets with f(x) ≤ ∨i∈Ifi(x),∀x ∈ X, there exist a
finite subset I0 ⊆ I such that f(x) ≤ ∨i∈I0fi(x), ∀x ∈ X.

Obviuosly every SL-compact L-topological space is SL-closed.

Definition 4.2. Let (X, τ) be an L-topological space.
(i) (X, τ) is S*L-closed iff for every semiopen family {fi : i ∈ I} of L-fuzzy sets

with ∨i∈Ifi = >, there exists a finite subset I0 ⊆ I such that ∨i∈I0sclfi(x) = >, ∀x ∈
X.

(ii) Let f ∈ LX . The L-fuzzy set f is said to be S*L-closed iff for every family
{fi : i ∈ I} of semiopen L-fuzzy sets with f(x) ≤ ∨i∈Ifi(x),∀x ∈ X, there exist a
finite subset I0 ⊆ I such that f(x) ≤ ∨i∈I0sclfi(x), ∀x ∈ X.

Definition 4.3. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.
Then

(i) The element sc(f) of L is defined by

sc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] : ϑ ∈ SO(X)}
is called the degree of S-compactness of f , where ϑ0 ⊆′ ϑ means that ϑ0 is a finite
subfamily of ϑ and ϑ ∈ SO(X) means that ϑ is a semiopen family of LX .

(ii) The element s∗cl(f) of L is defined by

s∗cl(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0sclϑ) : ϑ0 ⊆′ ϑ}] : ϑ ∈ SO(X)}
is called the degree of S*-closedness of f , where ϑ0 ⊆′ ϑ means that ϑ0 is a finite
subfamily of ϑ and ϑ ∈ SO(X) means that ϑ is a semiopen family of LX .

Proposition 4.4. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then

(i) f is S*L-closed⇒ S∗cl(f) = >,
(ii) f is SL-compact⇒ sc(f) = >.

Proof. It is clear from the previous definitions. ¤

Proposition 4.5. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then

nc(f) ≤ S∗cl(f).
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A. Haydar Eş/Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 441–450

Proof. Let ϑ be open family of LX . Since ∨ϑ∈ϑ0IntCl(ϑ) ≤ ∨ϑ∈ϑ0sCl(ϑ) and from
the isotonity of the residum operation, we have

f → ∨ϑ∈ϑ0IntCl(ϑ) ≤ f → ∨ϑ∈ϑ0sCl(ϑ).

Moreover we obtain ∧(f → ∨ϑ∈ϑ0IntCl(ϑ)) ≤ ∧(f → ∨ϑ∈ϑ0sCl(ϑ)). Thus

⊆̃(f,∨IntCl(ϑ0)) ≤ ⊆̃(f,∨sCl(ϑ0))

for every ϑ0 ⊆′ ϑ. Hence

[∨{⊆̃(f,∨ϑ∈ϑ0IntCl(ϑ0)) : ϑ0 ⊆′ ϑ}] ≤ {⊆̃(f,∨ϑ∈ϑ0sCl(ϑ)) : ϑ0 ⊆′ ϑ}.
We conclude that nc(f) ≤ S∗cl(f). ¤

Theorem 4.6. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.
Then the following implications are valid:

f is nearly L-compact ⇒f is S∗L-closed ⇒ f is almost L-compact.

Proof. This immediately follows from Definition 4.2 and Definition 2.11. ¤

Proposition 4.7. Let (X, τ) be an extremally disconnected topological space and f
be an L-fuzzy set in X. Then nc(f) = S∗cl(f).

Proof. Similar to Proposition 4.5. ¤

Proposition 4.8. Let (X, τ) be an L-topological space and f be an L-fuzzy set in
X. Then

f is strongly L-compact ⇒ f is L-compact.

Proof. It is clear from the previous definitions. ¤

Corollary 4.9. Let (X, τ) be an L-topological space and let X be an extremally
disconnected space (i.e. f̄ ∈ τ for every f ∈ τ). Then the following conditions are
equivalent:

(i) f ∈ LX is almost L-compact,
(ii) f ∈ LX is nearly L-compact,
(iii) f ∈ LX is SL-closed,
(iv) f ∈ LX is weakly RS L-compact,
(v) f ∈ LX is S∗L-closed,
(vi) f ∈ LX is strongly L-compact.

Proof. It is clear from the previous definitions. ¤

Definition 4.10. Let (X, τ) and (Y, δ) be L-topological spaces. A function Φ :
(X, τ) 7−→ (Y, δ) is called L-semicontinuous iff for each f ∈ δ, Φ−1(f) is a fuzzy
semiopen set of LX .

Theorem 4.11. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is L-semicontinuous, then sc(f) ≤ c(Φ(f)).
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Proof. Let sc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] : ϑ ∈ SO(X)}
Conversely, we suppose that sc(f) > c(Φ(f)). Then there exists ϑ ⊆ δ such that

⊆̃(Φ(f),∨ϑ) → [∨{⊆̃(Φ(f),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < sc(f).

Furthermore, from the L-semicontinuity of Φ, Φ−1(f) is a fuzzy semiopen set of LX .
From the definition of S-compactness degree of f is

sc(f) = ∧{⊆̃(f,∨ϑ) → [∨{⊆̃(f,∨υ∈υ0υ) : υ0 ⊆′ υ}] : υ ∈ SO(X)}.
Now we take the family υ = Φ(ϑ). Hence

[∨{⊆̃(Φ(f),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < [∨{⊆̃(f,∨υ∈υ0υ) : υ0 ⊆′ υ}].
It follows that there exists ϑ1, ϑ2, . . . , ϑn ∈ ϑ such that

[∨{⊆̃(Φ(f),∨ϑ∈ϑ0ϑ) : ϑ0 ⊆′ ϑ}] < ⊆̃(f,∨Φ−1(ϑi)).

Thus ⊆̃(Φ(f),∨n
i=1ϑi) < ⊆̃(f,∨n

i=1Φ
−1(ϑi)), which is a contradiction with Proposi-

tion 3.3.(vi)[6], we have

⊆̃(f,∨n
i=1Φ

−1(ϑi)) ≤ ⊆̃(Φ(f),∨n
i=1Φ(Φ−1(ϑi))) ≤ ⊆̃(Φ(f),∨n

i=1ϑi).

Hence sc(f) < c(Φ(f)). ¤

Definition 4.12. Let (X, τ) and (Y, δ) be L-topological spaces. A function Φ :
(X, τ) 7−→ (Y, δ) is called L-irresolute iff for each semiopen set of f ∈ LY , Φ−1(f) is
a fuzzy semiopen set of LX .

Theorem 4.13. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is L-irresolute, then S∗cl(f) ≤ S∗cl(Φ(f)).

Proof. It can be proved to the Theorem 4.11.,similarly. ¤

Theorem 4.14. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is L-semicontinuous, then s∗cl(f) ≤ ac(Φ(f)).

Proof. It can be proved to the Theorem 4.11 similarly. ¤

Definition 4.15. Let (X, τ) and (Y, δ) be L-topological spaces. A function Φ :
(X, τ) 7−→ (Y, δ) is called semi weakly L-continuous iff for each f ∈ LY semiopen
set, we have Φ−1(f) ≤ slnt[Φ−1(sCl(f))].

Theorem 4.16. Let (X, τ) and (Y, δ) be L-topological spaces and Φ : (X, τ) 7−→
(Y, δ) be a function. If Φ is semi weakly L-continuous, then sc(f) ≤ s∗cl(Φ(f)).

Proof. This is analogous to the proof of Theorem 4.11. ¤
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