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ABSTRACT. In this paper we define gradation of RS-compactness and
S*-closed spaces in L-topological spaces.We generalize the degrizations of
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1. INTRODUCTION

Ziadeh in [11] introduced the fundamental concept of a fuzzy set. The notions
of compactness plays an important role in topological spaces.As in defined in [5,
7, 18, [10], it is a natural problem to consider some degree of compactness in L-
topological spaces. In [2, 8] some weaker forms of gradation of compactness in L-
topological spaces.The present paper studies the degrizations of RS-compactness and
S*-closedness notions based on the quadruble M = (L, <, ®, *) where (L, <), ® and
* respectively denote a complete lattice and binary operations on L, was introduced
by Hohle and Sostak [6l 9} [10].

2. PRELIMINARIES

The notions L-co topological space and L-closure operator are given from Demirci
[6] in his paper as a dual form of the binary operation ® on L. In this study, we
always assume that (L, <) is a complete lattice, where A, V, T, L respectively denote
the meet operation, join operation, the greatest element of L and the least element
of L.
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The quadruble M = (L, <,®, ) consists of an integral, commutative cl-monoid
(L,<,%) and a cl-quasi-monoid M = (L,<,®). In any integral, commutative cl-
monoid M = (L, <, *), there exists a further binary operation — on L, called the
residuum operation on L, such that

axf<y<=a<f— vVa,p,v€ L.
The residuum operation — is explicitly given by the formula
a— fB=V{AeL:ax\<f},Va,0 € L.

A mapping f : X —— L is called an L-fuzzy set of X. The set of all L-fuzzy
sets of X is denoted by LX. In any integral, commutative cl-monoid (L, <, *), the
negation is defined as an unary operation in the sense of 7: L — L by (a) =
a— L Vae L. [2,6,09]

Definition 2.1 ([9]). A subset 7 of L¥, is called an L-topology on X iff 7 satisfies
the following conditions:

LOL. 1y,1y €7,

L02. f,geT= f®gcT, foreach f,g € LX,

LO3. {fi:i €I} C 7= Vierfi €7,V{fi:i €I} C L¥.
For a given L-topology 7 on X, the pair (X, ) is called an L-topological space.

Definition 2.2 ([6]). A map I : LX —— L¥X is called an L-interior operator on X
iff I satisfies the next conditions :

1. I(1x) = 1x,

2. f<g=1(f)<I(9),¥f g€L",

3. I(f)® I(9) < I(f®g),Yf,g € L*,

4. I(f) < f,Vf e L,

I5. I(f) < I(I(f)),¥f € L*.

Remark 2.3 ([6]). Each L-topology T on X induces an L-interior operator I, by
I.(f) =Vv{g € 7:g < f} for each f € LX. Conversely, each L-interior operator I
induces and L-topology 77 by the 77 = {g € LX : g < I(g)}.

Definition 2.4 ([6]). Let (X, 7) be an L-topological space and f € LX. Then
(i) f is said to be 7-closed iff 7(f) € T
(ii) 7 closure f of f is defined by f = A{h € LX :(h) € 7, f < h}.
Definition 2.5 ([2]). A L-fuzzy set f € LX in an L-topological space (X, 7) is said

to be -0
(i) regular L-open iff f = (f),

(i) regular L-closed iff f = (f°)
Definition 2.6 ([6]). The map C: IX x LX — L defined by
i(.f’ g) = /\:pexf(l‘) — g(q;)

for each f,g € LX, is called the L-fuzzy inclusion relation on LX. The element
C(f,g) of L can be conceived as the degree for which f is included by g.

Definition 2.7. ([1,12,3]) Let (X, 7) and (Y, 0) be L-topological spaces. A function
®: (X,7)— (Y,0) is called L-continuous iff for each g € 6,®~1(g) € 7
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Definition 2.8. ([I, 2]) Let (X,7) and (Y,d) be L-topological spaces. A function
O (X,7) — (Y,9) is called almost L-continuous iff for each (]_“)O €9, <I>_1((J_C)O) €T

Definition 2.9 ([2]). Let (X, 7) be an L-topological space.

(i) (X, 7) is L-compact iff for every family {f; : i € I'} of 7 such that Ve fi(x) =
T,Vz € X, there exists a finite subset Iy C I such that V;ep, fi(z) = T,Vx € X.

(i) Let f € LX. The L-fuzzy set f is said to be L-compact iff for every family
{fi +i € I} of 7 such that f(z) < Vierfi(z),Vx € X, there exists a finite subset
Iy C I such that f(z) < Viep, fi(z),Vz € X.

Definition 2.10 ([2]). Let (X, 7) be an L-topological space and f be an L-fuzzy set
in X. The element ¢(f) of L is defined by ¢(f) = A{C(f, V¥) — [V{C(f, Voes,?) :
Yo €' 9} : ¥ C 7} is called the degree of compactness of f, where 99 C’ ¥ means
that ¢ is a finite subfamily of 9.

Definition 2.11. [[2]] Let (X, 7) be an L-topological space and f be an L-fuzzy set
in X.

(i) f is said to be almost L-compact iff for every family {f; : ¢ € I} of 7 such
that f < V,erfi, there exists a finite subset Iy C I such that f < Viejofi where -’
denotes the closure of f in (X, 7).

(ii) f is said to be nearly L-compact iff for every family {f; : ¢ € I} of 7 such
that f < Verfi, there exists a finite subset Iy C I such that f < V,ej, fio, where
’o’ denotes the interior operation in (X, 7).

Definition 2.12 (]2]). Let (X, 7) be an L-topological space and f be an L-fuzzy set
in X.

(i) The element ac(f) = A{C(f, VD) — [V{C(f, Voeo, D) : 9o ' ¥} : 9 C 7} is
called the degree of almost compactness of f. B

(ii) The element nc(f) = AN{C(f, V¥) — [V{C(f, Voecp,9°) : 9o C" ¥} : 9 C 7} is
called the degree of near compactness of f.

Proposition 2.13 ([2]). Let (X,7) be an L-topological space and f be an L-fuzzy
set in X. Then c(f) < nc(f) < ac(f).

Proposition 2.14 ([2]). Let (X,7) and (Y,6) be L-topological spaces and ® :
(X,7) — (Y,9) be a function. If ® is L-continuous, then c(f) < c(P(f)).

Definition 2.15 ([4]). Let (X,7) be a L-topological space. Then f € L is called
semiopen if there exists g € 7 such that g < f < (g) (f is semiclosed if (f) is
semiopen).

Definition 2.16 ([1]). Let (X, 7) be a L-topological space. Then (X, 7) is called
regular iff each fuzzy open set of X is a union of fuzzy open sets of X such that
fi < f, for each 1.

Definition 2.17 ([4]). A L-fuzzy set f € L¥ in an L-topological space (X,7) is
said to be

(i) regular semiopen if f = sIntsCIf,

(ii) regular semiclosed if f = sClsIntf.
Let (X,7) be an L-topological space and f € LX. Then

IntClf < sIntsClf < ClntCLf
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and IntClf < sCLf (see []).

Definition 2.18 ([2]). Let (X, 7) be an L-topological space and f be an L-fuzzy
set in X. f is said to be strong L-compact iff for every subfamily ¥ of 7 such that
f < VU, there exists a finite subfamily Pre-L-open ¥y C ¥ such that f < Vyey, V.

3. GRADATION OF RS-COMPACTNESS IN L-TOPOLOGICAL SPACES

In this section we shall generalize the degrization of RS-compactness in L-topological
spaces.

Definition 3.1. Let (X, 7) be an L-topological space.

(i) (X,7) is RS L-compact iff for every regular semiopen family {f; : ¢ € I'} of L-
fuzzy sets with Ve f; = T, there exists a finite subset Iy C I such that Ve, fP =T
for each z € X, where ’o’ denotes the interior of f in (X, 7).

(ii) Let f € LX. The L-fuzzy set f is said to be RS L-compact iff for every family
{fi : © € I} of regular semiopen L-fuzzy sets with f(z) < V,erfi(x),Vo € X, there
exist a finite subset Iy C I such that f(z) < Viep, f9(2),Vo € X.

(iii) (X, 7) is weakly RS L-compact iff for every regular semiopen family {f; : i €
I} of L-fuzzy sets with V;erf; = T, there exists a finite subset Iy C I such that
\/ielofi(x) =T,Vx € X.

(iv) Let f € LX. The L-fuzzy set f is said to be weakly RS L-compact iff for every
family {f; : ¢ € I} of regular semiopen L-fuzzy sets with f(x) < V,esfi(x),Vz € X,
there exists a finite subset Iy C I such that f(z) < Viep, fi(z), V2 € X.

Obviously every RS L-compact set is WRS L-compact set.

Definition 3.2. Let (X, 7) be an L-topological space and f be an L-fuzzy set in X.
Then
(i) The element rsc(f) of L is defined by

rse(f) = MC(f,V0) — VIC(f, Voes,0°) : 9o €' 9}] : 9 € RSO(X)}

is called the degree of RS-compactness of f, where ¥y C’ 9 means that 9y is a finite
subfamily of ¥ and ¥ € RSO(X) means that ¥ is a regular semiopen family of L.
(ii) The element wrsc(f) of L is defined by

wrse(f) = MC(f,VI) — [V{C(f, Voes,¥) : 9o €' 9} : 9 € RSO(X)}

is called the degree of weakly RS-compactness of f, where ¥y C’ ¢ means that 9 is
a finite subfamily of ¥ and ¥ € RSO(X) means that ¢ is a regular semiopen family
of LX.

Proposition 3.3. Let (X,7) be an L-topological space and f be an L-fuzzy set in
X. Then the following implications are valid:

(i) f is RS L-compact = rsc(f) =T,

(ii) f is WRS L-compact = wrsc(f) =T.

Proof. The proofs of (i) and (ii) follow immediately from the Definition [3.2 O

Proposition 3.4. Let (X,7) be an L-topological space and f be an L-fuzzy set in
X. Then rsc(f) < wrsc(f).
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Proof. Let ¥ be regular semiopen family of LX. Since Vyeg,9° < Vyeg,¥ and from
the isotonity of the residum operation, we have

f— \/19@90190 < f — Vyew, V.
Moreover we obtain A(f — Vgeg, ) < A(f — Voew,?). Thus
C(f, v5) < C(f, Vo)
for every ¥y C’ . Hence
VA{C(f, Vies,®°) : o & 9} < {C(f, Voea,¥) : 9o & 9}
We conclude that rsc(f) < wrse(f). O

Definition 3.5. (i) Let (X, 7) be an L-topological space. (X, 7) is SL-closed iff for
every family {f; : i € I} of semiopen L-fuzzy sets with V;crf; = T, there exist a
finite subset Iy C I such that \/ie[f_i =T, for each x € X.

(ii) Let (X,7) be an L-topological space and f be an L-fuzzy set in X. f is
said to be SL-closed if for every family {f; : i € I} of semiopen L-fuzzy sets with
f(z) < Vierfi(x), there exist a finite subset Iy C I such that f(z) < Vierfi(z) for
each r € X.

Definition 3.6. Let (X, 7) be an L-topological space and f be an L-fuzzy set in X.
Then the element s-cl(f) of L is defined by

s-cl(f) = MC(f, VI) — [V{C(f, Voes V) : 9o €' 9}] : ¥ € SO(X)}

is called the degree of S-closedness of f, where ¥ € SO(X) means that ¢ is a
semiopen family of LX.

Theorem 3.7. Let (X, 1) be an L-topological space and f be an L-fuzzy set in X.
Then the following implications are valid:

f is nearly L-compact

/ ! N
f is L-compact — f is almost L-compact— fis WRS L-compact— f is RS L-compact
T /

f is SL-closed

Proof. Tt is clear from Definition 3.2, Definition 3.5 and Definition 2.11. O

Theorem 3.8. Let (X, 7) and (Y, ) be L- topological spaces and ® : (X, 1) — (Y, 0)
be a function. If ® is almost L-continuous, then wrsc(f) < wrsce(®(f)).

Proof. Let

wrsc(®(f)) = MC(R(f), Vi) — [VIS(R()), Voes,?) : o €' 9}] : 9 € RSO(X)}.
Conversely, we suppose that wrsc(f) > wrsc(®(f)). Then there exists ¥ € RSO(X)
such that

C(2(f), VO) — [VIS(®(/)), Vwen,?) : 9o &' 9}] < wrse(f).
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Furthermore, from the almost L-continuity of ® given us ®~1(¥) € 7. From the
definition weakly RS-compactness degree of f is

wrse(f) = MC(f, V) = [V{C(f, Voeuv) 1 0o €' v}] 1 v C 7}
Now we take the family v = ¢~1(¢J). Hence
NAE (@), Voco?) s 90 € 91 < VAE(f Vuewt) s vo € 0.
It follows that there exists ¥1,72,...,9, € ¥ such that
[V{C(®(f)), Voen,?) : o €' 93] < C(f, VO~ (1,)).

Thus C(®(f), Vi 9;) < C(f, Vi, ®~1(9)), which is a contradiction with Proposi-
tion 3.3L(vi) [6], we have

C(f, Vil @71 (9:) < S(R(F), ViL 2(27H(90)) < S(D(S), Vita ).
Hence wrsc(f) < wrsc(®(f)). O

Proposition 3.9. Let (X, 7) and (Y,9) be L-topological spaces and ® : (X, 1) —
(Y,0) be a function. If ® is weakly L-continuous, then rsc(f) < rsc(®(f)).

Proof. It can be proved to the previous theorem, similarly. O

Proposition 3.10. Let (X, 7) be an L-topological space and f be an L-fuzzy set in
X. Then f is SL-closed= s-cl(f) =T.

Proof. Trivial. O

Proposition 3.11. Let (X, 1) be an L-topological space and f be an L-fuzzy set in
X. Then rsc(f) < wrsc(f) < s-c(f) < ac(f).

Proof. This follows a similar procedure to the Proposition 3.4 0

Theorem 3.12. Let (X,7) be an L-topological space and let X be an extremally
disconnected space (i.e f € T for every f € 7). Then the following conditions are
equivalent:

(i) f € L¥ is almost L-compact,

(ii) f € L is nearly L-compact,

(iii) f € LX is SL-closed,

(iv) f € LY is weakly RS L-compact.

Proof. 1t is clear from the previous definitions. O

Proposition 3.13. Let (X, 7) and (Y,0) be L-topological spaces and ® : (X, 7) —
(Y,0) be a function. If ® is weakly L-continuous and almost L-open mapping, then

s-cl(f) < s-cl(®(f)).
Proof. It can be proved to the Proposition 3.4, similarly. O

Proposition 3.14. Let (X, 7) be an extremally disconnected L-topological space and
L-semiregular topological space. Then c(f) = s-cl(f).

Proof. Similar to Proposition 3.4l 0
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Corollary 3.15. Let (X,7) be an extremally disconnected L-topological space and
L-semiregular topological space. Then c(f) = ne(f) = ac(f) = s-cl(f) = wrse(f).

Proof. This result follows from Proposition 3.11/ and Proposition [3.14. O

4. GRADATION OF S*-CLOSED SPACES IN L-TOPOLOGICAL SPACES

In this section we shall generalize the degrization of S*-closedness in L-topological
spaces.

Definition 4.1. Let (X, 7) be an L-topological space.

(i) (X, 7) is SL-compact iff for every semiopen family {f; : ¢ € I} of L-fuzzy sets
with V;erfi = T, there exists a finite subset Iy C I such that Viep, fi(z) = T,Vz €
X.

(i) Let f € LX. The L-fuzzy set f is said to be SL-compact iff for every family
{fi : i € I} of semiopen L-fuzzy sets with f(z) < V;erfi(z),Vz € X, there exist a
finite subset Iy C I such that f(z) < Ve, fi(x), Vo € X.

Obviuosly every SL-compact L-topological space is SL-closed.

Definition 4.2. Let (X, 7) be an L-topological space.

(i) (X, 7) is S*L-closed iff for every semiopen family {f; : ¢ € I} of L-fuzzy sets
with V;erfi = T, there exists a finite subset Iy C I such that Ve, sclfi(z) = T,Vx €
X.

(ii) Let f € LX. The L-fuzzy set f is said to be S*L-closed iff for every family
{fi : i € I} of semiopen L-fuzzy sets with f(z) < Vierfi(x),Ve € X, there exist a
finite subset Iy C I such that f(z) < V,ep,sclfi(z),Vo € X.

Definition 4.3. Let (X, 7) be an L-topological space and f be an L-fuzzy set in X.
Then
(i) The element sc(f) of L is defined by

se(f) = ME(f, Vi) — [VIC(f, Vaes, ) 1 9o € 9} 1 9 € SO(X)}

is called the degree of S-compactness of f, where ¥y C’ ¥ means that g is a finite
subfamily of ¥ and ¥ € SO(X) means that ¥ is a semiopen family of LX.
(ii) The element s*cl(f) of L is defined by

s*el(f) = NC(f, VI) — [V{C(f, Vyeus,scl?) : 9o C' 9}] : 9 € SO(X)}
is called the degree of S*-closedness of f, where 9y C’ ¥ means that 9, is a finite

subfamily of ¥ and ¥ € SO(X) means that ¥ is a semiopen family of LX.

Proposition 4.4. Let (X,7) be an L-topological space and f be an L-fuzzy set in
X. Then

(i) f is S*L-closed= S*cl(f) =TT,

(i) f is SL-compact= sc(f) =T.

Proof. 1t is clear from the previous definitions. O

Proposition 4.5. Let (X, 7) be an L-topological space and f be an L-fuzzy set in
X. Then

ne(f) < S*d(f).
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Proof. Let ¥ be open family of LX. Since Vyeg, IntCl(¥) < Vyey,sCI(¥9) and from
the isotonity of the residum operation, we have

[ — Ve, IntCl(9) < f — Vyes,sCL(I).
Moreover we obtain A(f — Vyeg, IntCL()) < A(f — Vyen,sCl(D)). Thus
C(f, VIntCl(¥o)) < C(f, VsCl(do))
for every ¥y C’ 9. Hence
[V{C(f, Ve, IntClL(¥o)) = do €' 9} < {C(f, Vs sCL(W)) : do ' 9}
We conclude that ne(f) < S*cl(f). O

Theorem 4.6. Let (X, 1) be an L-topological space and f be an L-fuzzy set in X.
Then the following implications are valid:

f is nearly L-compact = f is S* L-closed = f is almost L-compact.

Proof. This immediately follows from Definition [4.2] and Definition [2.11. d

Proposition 4.7. Let (X, 1) be an extremally disconnected topological space and f
be an L-fuzzy set in X. Then ne(f) = S*cl(f).

Proof. Similar to Proposition 4.5l O

Proposition 4.8. Let (X, 7) be an L-topological space and f be an L-fuzzy set in
X. Then

f is strongly L-compact = f is L-compact.
Proof. 1t is clear from the previous definitions. O

Corollary 4.9. Let (X,7) be an L-topological space and let X be an extremally
disconnected space (i.e. f € T for every f € 7). Then the following conditions are
equivalent:

(i) f € LX is almost L-compact,

(i) f € LX is nearly L-compact,

(iii) f € LX is SL-closed,

(iv) f € LX is weakly RS L-compact,

(v) f e LX is S*L-closed,

(vi) f € L is strongly L-compact.

Proof. Tt is clear from the previous definitions. g

Definition 4.10. Let (X,7) and (Y,d) be L-topological spaces. A function ® :
(X,7) — (Y,9) is called L-semicontinuous iff for each f € §, ®~1(f) is a fuzzy
semiopen set of LX.

Theorem 4.11. Let (X,7) and (Y,0) be L-topological spaces and ® : (X, 7) —
(Y,0) be a function. If ® is L-semicontinuous, then sc(f) < c(P(f)).
448
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Proof. Let sc(f) = NMC(f,V9) — [V{C(f, Voes,¥) : 9o T 9}] : ¥ € SO(X)}
Conversely, we suppose that sc(f) > ¢(®(f)). Then there exists ¥ C ¢ such that

C(D(f), VI) — [V{C(D(f), Voes,¥) : Yo T 9}] < sc(f).

Furthermore, from the L-semicontinuity of ®, ®~!(f) is a fuzzy semiopen set of LX.
From the definition of S-compactness degree of f is

se(f) = MC(f, Vi) = [V{C(f, Voew,v) s vo €' 0}] : v € SO(X)}.
Now we take the family v = ®(9). Hence
[VAC(@(f), Voeno®) : o C" 9] < [V{C(f, Voeuov) : vo S 0},
It follows that there exists ¥1,vs, ..., 9, € ¥ such that
[V{C(®(f), Voes?) : do €' 93] < C(f, VO~ (8,)).

Thus C(®(f), VI 9;) < C(f, Vi, ®1(9;)), which is a contradiction with Proposi-
tion 3.3.(vi)[6], we have

C(f, Vil @71 (0:) < C(R(S), Vi @(D7(93)) < S(R(S), Vi, Vi).
Hence sc(f) < c(®(f)). O

Definition 4.12. Let (X,7) and (Y,d) be L-topological spaces. A function ® :
(X,7) — (Y,9) is called L-irresolute iff for each semiopen set of f € LY, ®~1(f) is
a fuzzy semiopen set of LX.

Theorem 4.13. Let (X,7) and (Y,6) be L-topological spaces and ® : (X, 7) —
(Y,0) be a function. If ® is L-irresolute, then S*cl(f) < S*cl(®(f)).

Proof. Tt can be proved to the Theorem [4.11. similarly. O

Theorem 4.14. Let (X,7) and (Y,d) be L-topological spaces and ® : (X, 7) —
(Y,0) be a function. If ® is L-semicontinuous, then s*cl(f) < ac(®(f)).

Proof. Tt can be proved to the Theorem [4.11! similarly. O

Definition 4.15. Let (X,7) and (Y,d) be L-topological spaces. A function ® :
(X,7) — (Y,0) is called semi weakly L-continuous iff for each f € LY semiopen
set, we have ®~1(f) < sint[®~L(sCI(f))].

Theorem 4.16. Let (X,7) and (Y,0) be L-topological spaces and ® : (X,7) —
(Y,0) be a function. If ® is semi weakly L-continuous, then sc(f) < s*cl(®(f)).

Proof. This is analogous to the proof of Theorem [4.11. O
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