Annals of Fuzzy Mathematics and Informatics Volume 5, No. 2, (March 2013), pp. 441–450 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

A note on gradation of RS-compactness and S*-closed spaces in L-topological spaces

A. Haydar Eş

Received 28 June 2012; Revised 11 July 2012; Accepted 6 August 2012

ABSTRACT. In this paper we define gradation of RS-compactness and S*-closed spaces in L-topological spaces. We generalize the degrizations of RS-compactness and S*-closedness to the L-topological space and give the positions of them under weak forms of L-continuity.

2010 AMS Classification: 54A40, 06D72

Keywords: Fuzzy topology, Fuzzy RS-compactness, Fuzzy S-closedness, Fuzzy continuity.

Corresponding Author: A. Haydar Eş (haydares@baskent.edu.tr)

1. INTRODUCTION

Zadeh in [11] introduced the fundamental concept of a fuzzy set. The notions of compactness plays an important role in topological spaces. As in defined in [5, 7, 8, 10], it is a natural problem to consider some degree of compactness in Ltopological spaces. In [2, 8] some weaker forms of gradation of compactness in Ltopological spaces. The present paper studies the degrizations of RS-compactness and S*-closedness notions based on the quadruble $M = (L, \leq, \otimes, *)$ where $(L, \leq), \otimes$ and * respectively denote a complete lattice and binary operations on L, was introduced by Höhle and Sostak [6, 9, 10].

2. Preliminaries

The notions L-co topological space and L-closure operator are given from Demirci [6] in his paper as a dual form of the binary operation \otimes on L. In this study, we always assume that (L, \leq) is a complete lattice, where \wedge, \vee, \top, \bot respectively denote the meet operation, join operation, the greatest element of L and the least element of L.

The quadruble $M = (L, \leq, \otimes, *)$ consists of an integral, commutative cl-monoid $(L, \leq, *)$ and a cl-quasi-monoid $M = (L, \leq, \otimes)$. In any integral, commutative clmonoid $M = (L, \leq, *)$, there exists a further binary operation \longrightarrow on L, called the residuum operation on L, such that

$$\alpha \ast \beta \leq \gamma \Longleftrightarrow \alpha \leq \beta \longrightarrow \gamma, \forall \alpha, \beta, \gamma \in L$$

The residuum operation \longrightarrow is explicitly given by the formula

 $\alpha \longrightarrow \beta = \lor \{\lambda \in L : \alpha * \lambda \leq \beta\}, \forall \alpha, \beta \in L.$

A mapping $f: X \mapsto L$ is called an L-fuzzy set of X. The set of all L-fuzzy sets of X is denoted by L^X . In any integral, commutative cl-monoid $(L, \leq, *)$, the negation is defined as an unary operation in the sense of $\neg : L \mapsto L$ by $\neg(\alpha) =$ $\alpha \longrightarrow \bot, \forall \alpha \in L. [2, 6, 9]$

Definition 2.1 ([9]). A subset τ of L^X , is called an L-topology on X iff τ satisfies the following conditions:

L01. $1_X, 1_{\emptyset} \in \tau$,

L02. $f, g \in \tau \Rightarrow f \otimes g \in \tau$, for each $f, g \in L^X$,

L03. $\{f_i : i \in I\} \subseteq \tau \Rightarrow \forall_{i \in I} f_i \in \tau, \forall \{f_i : i \in I\} \subseteq L^X$. For a given L-topology τ on X, the pair (X, τ) is called an L-topological space.

Definition 2.2 ([6]). A map $I: L^X \mapsto L^X$ is called an L-interior operator on X iff I satisfies the next conditions :

I1. $I(1_X) = 1_X$, I2. $f \leq g \Rightarrow I(f) \leq I(g), \forall f, g \in L^X$, I3. $I(f) \otimes I(g) \leq I(f \otimes g), \forall f, g \in L^X$ I4. $I(f) \le f, \forall f \in L^X$, I5. $I(f) \leq I(I(f)), \forall f \in L^X$.

Remark 2.3 ([6]). Each L-topology τ on X induces an L-interior operator I_r by $I_r(f) = \forall \{g \in \tau : g \leq f\}$ for each $f \in L^X$. Conversely, each L-interior operator I induces and L-topology τ_I by the $\tau_I = \{g \in L^X : g \leq I(g)\}.$

Definition 2.4 ([6]). Let (X, τ) be an L-topological space and $f \in L^X$. Then (i) f is said to be τ -closed iff $\neg(f) \in \tau$

(ii) τ closure \bar{f} of f is defined by $\bar{f} = \wedge \{h \in L^X : \neg(h) \in \tau, f \leq h\}$.

Definition 2.5 ([2]). A L-fuzzy set $f \in L^X$ in an L-topological space (X, τ) is said to be

(i) regular L-open iff $f = (\bar{f})^0$, (ii) regular L-closed iff $f = (\bar{f}^0)$

Definition 2.6 ([6]). The map $\widetilde{\subseteq} : L^X \times L^X \longmapsto L$ defined by

$$\widetilde{\subseteq}(f,g) = \wedge_{x \in X} f(x) \to g(x)$$

for each $f, g \in L^X$, is called the L-fuzzy inclusion relation on L^X . The element $\widetilde{\subseteq}(f,q)$ of L can be conceived as the degree for which f is included by g.

Definition 2.7. ([1, 2, 3]) Let (X, τ) and (Y, δ) be L-topological spaces. A function $\Phi: (X,\tau) \longmapsto (Y,\delta)$ is called L-continuous iff for each $g \in \delta, \Phi^{-1}(g) \in \tau$

Definition 2.8. ([1, 2]) Let (X, τ) and (Y, δ) be L-topological spaces. A function $\Phi : (X, \tau) \longmapsto (Y, \delta)$ is called almost L-continuous iff for each $(\bar{f})^0 \in \delta, \Phi^{-1}((\bar{f})^0) \in \tau$ **Definition 2.9** ([2]). Let (X, τ) be an L-topological space.

(i) (X, τ) is L-compact iff for every family $\{f_i : i \in I\}$ of τ such that $\forall_{i \in I} f_i(x) = \top, \forall x \in X$, there exists a finite subset $I_0 \subseteq I$ such that $\forall_{i \in I_0} f_i(x) = \top, \forall x \in X$.

(ii) Let $f \in L^X$. The L-fuzzy set f is said to be L-compact iff for every family $\{f_i : i \in I\}$ of τ such that $f(x) \leq \bigvee_{i \in I} f_i(x), \forall x \in X$, there exists a finite subset $I_0 \subseteq I$ such that $f(x) \leq \bigvee_{i \in I_0} f_i(x), \forall x \in X$.

Definition 2.10 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. The element c(f) of L is defined by $c(f) = \wedge \{ \subseteq (f, \lor \vartheta) \to [\lor \{ \subseteq (f, \lor_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \subseteq \tau \}$ is called the degree of compactness of f, where $\vartheta_0 \subseteq' \vartheta$ means that ϑ_0 is a finite subfamily of ϑ .

Definition 2.11. [[2]] Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.

(i) f is said to be almost L-compact iff for every family $\{f_i : i \in I\}$ of τ such that $f \leq \bigvee_{i \in I} f_i$, there exists a finite subset $I_0 \subseteq I$ such that $f \leq \bigvee_{i \in I_0} \overline{f_i}$ where '-' denotes the closure of f in (X, τ) .

(ii) f is said to be nearly L-compact iff for every family $\{f_i : i \in I\}$ of τ such that $f \leq \bigvee_{i \in I} f_i$, there exists a finite subset $I_0 \subseteq I$ such that $f \leq \bigvee_{i \in I_0} \overline{f_i}^\circ$, where 'o' denotes the interior operation in (X, τ) .

Definition 2.12 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set in X.

(i) The element $ac(f) = \wedge \{ \widetilde{\subseteq}(f, \forall \vartheta) \to [\forall \{ \widetilde{\subseteq}(f, \forall_{\vartheta \in \vartheta_0} \overline{\vartheta}) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \subseteq \tau \}$ is called the degree of almost compactness of f.

(ii) The element $nc(f) = \wedge \{ \widetilde{\subseteq}(f, \lor \vartheta) \to [\lor \{ \widetilde{\subseteq}(f, \lor_{\vartheta \in \vartheta_0} \overline{\vartheta}^\circ) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \subseteq \tau \}$ is called the degree of near compactness of f.

Proposition 2.13 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then $c(f) \leq nc(f) \leq ac(f)$.

Proposition 2.14 ([2]). Let (X, τ) and (Y, δ) be L-topological spaces and Φ : $(X, \tau) \to (Y, \delta)$ be a function. If Φ is L-continuous, then $c(f) \leq c(\Phi(f))$.

Definition 2.15 ([4]). Let (X, τ) be a L-topological space. Then $f \in L^X$ is called semiopen if there exists $g \in \tau$ such that $g \leq f \leq (\overline{g})$ (f is semiclosed if $\neg(f)$ is semiopen).

Definition 2.16 ([1]). Let (X, τ) be a L-topological space. Then (X, τ) is called regular iff each fuzzy open set of X is a union of fuzzy open sets of X such that $\bar{f}_i \leq f$, for each *i*.

Definition 2.17 ([4]). A L-fuzzy set $f \in L^X$ in an L-topological space (X, τ) is said to be

(i) regular semiopen if f = sIntsClf,

(ii) regular semiclosed if f = sClsIntf.

Let (X, τ) be an L-topological space and $f \in L^X$. Then

$$IntClf \leq sIntsClf \leq ClIntClf$$

$$443$$

and $IntClf \leq sClf$ (see [4]).

Definition 2.18 ([2]). Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. f is said to be strong L-compact iff for every subfamily ϑ of τ such that $f \leq \forall \vartheta$, there exists a finite subfamily Pre-L-open $\vartheta_0 \subseteq \vartheta$ such that $f \leq \forall_{\vartheta \in \vartheta_0} \vartheta$.

3. Gradation of RS-compactness in L-topological spaces

In this section we shall generalize the degrization of RS-compactness in L-topological spaces.

Definition 3.1. Let (X, τ) be an L-topological space.

(i) (X, τ) is RS L-compact iff for every regular semiopen family $\{f_i : i \in I\}$ of L-fuzzy sets with $\forall_{i \in I} f_i = \top$, there exists a finite subset $I_0 \subset I$ such that $\forall_{i \in I_0} f_i^\circ = \top$ for each $x \in X$, where ' \circ ' denotes the interior of f in (X, τ) .

(ii) Let $f \in L^X$. The L-fuzzy set f is said to be RS L-compact iff for every family $\{f_i : i \in I\}$ of regular semiopen L-fuzzy sets with $f(x) \leq \bigvee_{i \in I} f_i(x), \forall x \in X$, there exist a finite subset $I_0 \subset I$ such that $f(x) \leq \bigvee_{i \in I_0} f_i^{\circ}(x), \forall x \in X$.

(iii) (X, τ) is weakly RS L-compact iff for every regular semiopen family $\{f_i : i \in I\}$ of L-fuzzy sets with $\forall_{i \in I} f_i = \top$, there exists a finite subset $I_0 \subset I$ such that $\forall_{i \in I_0} f_i(x) = \top, \forall x \in X$.

(iv) Let $f \in L^X$. The L-fuzzy set f is said to be weakly RS L-compact iff for every family $\{f_i : i \in I\}$ of regular semiopen L-fuzzy sets with $f(x) \leq \bigvee_{i \in I} f_i(x), \forall x \in X$, there exists a finite subset $I_0 \subset I$ such that $f(x) \leq \bigvee_{i \in I_0} f_i(x), \forall x \in X$.

Obviously every RS L-compact set is WRS L-compact set.

Definition 3.2. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then

(i) The element rsc(f) of L is defined by

$$rsc(f) = \wedge \{ \widetilde{\subseteq}(f, \forall \vartheta) \to [\forall \{ \widetilde{\subseteq}(f, \forall_{\vartheta \in \vartheta_0} \vartheta^\circ) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in RSO(X) \}$$

is called the degree of RS-compactness of f, where $\vartheta_0 \subseteq '\vartheta$ means that ϑ_0 is a finite subfamily of ϑ and $\vartheta \in RSO(X)$ means that ϑ is a regular semiopen family of L^X . (ii) The element $\operatorname{super}(f)$ of L is defined by

(ii) The element wrsc(f) of L is defined by

 $wrsc(f) = \wedge \{ \widetilde{\subseteq} (f, \vee \vartheta) \rightarrow [\vee \{ \widetilde{\subseteq} (f, \vee_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in RSO(X) \}$

is called the degree of weakly RS-compactness of f, where $\vartheta_0 \subseteq' \vartheta$ means that ϑ_0 is a finite subfamily of ϑ and $\vartheta \in RSO(X)$ means that ϑ is a regular semiopen family of L^X .

Proposition 3.3. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then the following implications are valid:

- (i) f is RS L-compact $\Rightarrow rsc(f) = \top$,
- (ii) f is WRS L-compact $\Rightarrow wrsc(f) = \top$.

Proof. The proofs of (i) and (ii) follow immediately from the Definition 3.2

Proposition 3.4. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then $rsc(f) \leq wrsc(f)$.

Proof. Let ϑ be regular semiopen family of L^X . Since $\lor_{\vartheta \in \vartheta_0} \vartheta^0 \leq \lor_{\vartheta \in \vartheta_0} \vartheta$ and from the isotonity of the residum operation, we have

$$f \to \vee_{\vartheta \in \vartheta_0} \vartheta^0 \le f \to \vee_{\vartheta \in \vartheta_0} \vartheta.$$

Moreover we obtain $\wedge (f \to \vee_{\vartheta \in \vartheta_0} \vartheta^0) \leq \wedge (f \to \vee_{\vartheta \in \vartheta_0} \vartheta)$. Thus

$$\widetilde{\subseteq}(f, \lor \vartheta_0^\circ) \le \widetilde{\subseteq}(f, \lor \vartheta_0)$$

for every $\vartheta_0 \subseteq' \vartheta$. Hence

$$[\vee\{\widehat{\subseteq}(f,\vee_{\vartheta\in\vartheta_0}\vartheta^\circ):\vartheta_0\subseteq'\vartheta\}\leq\{\widehat{\subseteq}(f,\vee_{\vartheta\in\vartheta_0}\vartheta):\vartheta_0\subseteq'\vartheta\}].$$

We conclude that $rsc(f) \leq wrsc(f)$.

Definition 3.5. (i) Let (X, τ) be an L-topological space. (X, τ) is SL-closed iff for every family $\{f_i : i \in I\}$ of semiopen L-fuzzy sets with $\bigvee_{i \in I} f_i = \top$, there exist a finite subset $I_0 \subseteq I$ such that $\bigvee_{i \in I} \overline{f_i} = \top$, for each $x \in X$.

(ii) Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. f is said to be SL-closed if for every family $\{f_i : i \in I\}$ of semiopen L-fuzzy sets with $f(x) \leq \bigvee_{i \in I} f_i(x)$, there exist a finite subset $I_0 \subseteq I$ such that $f(x) \leq \bigvee_{i \in I} \overline{f_i}(x)$ for each $x \in X$.

Definition 3.6. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then the element s-cl(f) of L is defined by

$$s\text{-}cl(f) = \wedge\{\widetilde{\subseteq}(f, \forall \vartheta) \to [\forall\{\widetilde{\subseteq}(f, \forall_{\vartheta \in \vartheta_0} \bar{\vartheta}) : \vartheta_0 \subseteq' \vartheta\}] : \vartheta \in SO(X)\}$$

is called the degree of S-closedness of f, where $\vartheta \in SO(X)$ means that ϑ is a semiopen family of L^X .

Theorem 3.7. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then the following implications are valid:

$$\begin{array}{cccc} f \ is \ nearly \ L-compact \\ \nearrow & \downarrow & \swarrow \\ f \ is \ L-compact \rightarrow f \ is \ almost \ L-compact \leftarrow f \ is \ RS \ L-compact \leftarrow f \ is \ RS \ L-compact \\ & \uparrow & \swarrow \\ f \ is \ SL-closed \end{array}$$

Proof. It is clear from Definition 3.2, Definition 3.5 and Definition 2.11. \Box

Theorem 3.8. Let (X, τ) and (Y, δ) be L- topological spaces and $\Phi : (X, \tau) \longmapsto (Y, \delta)$ be a function. If Φ is almost L-continuous, then $wrsc(f) \leq wrsc(\Phi(f))$.

Proof. Let

$$wrsc(\Phi(f)) = \wedge \{ \widetilde{\subseteq}(\Phi(f), \lor \vartheta) \to [\lor \{ \widetilde{\subseteq}(\Phi(f)), \lor_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in RSO(X) \}.$$

Conversely, we suppose that $wrsc(f) > wrsc(\Phi(f))$. Then there exists $\vartheta \in RSO(X)$ such that

$$\widetilde{\subseteq}(\Phi(f), \forall \vartheta) \to [\forall \{ \widetilde{\subseteq}(\Phi(f)), \forall_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] < wrsc(f)$$

$$445$$

Furthermore, from the almost L-continuity of Φ given us $\Phi^{-1}(\vartheta) \in \tau$. From the definition weakly RS-compactness degree of f is

$$wrsc(f) = \wedge \{ \widetilde{\subseteq} (f, \forall \vartheta) \to [\forall \{ \widetilde{\subseteq} (f, \forall_{v \in v_0} v) : v_0 \subseteq' v \}] : v \subseteq \tau \}.$$

Now we take the family $v = \phi^{-1}(\vartheta)$. Hence

$$[\lor\{\widetilde{\subseteq}(\Phi(f)),\lor_{\vartheta\in\vartheta_0}\vartheta):\vartheta_0\subseteq'\vartheta\}]<[\lor\{\widetilde{\subseteq}(f,\lor_{\upsilon\in\upsilon_0}\upsilon):\upsilon_0\subseteq'\upsilon\}].$$

It follows that there exists $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \vartheta$ such that

$$[\lor\{\widetilde{\subseteq}(\Phi(f)),\lor_{\vartheta\in\vartheta_0}\vartheta):\vartheta_0\subseteq'\vartheta\}]<\widetilde{\subseteq}(f,\lor\Phi^{-1}(\vartheta_i)).$$

Thus $\widetilde{\subseteq}(\Phi(f), \bigvee_{i=1}^{n} \vartheta_i) < \widetilde{\subseteq}(f, \bigvee_{i=1}^{n} \Phi^{-1}(\vartheta_i))$, which is a contradiction with Proposition 3.3.(vi) [6], we have

$$\widetilde{\subseteq}(f, \vee_{i=1}^{n} \Phi^{-1}(\vartheta_{i})) \leq \widetilde{\subseteq}(\Phi(f), \vee_{i=1}^{n} \Phi(\Phi^{-1}(\vartheta_{i}))) \leq \widetilde{\subseteq}(\Phi(f), \vee_{i=1}^{n} \vartheta_{i}).$$

Hence $wrsc(f) \leq wrsc(\Phi(f))$.

Proposition 3.9. Let (X, τ) and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto (Y, \delta)$ be a function. If Φ is weakly L-continuous, then $rsc(f) \leq rsc(\Phi(f))$.

Proof. It can be proved to the previous theorem, similarly.

Proposition 3.10. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then f is SL-closed \Rightarrow s-cl $(f) = \top$.

Proof. Trivial.

Proposition 3.11. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then $rsc(f) \leq wrsc(f) \leq s - cl(f) \leq ac(f)$.

Proof. This follows a similar procedure to the Proposition 3.4

Theorem 3.12. Let (X, τ) be an L-topological space and let X be an extremally disconnected space (i.e $\overline{f} \in \tau$ for every $f \in \tau$). Then the following conditions are equivalent:

- (i) $f \in L^X$ is almost L-compact,
- (ii) $f \in L^X$ is nearly L-compact,

(iii) $f \in L^X$ is SL-closed,

(iv) $f \in L^X$ is weakly RS L-compact.

Proof. It is clear from the previous definitions.

Proposition 3.13. Let (X, τ) and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto (Y, \delta)$ be a function. If Φ is weakly L-continuous and almost L-open mapping, then

$$s$$
- $cl(f) \leq s$ - $cl(\Phi(f))$

Proof. It can be proved to the Proposition 3.4, similarly.

Proposition 3.14. Let (X, τ) be an extremally disconnected L-topological space and L-semiregular topological space. Then $c(f) = s \cdot cl(f)$.

Proof. Similar to Proposition 3.4.

 \square

Corollary 3.15. Let (X, τ) be an extremally disconnected L-topological space and L-semiregular topological space. Then c(f) = nc(f) = ac(f) = s - cl(f) = wrsc(f).

Proof. This result follows from Proposition 3.11 and Proposition 3.14.

4. Gradation of S*-closed spaces in L-topological spaces

In this section we shall generalize the degrization of S*-closedness in L-topological spaces.

Definition 4.1. Let (X, τ) be an L-topological space.

(i) (X, τ) is SL-compact iff for every semiopen family $\{f_i : i \in I\}$ of L-fuzzy sets with $\forall_{i \in I} f_i = \top$, there exists a finite subset $I_0 \subseteq I$ such that $\forall_{i \in I_0} f_i(x) = \top, \forall x \in X$.

(ii) Let $f \in L^X$. The L-fuzzy set f is said to be SL-compact iff for every family $\{f_i : i \in I\}$ of semiopen L-fuzzy sets with $f(x) \leq \bigvee_{i \in I} f_i(x), \forall x \in X$, there exist a finite subset $I_0 \subseteq I$ such that $f(x) \leq \bigvee_{i \in I_0} f_i(x), \forall x \in X$.

Obviuosly every SL-compact L-topological space is SL-closed.

Definition 4.2. Let (X, τ) be an L-topological space.

(i) (X, τ) is S*L-closed iff for every semiopen family $\{f_i : i \in I\}$ of L-fuzzy sets with $\forall_{i \in I} f_i = \top$, there exists a finite subset $I_0 \subseteq I$ such that $\forall_{i \in I_0} sclf_i(x) = \top, \forall x \in X$.

(ii) Let $f \in L^X$. The L-fuzzy set f is said to be S*L-closed iff for every family $\{f_i : i \in I\}$ of semiopen L-fuzzy sets with $f(x) \leq \bigvee_{i \in I} f_i(x), \forall x \in X$, there exist a finite subset $I_0 \subseteq I$ such that $f(x) \leq \bigvee_{i \in I_0} sclf_i(x), \forall x \in X$.

Definition 4.3. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then

(i) The element sc(f) of L is defined by

$$sc(f) = \wedge \{ \widetilde{\subseteq} (f, \lor \vartheta) \to [\lor \{ \widetilde{\subseteq} (f, \lor_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in SO(X) \}$$

is called the degree of S-compactness of f, where $\vartheta_0 \subseteq' \vartheta$ means that ϑ_0 is a finite subfamily of ϑ and $\vartheta \in SO(X)$ means that ϑ is a semiopen family of L^X .

(ii) The element $s^*cl(f)$ of L is defined by

 $s^*cl(f) = \wedge \{ \widetilde{\subseteq}(f, \lor \vartheta) \to [\lor \{ \widetilde{\subseteq}(f, \lor_{\vartheta \in \vartheta_0} scl\vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in SO(X) \}$

is called the degree of S*-closedness of f, where $\vartheta_0 \subseteq' \vartheta$ means that ϑ_0 is a finite subfamily of ϑ and $\vartheta \in SO(X)$ means that ϑ is a semiopen family of L^X .

Proposition 4.4. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then

(i) f is S^*L -closed $\Rightarrow S^*cl(f) = \top$,

(ii) f is SL-compact \Rightarrow sc(f) = \top .

Proof. It is clear from the previous definitions.

Proposition 4.5. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then

$$nc(f) \le S^* cl(f).$$

$$447$$

Proof. Let ϑ be open family of L^X . Since $\lor_{\vartheta \in \vartheta_0} IntCl(\vartheta) \leq \lor_{\vartheta \in \vartheta_0} sCl(\vartheta)$ and from the isotonity of the residum operation, we have

$$f \to \vee_{\vartheta \in \vartheta_0} IntCl(\vartheta) \le f \to \vee_{\vartheta \in \vartheta_0} sCl(\vartheta)$$

Moreover we obtain $\wedge (f \to \vee_{\vartheta \in \vartheta_0} IntCl(\vartheta)) \leq \wedge (f \to \vee_{\vartheta \in \vartheta_0} sCl(\vartheta))$. Thus

$$\widetilde{\subseteq}(f, \lor IntCl(\vartheta_0)) \le \widetilde{\subseteq}(f, \lor sCl(\vartheta_0))$$

for every $\vartheta_0 \subseteq' \vartheta$. Hence

$$[\vee\{\widetilde{\subseteq}(f,\vee_{\vartheta\in\vartheta_0}IntCl(\vartheta_0)):\vartheta_0\subseteq'\vartheta\}]\leq\{\widetilde{\subseteq}(f,\vee_{\vartheta\in\vartheta_0}sCl(\vartheta)):\vartheta_0\subseteq'\vartheta\}.$$

We conclude that $nc(f) \leq S^* cl(f)$.

Theorem 4.6. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then the following implications are valid:

f is nearly L-compact \Rightarrow f is S^{*}L-closed \Rightarrow f is almost L-compact.

Proof. This immediately follows from Definition 4.2 and Definition 2.11.

Proposition 4.7. Let (X, τ) be an extremally disconnected topological space and f be an L-fuzzy set in X. Then $nc(f) = S^*cl(f)$.

Proof. Similar to Proposition 4.5.

Proposition 4.8. Let (X, τ) be an L-topological space and f be an L-fuzzy set in X. Then

f is strongly L-compact \Rightarrow f is L-compact.

Proof. It is clear from the previous definitions.

Corollary 4.9. Let (X, τ) be an L-topological space and let X be an extremally disconnected space (i.e. $\overline{f} \in \tau$ for every $f \in \tau$). Then the following conditions are equivalent:

- (i) $f \in L^X$ is almost L-compact,
- (ii) $f \in L^X$ is nearly L-compact,
- (ii) $f \in L^X$ is nearly L-compact, (iii) $f \in L^X$ is SL-closed, (iv) $f \in L^X$ is weakly RS L-compact, (v) $f \in L^X$ is S*L-closed, (vi) $f \in L^X$ is strongly L-compact.

Proof. It is clear from the previous definitions.

Definition 4.10. Let (X, τ) and (Y, δ) be L-topological spaces. A function Φ : $(X,\tau) \longmapsto (Y,\delta)$ is called L-semicontinuous iff for each $f \in \delta$, $\Phi^{-1}(f)$ is a fuzzy semiopen set of L^X .

Theorem 4.11. Let (X, τ) and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto$ (Y, δ) be a function. If Φ is L-semicontinuous, then $sc(f) \leq c(\Phi(f))$.

Proof. Let $sc(f) = \wedge \{ \widetilde{\subseteq}(f, \forall \vartheta) \to [\forall \{ \widetilde{\subseteq}(f, \forall_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta \}] : \vartheta \in SO(X) \}$ Conversely, we suppose that $sc(f) > c(\Phi(f))$. Then there exists $\vartheta \subseteq \delta$ such that

$$\widetilde{\subseteq}(\Phi(f), \lor \vartheta) \to [\lor\{\widetilde{\subseteq}(\Phi(f), \lor_{\vartheta \in \vartheta_0} \vartheta) : \vartheta_0 \subseteq' \vartheta\}] < sc(f).$$

Furthermore, from the L-semicontinuity of Φ , $\Phi^{-1}(f)$ is a fuzzy semiopen set of L^X . From the definition of S-compactness degree of f is

$$sc(f) = \wedge \{ \widetilde{\subseteq}(f, \forall \vartheta) \to [\forall \{ \widetilde{\subseteq}(f, \forall_{v \in v_0} v) : v_0 \subseteq' v \}] : v \in SO(X) \}.$$

Now we take the family $v = \Phi(\vartheta)$. Hence

$$[\lor\{\widetilde{\subseteq}(\Phi(f),\lor_{\vartheta\in\vartheta_0}\vartheta):\vartheta_0\subseteq'\vartheta\}]<[\lor\{\widetilde{\subseteq}(f,\lor_{\upsilon\in\upsilon_0}\upsilon):\upsilon_0\subseteq'\upsilon\}].$$

It follows that there exists $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \vartheta$ such that

$$[\lor\{\widetilde{\subseteq}(\Phi(f),\lor_{\vartheta\in\vartheta_0}\vartheta):\vartheta_0\subseteq'\vartheta\}]<\widetilde{\subseteq}(f,\lor\Phi^{-1}(\vartheta_i)).$$

Thus $\widetilde{\subseteq}(\Phi(f), \bigvee_{i=1}^{n} \vartheta_i) < \widetilde{\subseteq}(f, \bigvee_{i=1}^{n} \Phi^{-1}(\vartheta_i))$, which is a contradiction with Proposition 3.3.(vi)[6], we have

$$\widetilde{\subseteq}(f, \vee_{i=1}^{n} \Phi^{-1}(\vartheta_{i})) \leq \widetilde{\subseteq}(\Phi(f), \vee_{i=1}^{n} \Phi(\Phi^{-1}(\vartheta_{i}))) \leq \widetilde{\subseteq}(\Phi(f), \vee_{i=1}^{n} \vartheta_{i}).$$
Hence $sc(f) < c(\Phi(f)).$

Definition 4.12. Let (X, τ) and (Y, δ) be L-topological spaces. A function $\Phi : (X, \tau) \longmapsto (Y, \delta)$ is called L-irresolute iff for each semiopen set of $f \in L^Y$, $\Phi^{-1}(f)$ is a fuzzy semiopen set of L^X .

Theorem 4.13. Let (X, τ) and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto (Y, \delta)$ be a function. If Φ is L-irresolute, then $S^*cl(f) \leq S^*cl(\Phi(f))$.

Proof. It can be proved to the Theorem 4.11., similarly.

Theorem 4.14. Let
$$(X, \tau)$$
 and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto (Y, \delta)$ be a function. If Φ is L-semicontinuous, then $s^*cl(f) \leq ac(\Phi(f))$.

Proof. It can be proved to the Theorem 4.11 similarly.

Definition 4.15. Let (X, τ) and (Y, δ) be L-topological spaces. A function $\Phi : (X, \tau) \mapsto (Y, \delta)$ is called semi-weakly L-continuous iff for each $f \in L^Y$ semiopen set, we have $\Phi^{-1}(f) \leq slnt[\Phi^{-1}(sCl(f))]$.

Theorem 4.16. Let (X, τ) and (Y, δ) be L-topological spaces and $\Phi : (X, \tau) \mapsto (Y, \delta)$ be a function. If Φ is semi weakly L-continuous, then $sc(f) \leq s^*cl(\Phi(f))$.

Proof. This is analogous to the proof of Theorem 4.11.

Acknowledgements. The author is very grateful to the editor and the reviewers for their valuable suggestions.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] S. Bayhan, Gradation of compactness in L-topological spaces, J. Fuzzy. Math. 16 (2008) 213– 227.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–193.
- [4] S. H. Cho and G. Y. Lee, A note on regular semiopen L-sets and S*-closed spaces, Fuzzy Sets and Systems 149 (2005) 493–500.
- [5] D. Coker and A. H. Es, On fuzzy RS-compact spaces, Doğa TU. J. Math. 13 (1989) 34–42.
- [6] M. Demirci, On the convergence structure of L-topological spaces and continuity in Ltopological spaces, New Math. Nat. Comp. 3 (2007) 1–25.
- [7] A. H. Es, Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and Systems 22 (1987) 289–295.
- [8] A. H. Es and D. Coker, On several types of degrees of fuzzy compactness, Fuzzy Sets and Systems 87 (1997) 349–359.
- U. Höhle and A. P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of fuzzy sets, Logic, Topology and measure theory, Kluwer Academic Publishers, Boston (1999) 123–272.
- [10] A. P. Sostak, On some modifications of fuzzy topology, Mat. Vesnik 41 (1989) 51-64.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353

A. HAYDAR Eş (haydares@baskent.edu.tr)

Department of Mathematics Education, Başkent University, Bağlica, 06490 Ankara, Turkey