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1. Introduction

The concept of statistical convergence play a vital role not only in pure math-
ematics but also in other branches of science involving mathematics, especially in
information theory, computer science, biological science, dynamical systems, geo-
graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence was introduced by Fast [5] and Schoenberg
[33] independently. Over the years and under different names statistical convergence
has been discussed in the theory of fourier analysis, ergodic theory and number the-
ory. Later on it was further investigated by Fridy [6], S̆alát [32], Çakalli [3], Maio
and Kocinac [19], Miller [21], Maddox [18], Leindler [17], Mursaleen and Alotaibi
[25], Mursaleen and Edely [29], Mursaleen and Edely [31], and many others. In the
recent years, generalizations of statistical convergence have appeared in the study of
strong integral summability and the structure of ideals of bounded continuous func-
tions on Stone-C̆ech compactification of the natural numbers. Moreover statistical
convergence is closely related to the concept of convergence in probability, (see [2]).
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The notion of statistical convergence depends on the density of subsets of N. A
subset of N is said to have density δ (E) if

δ (E) = lim
n→∞

1
n

n∑

k=1

χE (k) exists.

Definition 1.1. A sequence x = (xk) is said to be statistically convergent to ` if for
every ε > 0

δ ({k ∈ N : |xk − `| ≥ ε}) = 0.

In this case, we write S − lim x = ` or xk → `(S) and S denotes the set of all
statistically convergent sequences.

The probabilistic metric space was introduced by Menger [20] which is an inter-
esting and important generalization of the notion of a metric space. Karakus [14]
studied the concept of statistical convergence in probabilistic normed spaces. Sub-
sequently, Esi and Özdemir [4] generalized these results on statistical convergence
in probabilistic normed space given by Karakus [14]. The theory of probabilistic
normed spaces was initiated and developed in [1], [34], [35], [36], [38] and further
it was extended to random/probabilistic 2−normed spaces by Goleţ [9] using the
concept of 2−norm which is defined by Gähler [8], and Gürdal and Pehlivan [11]
studied statistical convergence in 2−Banach spaces.

By a lacunary sequence we mean an increasing integer sequence θ = (kr) such
that ko = 0 and hr = kr−kr−1 →∞ as r →∞. Throughout this paper the intervals
determined by θ will be denoted by Ir = (kr−1, kr]. Let K ⊆ N. The number

δθ (K) = lim
r→∞

1
hr
|{k ∈ Ir : k ∈ K}|

is said to the θ−density of K, provided the limit exists.

Definition 1.2 ([7]). Let θ be a lacunary sequence. Then a sequence x = (xk)
is said to be Sθ−convergent to the number ` if for every ε > 0, the set K (ε) has
θ−density zero, where

K (ε) = {k ∈ N : |xk − `| ≥ ε} .

In this case we write Sθ − limx = ` or xk → ` (Sθ).

The existing literature on statistical convergence and its generalizations appears
to have been restricted to real or complex sequences, but in recent years these ideas
have been also extended to the sequences in fuzzy normed [37] and intuitionistic
fuzzy normed spaces [15], [23], [28], [27] and [16]. Further details on generalization
of statistical convergence can be found in [26], [29], [30] and [31].

In [12], Gürdal and Pehlivan studied statistical convergence in 2−normed spaces
and in 2−Banach spaces in [11]. In fact, Mursaleen [24] studied the concept of
statistical convergence of sequences in random 2−normed space. Recently in [13],
Hazarika and Esi introduced and studied the concept of generalized ∆n−statistical
convergence of sequences in 2−normed space.
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2. Preliminaries

Definition 2.1. A function f : R → R+
0 is called a distribution function if it is a

non-decreasing and left continuous with inft∈R f(t) = 0 and supt∈R f(t) = 1. By
D+, we denote the set of all distribution functions such that f(0) = 0. If a ∈ R+

0 ,
then Ha ∈ D+, where

Ha(t) =
{

1 , if t > a
0 , if t ≤ a

It is obvious that H0 ≥ f for all f ∈ D+.

A t−norm is a continuous mapping ∗ : [0, 1]× [0, 1] → [0, 1] such that ([0, 1], ∗) is
abelian monoid with unit one and c∗d ≥ a∗b if c ≥ a and d ≥ b for all a, b, c ∈ [0, 1].
A triangle function τ is a binary operation on D+, which is commutative, associative
and τ(f, H0) = f for every f ∈ D+.

Definition 2.2 ([10]). Let n ∈ N and X be a real vector space of dimension d, where
n ≤ d. A real-valued function ‖., ..., .‖ on X satisfying the following four conditions:

(i) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent,
(ii) ‖x1, x2, ..., xn‖ is invariant under permutation,
(iii) ‖αx1, x2, ..., xn‖ = |α| ‖x1, x2, ..., xn‖ , α ∈ R,
(iv) ‖x1 + xı

1, x2, ..., xn‖ ≤ ‖x1, x2, ..., xn‖+ ‖xı
1, x2, ..., xn‖

is called an n−norm on X, and the pair (X, ‖., ..., .‖) is called an n−normed space.
A trivial example of n−normed space is X = Rn equipped with the following

Euclidean n−norm:

‖x1, x2, ..., xn‖E = abs




∣∣∣∣∣∣

x11...x1n

...
xn1...xnn

∣∣∣∣∣∣




where xi = (xi1, ..., xin) ∈ Rn for each i = 1, 2, . . . , n.
By generalizing Definition 2.2, we obtain a satisfactory notion of probabilistic

n-normed space as follows:

Definition 2.3. Let X be a real linear space of dimension d greater than n, and let
F be a mapping defined on the Cartesian product of X by itself of n times Xn into
D+ such that the following properties are satisfied:

(PnN1) Fx1,x2,...,xn(t) is invariant under any permutation of x1, x2, ..., xn ∈ X,
(PnN2) Fx1,x2,...,xn(t) = Fx1,x2,...,xn( t

ϕ(α) ) for every x1, x2, ..., xn ∈ X and α ∈ R,
(PnN3) Fx1,x2,...,xn−1,y+z ≥ τ

(Fx1,x2,...,xn−1,y,Fx1,x2,...,xn−1,z

)
for every x1, x2, ...,

xn−1, y, z ∈ X.
The function F is called a probabilistic n-norm on X and the triple (X,F ,τ)

is called a probabilistic n-normed space. The triangle inequalities (PnN3) can be
formulated by using a t-norm T.

(PnN4) Fx1,x2,...,xn−1,y+z (t1 + t2) ≥ T
(Fx1,x2,...,xn−1,y (t1) ,Fx1,x2,...,xn−1,z (t2)

)
for every x1, x2, ..., xn−1, y, z ∈ X and t1, t2 ∈ R+. If (PnN1), (PnN2) and (PnN4)
are satisfied then the triple (X,F ,τ) is called a generalized probabilistic n-normed
saces of Menger type or simply Menger n-normed space.
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Definition 2.4. A sequence x = (xk) in a random n−normed space (X,F , ∗) is
said to be statistical-convergent or SRnN−convergent to some ` ∈ X with respect
to F if for each ε > 0, β ∈ (0, 1) and for non zero elements x1, x2, ..., xn−1 ∈ X such
that

δ ({n ∈ N : F(x1, x2, ..., xn−1, xn − `; ε) ≤ 1− β}) = 0,

In other words we can write the sequence (xn) statistical converges to ` in random
n−normed space (X,F , ∗) if

lim
m→∞

1
m
|{n ≤ m : F(x1, x2, ..., xn−1, xn − `; ε) ≤ 1− β}| = 0.

or equivalently

δ ({n ∈ N : F(x1, x2, ..., xn−1, xn − `; ε) > 1− β}) = 1,

i.e.,
S − lim

n→∞
F(x1, x2, ..., xn−1, xn − `; ε) = 1.

In this case we write SRnN − lim x = ` and ` is called the SRnN−limit of x. Let
SRnN (X) denotes the set of all statistical convergent sequences in random n−normed
space (X,F , ∗).

In this paper we define and study lacunary statistical convergence in random
n−normed space which is quite a new and interesting idea to work with. We show
that some properties of lacunary statistical convergence of real numbers also hold for
sequences in random n−normed spaces. We find some relations related to lacunary
statistical convergent sequences in random n−normed spaces. Also we find out
the relation between lacunary statistical convergent and lacunary statistical Cauchy
sequences in these spaces.

3. Lacunary statistical convergence in random n−normed space

In this section we define lacunary statistical convergent sequence in random
n−normed (X,F , ∗). Also we obtained some basic properties of this notion in ran-
dom n−normed space.

Definition 3.1. Let θ = (kr) be a lacunary sequence. A sequence x = (xn) in a
random n−normed space (X,F , ∗) is said to be convergent to ` ∈ X with respect
to F if for each ε > 0, β ∈ (0, 1) there exists an positive integer r0 ∈ Ir such that
F(x1, x2, ..., xn−1, xn − `; ε) > 1 − β, whenever n ≥ r0 and for non-zero elements
x1, x2, ..., xn−1 ∈ X. In this case we write Fθ − limn xn = `, and ` is called the
Fθ−limit of x = (xn).

Definition 3.2. Let θ = (kr) be a lacunary sequence. A sequence x = (xn) in a
random n−normed space (X,F , ∗) is said to be Cauchy with respect to F if for each
ε > 0, β ∈ (0, 1) there exists a subsequence (xs) of (xn) such that integer s ∈ Ir

for each r such that F(x1, x2, ..., xn−1, xn − xs; ε) > 1 − β, for non-zero elements
x1, x2, ..., xn−1 ∈ X.

Definition 3.3. A sequence x = (xn) in a random n−normed space (X,F , ∗) is
said to be lacunary statistically convergent or Sθ−convergent to ` ∈ X with respect
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to F if for every ε > 0, β ∈ (0, 1) and for non zero elements x1, x2, ..., xn−1 ∈ X
such that

δθ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − `; ε) ≤ 1− β}) = 0.

In other ways we can write the sequence x = (xn) lacunary statistical converges
to ` in random n−normed space (X,F , ∗) if

lim
r→∞

1
hr
|{n ∈ Ir : F(x1, x2, ..., xn−1, xn − `; ε) ≤ 1− β}| = 0.

or equivalently

δθ ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − `; ε) > 1− β}) = 1,

i.e.,
Sθ − lim

n→∞
F(x1, x2, ..., xn−1, xn − `; ε) = 1.

In this case we write SRnN
θ − lim x = ` or xn → `(SRnN

θ ) and

SRnN
θ (X) = {x = (xn) : ∃ ` ∈ R, SRnN

θ − limx = `}.
In this case we write SRnN

θ − lim x = ` and ` is called the SRnN
θ −limit of x. Let

SRnN
θ (X) denotes the set of all statistical convergent sequences in random n−normed

space (X,F , ∗).
Definition 3.4. A sequence x = (xk) in a random n−normed space (X,F , ∗) is said
to be lacunary statistical Cauchy with respect to F if for every ε > 0, β ∈ (0, 1) and
for non-zero elements x1, x2, ..., xn−1 ∈ X there exists a positive integer no = no(ε)
such that for all n, s ≥ no

δθ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − xs; ε) ≤ 1− β}) = 0.

or equivalently

δθ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − xs; ε) > 1− β}) = 1.

Definition 3.3, immediately implies the following lemma.

Lemma 3.5. Let (X,F , ∗) be a random n−normed space. If x = (xn) is a sequence
in X, then for every ε > 0, β ∈ (0, 1) and for non zero elements x1, x2, ..., xn−1 ∈ X,
then the following statements are equivalent:

(i) Sθ − limn→∞ xn = `.
(ii) δθ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − xs; ε) ≤ 1− β}) = 0.
(iii) δθ ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − xs; ε) > 1− β}) = 1.
(iv) Sθ − limn→∞ F(x1, x2, ..., xn−1, xn − xs; ε) = 1.

Theorem 3.6. Let (X,F , ∗) be a random n−normed space. If x = (xn) is a sequence
in X such that SRnN

θ − lim xn = ` exists, then it is unique.

Proof. Suppose that there exist elements `1, `2 (`1 6= `2) in X such that

SRnN
θ − lim

n→∞
xn = `1;SRnN

θ − lim
n→∞

xn = `2.

Let ε > 0 be given. Choose s > 0 such that

(3.1) (1− s) ∗ (1− s) > 1− ε.
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Then, for any t > 0 and for non-zero elements x1, x2, ..., xn−1 ∈ X we define

K1(s, t) =
{

n ∈ Ir : F
(

x1, x2, ..., xn−1, xn − l1;
t

2

)
≤ 1− s

}
;

K2(s, t) =
{

n ∈ Ir : F
(

x1, x2, ..., xn−1, xn − l2;
t

2

)
≤ 1− s

}
.

Since SRnN
θ −limn→∞ xn = `1 and SRnN

θ −limn→∞ xn = `2, we have δθ(K1(s, t)) = 0
and δθ(K2(s, t)) = 0 for all t > 0. Now let K(s, t) = K1(s, t)∪K2(s, t), then it is easy
to observe that δθ(K(s, t)) = 0. But we have δθ(Kc(s, t)) = 1. Now if n ∈ Kc(s, t)
then we have

F(x1, x2, ..., xn−1, l1 − l2; t) ≥ F
(

x1, x2, ..., xn−1, xn − `1;
t

2

)

∗ F
(

x1, x2, ..., xn−1, xn − l2;
t

2

)

> (1− s) ∗ (1− s).

It follows by (3.1) that

F(x1, x2, ..., xn−1, `1 − `2; t) > (1− ε).

Since ε > 0 was arbitrary, we get F(x1, x2, ..., xn−1, l1 − l2; t) = 1 for all t > 0 and
non-zero elements x1, x2, ..., xn−1 ∈ X. Hence `1 = `2. ¤

Next theorem gives the algebraic characterization of lacunary statistical conver-
gence on random n−normed spaces.

Theorem 3.7. Let (X,F , ∗) be a random n−normed space, and x = (xn) and
y = (yn) be two sequences in X.

(a) If SRnN
θ − limxn = ` and c(6= 0) ∈ R, then SRnN

θ − lim cxn = c`.
(b) If Sθ−limxn = `1 and SRnN

θ −lim yn = `2, then SRnN
θ −lim(xn+yn) = `1+`2.

Proof of the theorem is straightforward and thus omitted.

Theorem 3.8. Let (X,F , ∗) be a random n−normed space. If x = (xn) be a
sequence in X such that Fθ − limxn = ` then SRnN

θ − lim xn = `.

Proof. Let Fθ − limxn = `. Then for every ε > 0, t > 0 and non zero elements
x1, x2, ..., xn−1 ∈ X, there is a positive integer n0 such that

F(x1, x2, ..., xn−1, xn − `; t) > 1− ε

for all n ≥ n0. Since the set

K(ε, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − `; t) ≤ 1− ε}
has at most finitely many terms. Also, since every finite subset of N has δθ-density
zero, and consequently we have δθ(K(ε, t)) = 0. This shows that SRnN

θ − limxn =
`. ¤

Remark 3.9. The converse of the above theorem is not true in general. It follows
from the following example.
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Example 3.10. Let X = R2, with the 2−norm ||x, z|| = |x1z2−x2z1|, x = (x1, x2),
z = (z1, z2) and a∗b = ab for all a, b ∈ [0, 1]. Let F(x, y; t) = t

t+||x,y|| , for all x, z ∈ X,
z2 6= 0, and t > 0. Now we define a sequence x = (xk) by

xk =
{

(k, 0) , if kr − [
√

hr] + 1 ≤ k ≤ kr; r ∈ N
(0, 0) , otherwise .

Now for every 0 < ε < 1 and t > 0, write

K(ε, t) = {k ∈ Ir : F(xk − `, z; t) ≤ 1− ε} , ` = (0, 0)

=
{

k ∈ Ir :
t

t + |xk| ≤ 1− ε

}
=

{
k ∈ Ir : |xk| ≥ tε

1− ε
> 0

}

= {k ∈ Ir : xk = (k, 0)} =
{

k ∈ Ir : kr − [
√

hr] + 1 ≤ k ≤ kr; r ∈ N
}

,

so we get

1
hr
|K(ε, t)| ≤ 1

hr
|
{

k ∈ Ir : kr − [
√

hr] + 1 ≤ k ≤ kr; r ∈ N
}
| ≤ [

√
hr]

hr
.

Taking limit r approaches to ∞, we get

δθ(K(ε, t)) = lim
r→∞

1
hr
|K(ε, t)| ≤ lim

r→∞
[
√

hr]
hr

= 0.

This shows that xk → 0(SR2N
θ (X)).

On the other hand the sequence is not Fθ−convergent to zero as

F(xk − `, z; t) =
t

t + |xk| =
{

t
t+k , if kr − [

√
hr] + 1 ≤ k ≤ kr; r ∈ N

1 , otherwise
≤ 1.

Theorem 3.11. Let (X,F , ∗) be a random n−normed space. If x = (xn) be a
sequence in X, then SRnN − limxn = ` if and only if there exists a subset K ⊆ N
such that δθ(K) = 1 and Fθ − lim xn = `.

Proof. Suppose first that SRnN
θ − lim xn = `. Then for any t > 0, s = 1, 2, 3, . . . and

non-zero elements x1, x2, ..., xn−1 ∈ X, let

A(s, t) =
{

n ∈ Ir : F(x1, x2, ..., xn−1, xn − l; t) > 1− 1
s

}

and

K(s, t) =
{

n ∈ Ir : F(x1, x2, ..., xn−1, xn − l; t) ≤ 1− 1
s

}
.

Since SRnN
θ − lim xn = ` it follows that

δθ(K(s, t)) = 0.

Now for t > 0 and s = 1, 2, 3, . . ., we observe that

A(s, t) ⊃ A(s + 1, t)

and

(3.2) δθ(A(s, t)) = 1.
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Now we have to show that, for n ∈ A(s, t),Fθ − limxn = `. Suppose that for
n ∈ A(s, t), (xn) not convergent to ` with respect to Fθ. Then there exists some
u > 0 such that

{n ∈ Ir : F(x1, x2, ..., xn−1, xn − l; t) ≤ 1− u}
for infinitely many terms xn. Let

A(u, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − l; t) > 1− u}
and

u >
1
s
, s = 1, 2, 3, . . . .

Then we have
δθ(A(u, t)) = 0.

Furthermore, A(s, t) ⊂ A(u, t) implies that δθ(A(s, t)) = 0, which contradicts
(3.2) as δθ(A(s, t)) = 1. Hence Fθ − limxn = `.

Conversely, suppose that there exists a subset K ⊆ N such that δθ(K) = 1 and
Fθ − limxn = `.

Then for every ε > 0, t > 0 and non-zero elements x1, x2, ..., xn−1 ∈ X, we can
find out a positive integer k such that

F(x1, x2, ..., xn−1, xn − l; t) > 1− ε

for all n ≥ k. If we take

K(ε, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − l; t) ≤ 1− ε}
then it is easy to see that

K(ε, t) ⊂ N− {kn+1, kn+2, . . .}
and consequently

δθ(K(ε, t)) ≤ 1− 1.
Hence SRnN

θ − limxn = `. ¤
Finally, we establish the Cauchy convergence criteria in random n−normed spaces.

Theorem 3.12. Let (X,F , ∗) be a random n−normed space. Then a sequence (xn)
in X is lacunary statistically convergent if and only if it is lacunary statistically
Cauchy.

Proof. Let (xn) be a lacunary statistically convergent sequence in X. We assume
that SRnN

θ − limxn = `. Let ε > 0 be given. Choose s > 0 such that (3.1) is
satisfied. For t > 0 and for non zero elements x1, x2, ..., xn−1 ∈ X define

A(s, t) =
{

n ∈ Ir : F(x1, x2, ..., xn−1, xn − l;
t

2
) ≤ 1− s

}

and

Ac(s, t) =
{

n ∈ Ir : F(x1, x2, ..., xn−1, xn − l;
t

2
) > 1− s

}
.

Since SRnN
θ − limxn = ` it follows that δθ(A(s, t)) = 0 and consequently δθ(Ac

(s, t)) = 1. Let p ∈ Ac(s, t). Then

(3.3) F(x1, x2, ..., xn−1, xn − l;
t

2
) ≤ 1− s.
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If we take

B(ε, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − xp; t) ≤ 1− ε}
then to prove the result it is sufficient to prove that B(ε, t) ⊆ A(s, t). Let n ∈ B(ε, t),
then for non-zero elements x1, x2, ..., xn−1 ∈ X

(3.4) F(x1, x2, ..., xn−1, xn − xp; t) ≤ 1− ε.

If F(x1, x2, ..., xn−1, xn−xp; t) ≤ 1−ε, then we have F(x1, x2, ..., xn−1, xn−l; t
2 ) ≤

1−s and therefore n ∈ A(s, t). As otherwise i.e., if F(x1, x2, ..., xn−1, xn−l; t
2 ) > 1−s

then by (3.1), (3.3) and (3.4) we get

1− ε ≥F(x1, x2, ..., xn−1, xn − xp; t)

≥F(x1, x2, ..., xn−1, xn − l;
t

2
) ∗ F(x1, x2, ..., xn−1, xp − l;

t

2
)

>(1− s) ∗ (1− s) > (1− ε)

which is not possible. Thus B(ε, t) ⊂ A(s, t). Since δθ(A(s, t)) = 0, it follows that
δθ(B(ε, t)) = 0. This shows that (xn) is lacunary statistically Cauchy.

Conversely, suppose (xn) is lacunary statistically Cauchy but not lacunary sta-
tistically convergent. Then there exists positive integer p and for non-zero elements
x1, x2, ..., xn−1 ∈ X such that if we take

A(ε, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − xp; t) ≤ 1− ε}
and

B(ε, t) = {n ∈ Ir : F(x1, x2, ..., xn−1, xn − l;
t

2
) > 1− ε}

then
δθ(A(ε, t)) = 0 = δθ(B(ε, t))

and consequently

(3.5) δθ(Ac(ε, t)) = 1 = δθ(Bc(ε, t)).

Since

F(x1, x2, ..., xn−1, xn − xp; t) ≥ 2F(x1, x2, ..., xn−1, xn − l;
t

2
) > 1− ε,

if F(x1, x2, ..., xn−1, xn − l; t
2 ) > 1−ε

2 then we have

δθ({n ∈ Ir : F(x1, x2, ..., xn−1, xn − xp; t) > 1− ε}) = 0

i.e., δθ(Ac(ε, t)) = 0, which contradicts (3.5) as δθ(Ac(ε, t)) = 1. Hence (xn) is
lacunary statistically convergent. ¤

Combining Theorem 3.11 and Theorem 3.12 we get the following corollary.

Corollary 3.13. Let (X,F , ∗) be a random n−normed space and x = (xn) be a
sequence in X. Then the following statements are equivalent:

(a) x is lacunary statistically convergent.
(b) x is lacunary statistically Cauchy.
(c) there exists a subset K ⊆ N such that δθ(K) = 1 and Fθ − limxn = `.
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[4] A. Esi and M. K. Özdemir, Generalized ∆m−statistical convergence in probabilistic normed
space, J. Comput. Anal. Appl. 13(5) (2011) 923–932.

[5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
[6] J. A. Fridy, On statistical convergence, Analysis 5(4) (1985) 301–313.
[7] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160(1) (1993)

43–51.
[8] S. Gähler, 2−metrische Raume and ihre topologische Struktur, Math. Nachr. 26 (1963) 115–

148.
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[26] M. Mursaleen, C. Çakan, S. A. Mohiuddine and E. Savas, Generalized statistical convergence

and statistical core of double sequences, Acta Math. Sin. (Engl. Ser.) 26(11) (2010) 2131–2144.
[27] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the

intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233(2) (2009) 142–149.
[28] M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuition-

istic fuzzy normed spaces, Chaos Solitons Fractals 41(5) (2009) 2414–2421.

438



Ayhan Esi et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 429–439

[29] M. Mursaleen and Osama H. H. Edely, Statistical convergence of double sequences, J. Math.
Anal. Appl. 288(1) (2003) 223–231.

[30] M. Mursaleen and Osama H. H. Edely, Generalized statistical convergence, Inform. Sci. 162(3-
4) (2004) 287–294.

[31] M. Mursaleen and Osama H. H. Edely, On the invariant mean and statistical convergence,
Appl. Math. Lett. 22(11) (2009) 1700–1704.

[32] T. S̆alát, On statistical convergence of real numbers, Math. Slovaca 30(2) (1980) 139–150.
[33] I. J. Schoenberg, The integrability of certain functions and related summability methods,

Amer. Math. Monthly 66 (1959) 361–375.
[34] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960) 313–334.
[35] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, New York-Amsterdam-

Oxford 1983.
[36] C. Sempi, A short and partial history of probabilistic normed spaces, Mediterr. J. Math. 3(2)

(2006) 283–300.
[37] C. Sencimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy

Sets and Systems 159(3) (2008) 361–370.
[38] A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR. 149 (1963)

280–283.

Ayhan Esi (aesi23@hotmail.com)
Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040,
Adiyaman, Turkey
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