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Abstract. In this article, the uncertainty analysis based on the
Randomness-Fuzziness Consistency Principle by using Shannon Entropy
as a measure has been studied. The Randomness-Fuzziness Consistency
Principle leads to defining a normal law of fuzziness using two different
laws of randomness. For the two laws of randomness defined for every nor-
mal law of fuzziness, we can therefore have a pair of Shannon entropies.
We have found that the pair of Shannon entropies for the atmospheric dis-
persion defined by the Gaussian plume model decreases exponentially with
increase in the distance along the downwind direction. In other words, the
effect of fuzziness decreases as the distance along the downwind direction
increases.
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1. Introduction

Atmospheric dispersion is a phenomenon based on uncertainties, and in general,
the concentration of pollutants observed at a given time and location downwind of a
source cannot be predicted precisely [8]. Uncertainty here refers to lack of knowledge
or information about an unknown quantity whose true value could be established
if a perfect measurement device were available. Uncertainty is the measure of the
reliability associated with a particular set of results and can be expressed in proba-
bilistic terms. Uncertainty in atmospheric dispersion model predictions is associated
with: (a) ”data” or ”parameter” uncertainty resulting from errors in the data used to
execute and evaluate the model, uncertainties in empirical model parameters, and
initial and boundary conditions; (b) ”model” or ”structural” uncertainty arising
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from inaccurate treatment of dynamical and chemical processes, approximate nu-
merical solutions, and internal model errors; and (c) ”stochastic” uncertainty, which
results from the turbulent nature of the atmosphere as well as from unpredictability
of human activities related to emissions [11].

The Gaussian plume model [13] is the most widely used method of estimating
downwind concentration of airborne material released to the atmosphere. Sutton
([14], [15]) derived an air pollutant plume dispersion equation which included the
assumption of Gaussian distribution for the vertical and crosswind dispersion of the
plume and also included the effect of ground reflection of the plume. The Gaussian
plume model that provides the time integrated air concentration at any downwind
distance is given by

C(x, y, z) =
Q

u2πσyσz
exp(− y2

2σ2
y

)[exp(− (z − h)2

2σ2
z

) + exp(− (z + h)2

2σ2
z

)]

where C(x, y, z) is the concentration of the pollutant (mcg/m3) at any point x metres
downwind of the source, y metres crosswind from the emission plume centreline and
z metres above ground level, Q is the quantity or mass of the pollutant (gm/s), u
is the average wind speed (m/s), σz is standard deviation in the vertical direction
(m), σy is the standard deviation in the crosswind direction (m), h is the effective
stack height of the source above ground level (m).

The values of horizontal and vertical dispersion co-efficients (σy and σz) here can
be seen to be

σy = ayx0.9071

σz = azx
bz + cz

where the co-efficient ay, az, bz and cz can be obtained from the table of parameters
for Pasquill-Gifford σy and σz [9]. Based on the temperature gradient, atmospheric
conditions are categorized into six classes, so called the Pasquill stability classes [10].

The plume rise is added to the height of the plume’s source point to obtain the so-
called ’effective stack height’, h. The plume rise equation due to Moses and Carson
[16] is as follows:

4h = A
Vsd

u
+ B

√
Qh

u

where, Vs stack gas exit speed (m/s), d is the stack diameter (m), u is the average
wind speed (m) and Qh is the stack heat emission rate (Ci). The parameters A
and B are different for different atmospheric conditions, such as super adiabatic
condition, neutral condition and sub-adiabatic condition, and they are A = 3.47,
B = 5.15; A = 0.35, B = 2.64 and A = −1.04, B = 2.24 respectively.

The methodology used in this article is based on a result linking fuzziness with
randomness. The existence of two laws of randomness is required to define a law of
fuzziness ([1], [2], [3], [4], [5], [6], [7]). The principle states that the left reference
function of any normal fuzzy number is actually a probability distribution function,
and that the right reference function is actually a complementary probability dis-
tribution function, for which however one needs to look into the matters through
application of the Glivenko-Centelli theorem of Order Statistics on superimposed
uniformly fuzzy intervals.
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2. Fuzzification with reference to concentration at different
downwind distances of the model

Basically, we have obtained the membership functions of the atmospheric disper-
sion defined by the Gaussian plume model C(x, y, 0) for different distances along
the downwind direction [x: 1600 m, 3000 m, 7000 m, 14000 m and 30000 m] and
along the crosswind direction for y = 2 m, for the extremely unstable atmospheric
condition (category A) under the super-adiabatic condition of plume rise due to
Moses-Carson equation. Here the membership function of C(x, y, 0) has been found
by using Lagrangian polynomial on discretized values of the α-cuts of C(x, y, 0). We
had to do this because here in this case the method of α-cuts would fail to supply
the results for the reason that we here have a non-invertible function. So the only
alternative is to use a method of interpolation. To make the matters simple, we have
considered Lagrangian polynomial of degree four. Here the parameters quantity of
emission, average wind speed, stack gas exit speed and stack heat emission rate are
considered as triangular fuzzy numbers (TFN).

Input data: Quantity of emission = TFN [100, 500, 1000], Average wind speed =
TFN [2, 4, 6], Stack gas exit speed = TFN [1.2, 3.4, 6.3], Stack diameter = 5, Stack
heat emission rate = TFN [100, 500, 1000] and Physical stack height = 100.

2.1. Fuzzification with reference to Concentration at x = 1600 m. The
membership function and membership curve of pollutant concentration of the Gauss-
ian Plume Model at downwind distance x = 1600 m are as follows

µC(x,y,0)(X) =





F (X), 5.626× 10−06 ≤ X ≤ 1.09906× 10−04

G(X), 1.09906× 10−04 ≤ X ≤ 0.001063421
0, otherwise

where

F (X) = (X−5.626×10−06)(X−3.1339×10−05)(X−5.8788×10−05)(X−1.09906×10−04)0.25
−6.386283997×10−19

+ (X−5.626×10−06)(X−1.5358×10−05)(X−5.8788×10−05)(X−1.09906×10−04)0.5
8.861829681×10−19

+ (X−5.626×10−06)(X−1.5358×10−05)(X−3.1339×10−05)(X−1.09906×10−04)0.75
−3.239600977×10−18

+ (X−5.626×10−06)(X−1.5358×10−05)(X−3.1339×10−05)(X−5.8788×10−05)
3.959746586×10−17

5.626× 10−06 ≤ X ≤ 1.09906× 10−04

and

G(X) = (X−0.001063421)(X−3.17637×10−04)(X−1.86548×10−04)(X−1.09906×10−04)0.25
−2.051676691×10−14

+ (X−0.001063421)(X−5.60057×10−04)(X−1.86548×10−04)(X−1.09906×10−04)0.5
4.923194348×10−15

+ (X−0.001063421)(X−5.60057×10−04)(X−3.17637×10−04)(X−1.09906×10−04)0.75
−3.290524903×10−15

+ (X−0.001063421)(X−5.60057×10−04)(X−3.17637×10−04)(X−1.86548×10−04)
6.833523815×10−15

1.09906× 10−04 ≤ X ≤ 0.001063421
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Figure 1. Membership Curve of Pollutant Concentration of Gauss-
ian Plume Model x = 1600 m

2.2. Fuzzification with reference to Concentration at x = 3000 m. At down-
wind distance x = 3000 m, the membership function and curve of pollutant concen-
tration of the Gaussian Plume Model are obtained as follows

µC(x,y,0)(X) =





F (X), 8.71483× 10−07 ≤ X ≤ 1.66736× 10−05

G(X), 1.66736× 10−05 ≤ X ≤ 0.000170023
0, otherwise

where

F (X) = (X−8.71483×10−07)(X−4.60957×10−06)(X−8.71885×10−06)(X−1.66736×10−05)0.25
−3.04034×10−22

+ (X−8.71483×10−07)(X−2.27624×10−06)(X−8.71885×10−06)(X−1.66736×10−05)0.5
4.32399×10−22

+ (X−8.71483×10−07)(X−2.27624×10−06)(X−4.60957×10−06)(X−1.66736×10−05)0.75
−1.65265×10−21

+ (X−8.71483×10−07)(X−2.27624×10−06)(X−4.60957×10−06)(X−8.71885×10−06

2.18334×10−20

8.71483× 10−07 ≤ X ≤ 1.66736× 10−05

and

G(X) = (X−0.000170023)(X−4.88349×10−05)(X−2.84241×10−05)(X−1.66736×10−05)0.25
−1.32751×10−17

+ (X−0.000170023)(X−8.73736×10−05)(X−2.84241×10−05)(X−1.66736×10−05)0.5
3.06586×10−18

+ (X−0.000170023)(X−8.73736×10−05)(X−4.88349×10−05)(X−1.66736×10−05)0.75
−2.002×10−18

+ (X−0.000170023)(X−8.73736×10−05)(X−4.88349×10−05)(X−2.84241×10−05)
4.09722×10−18

1.66736× 10−05 ≤ X ≤ 0.000170023
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Figure 2. Membership Curve of Pollutant Concentration of Gauss-
ian Plume Model x = 3000 m

2.3. Fuzzification with reference to Concentration at x = 7000 m. The
membership function and curve of pollutant concentration of the Gaussian Plume
Model at downwind distance x = 7000 m are as follows

µC(x,y,0)(X) =





F (X), 6.31493× 10−08 ≤ X ≤ 1.30963× 10−06

G(X), 1.30963× 10−06 ≤ X ≤ 1.45493× 10−05

0, otherwise

where

F (X) = (X−6.31493×10−08)(X−3.40614×10−07)(X−6.58749×10−07)(X−1.30963×10−06)0.25
−1.01198×10−26

+ (X−6.31493×10−08)(X−1.65945×10−07)(X−6.58749×10−07)(X−1.30963×10−06)0.5
1.49405×10−26

+ (X−6.31493×10−08)(X−1.65945×10−07)(X−3.40614×10−07)(X−1.30963×10−06)0.75
−6.07773×10−26

+ (X−6.31493×10−08)(X−1.65945×10−07)(X−3.40614×10−07)(X−6.58749×10−07)
8.99134×10−25

6.31493× 10−08 ≤ X ≤ 1.30963× 10−06

and

G(X) = (X−1.45493×10−05)(X−3.93214×10−06)(X−2.2554×10−06)(X−1.30963×10−06)0.25
−6.97534×10−22

+ (X−1.45493×10−05)(X−7.19483×10−06)(X−2.2554×10−06)(X−1.30963×10−06)0.5
1.52324×10−22

+ (X−1.45493×10−05)(X−7.19483×10−06)(X−3.93214×10−06)(X−1.30963×10−06)0.75
−2.002×10−23

+ (X−1.45493×10−05)(X−7.19483×10−06)(X−3.93214×10−06)(X−2.2554×10−06)
1.9326×10−22

1.30963× 10−06 ≤ X ≤ 1.45493× 10−05

421



Supahi Mahanta et al./Ann. Fuzzy Math. Inform. 5 (2013), No. 2, 417–427

0 0.5 1 1.5

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downwind distance = 7000 m

µ C

Figure 3. Membership Curve of Pollutant Concentration of Gauss-
ian Plume Model x = 7000 m

2.4. Fuzzification with reference to Concentration at x = 14000 m. At
downwind distance x = 14000 m, the membership function and curve of pollutant
concentration of the Gaussian Plume Model are as follows

µC(x,y,0)(X) =





F (X), 7.3366× 10−09 ≤ X ≤ 1.63537× 10−07

G(X), 1.63537× 10−07 ≤ X ≤ 1.95263× 10−06

0, otherwise

where

F (X) = (X−7.3366×10−09)(X−4.03631×10−08)(X−7.95299×10−08)(X−1.63537×10−07)0.25
−2.19262×10−30

+ (X−7.3366×10−09)(X−1.94344×10−08)(X−7.95299×10−08)(X−1.63537×10−07)0.5
3.33458×10−30

+ (X−7.3366×10−09)(X−1.94344×10−08)(X−4.03631×10−08)(X−1.63537×10−07)0.75
−1.42749×10−29

+ (X−7.3366×10−09)(X−1.94344×10−08)(X−4.03631×10−08)(X−7.95299×10−08)
2.3291×10−28

7.3366× 10−09 ≤ X ≤ 1.63537× 10−07

and

G(X) = (X−1.95263×10−06)(X−5.00888×10−07)(X−2.83937×10−07)(X−1.63537×10−07)0.25
−2.20665×10−25

+ (X−1.95263×10−06)(X−9.33674×10−07)(X−2.83937×10−07)(X−1.63537×10−07)0.5
4.5984×10−26

+ (X−1.95263×10−06)(X−9.33674×10−07)(X−5.00888×10−07)(X−1.63537×10−07)0.75
−2.83206×10−26

+ (X−1.95263×10−06)(X−9.33674×10−07)(X−5.00888×10−07)(X−2.83937×10−07)
5.59641×10−26

1.63537× 10−07 ≤ X ≤ 1.95263× 10−06
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Figure 4. Membership Curve of Pollutant Concentration of Gauss-
ian Plume Model x = 14000 m

2.5. Fuzzification with reference to Concentration at x = 30000 m. The
membership function and curve of pollutant concentration of the Gaussian Plume
Model at downwind distance x = 30000 m are as follows

µC(x,y,0)(X) =





F (X), 6.8785× 10−10 ≤ X ≤ 1.66052× 10−08

G(X), 1.66052× 10−08 ≤ X ≤ 2.14708× 10−07

0, otherwise

where

F (X) = (X−6.8785×10−10)(X−3.86391×10−09)(X−7.76877×10−09)(X−1.66052×10−08)0.25
−2.04057×10−34

+ (X−6.8785×10−10)(X−1.83746×10−09)(X−7.76877×10−09)(X−1.66052×10−08)0.5
3.20216×10−34

+ (X−6.8785×10−10)(X−1.83746×10−09)(X−3.86391×10−09)(X−1.66052×10−08)0.75
−1.44918×10−33

+ (X−6.8785×10−10)(X−1.83746×10−09)(X−3.86391×10−09)(X−7.76877×10−09)
2.64652×10−32

6.8785× 10−10 ≤ X ≤ 1.66052× 10−08

and

G(X) = (X−2.14708×10−07)(X−5.19287×10−08)(X−2.90736×10−08)(X−1.66052×10−08)0.25
−3.11018×10−29

+ (X−2.14708×10−07)(X−9.8772×10−08)(X−2.90736×10−08)(X−1.66052×10−08)0.5
6.15593×10−30

+ (X−2.14708×10−07)(X−9.8772×10−08)(X−5.19287×10−08)(X−1.66052×10−08)0.75
−3.68702×10−30

+ (X−2.14708×10−07)(X−9.8772×10−08)(X−5.19287×10−08)(X−2.90736×10−08)
7.16905×10−30

1.66052× 10−08 ≤ X ≤ 2.14708× 10−07
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Figure 5. Membership Curve of Pollutant Concentration of Gauss-
ian Plume Model x = 30000 m

3. Uncertainty analysis of the atmospheric dispersion defined by the
gaussian plume model using Shannon entropy

The Shannon Diversity Index (H) [12] is an index that is commonly used to char-
acterize species diversity in a community. The proportion (pi) of species i relative
to the total number of species is calculated, and then multiplied by the natural log-
arithm (ln pi) of this proportion. The resulting product is summed across species,
and multiplied by (-1) so as to get a positive value for H.

H = −
S∑

i=1

pilnpi,Σpi = 1.

This diversity index, which later on came to be known as Shannon Entropy, can
be interpreted as the uncertainty associated with a fuzzy event [17]. Now the Shan-
non measure defining entropy requires a probability law to be defined first. As for
every law of fuzziness, there are two laws of randomness defining the law of fuzziness,
for a fuzzy number we shall therefore have two laws of randomness which would lead
to two Shannon Entropies. If we now find that the two Shannon Entropies increase
with increase in the value of a parameter defining the two laws of randomness con-
cerned, we would conclude that changes in the parameter are effective with reference
to the two random variables concerned with variability increasing with increase in
the parameter. Similarly, if the Shannon Entropies decrease with increase in the
parameter, we would still say that changes in the parameter is effective with refer-
ence to the two laws of randomness; in this case however we would conclude that
the uncertainty is pointing towards decreasing variability of the random variables
concerned. In what follows, we could study uncertainty due to changes in using
Shannon Entropy as a measure.
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4. Shannon entropies with reference to concentration at different
distances along the downwind direction of the model

It can be seen that from the left reference function, which is a distribution func-
tion, we can find the probabilities of occurrence of the random variable concerned
in intervals of equal width. To use Shannon entropy by discretizing the distribution,
we must consider equal width of the intervals. Similarly, from the right reference
function, which is a complementary distribution function, we can compute another
Shannon entropy. The Shannon entropies for the left reference function at different
values of x are as given in Table 1: Taking the different values of distances along the

Table 1. Values of Shannon Entropies for the Left Reference Function

x Shannon Entropy
1600 1.3509241
3000 1.2900427
7000 1.2640680
14000 1.2365850
30000 1.1854739

downwind direction as independent variable x and the values of Shannon entropy as
dependent variable Y , we can fit a straight line which will give us an idea about the
uncertainty analysis. However a straight line fit does not seem to be logical because
it would give us negative values of entropy for very large x. A better and more
logical fitting of curve is found to be exponential, which is given as

Y = a.ebx

and the estimated values of a and b are 1.320840114 and -0.00000392907 respectively.
To fit this equation we have used the method of iteration based on the Taylorian
expansion. The pollutant concentration decreases exponentially along the downwind
direction as given by the equation

Y = 1.320840114.e−0.00000392907x

Similarly, for the right reference function at different values of x we get the Shan-
non entropies as given in Table 2. Taking the different values of distance along the

Table 2. Values of Shannon Entropies for the Right Reference Function

x Shannon Entropy
1600 1.2548165
3000 1.2325232
7000 1.1791184
14000 1.0864665
30000 1.0138339

downwind direction as independent variable (x) and the values of Shannon entropies
as dependent variable (Y ), we have fitted another exponential equation of the type

Y = a.ebx
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For the entropies found from the right reference function, we have found that

Y = 1.249744111.e−0.00000750368x

Uncertainties of pollutant concentration with reference to different distances along
the downwind direction can be analyzed by Shannon entropy separately for the left
and the right reference functions, as there are two probability laws in action. We
have found that in both of the reference functions, the Shannon measure decrease
exponentially with a very low rate of decay. As we can see, for a small value of
x, the two laws of randomness concerned are very nearly uniform. As x increase,
the uniformity decreases exponentially. This can actually be seen from the Table
3 below which includes the spreads of the fuzzy intervals, and spreads of the left
and right reference functions. That fuzziness decrease with increase in x is obvious.
However, use of Shannon entropy gives us a measure of the decrement in fuzziness
of concentration with reference to increase in the distance from the source along the
downwind direction.

Table 3. Length of Fuzzy Intervals

x Spread of fuzziness Spread of the Spread of the
Left Reference Function Right Reference Function

1600 0.001057782 0.000104283 0.001063407
3000 0.000169152 0.000015802 0.000153349
7000 0.000014486 0.000001246 0.000013240
14000 0.000001945 0.000000156 0.000001953
30000 0.000000214 0.000000016 0.000000198

5. Conclusions

A randomness based approach of analysing the uncertainty with the help of Shan-
non measure has been explained in this article. The Shannon measure defining en-
tropy requires a probability law to be defined first. According to the Randomness-
Fuzziness Consistency Principle as there are two laws of randomness defined for
every normal law of fuzziness, we can therefore have a pair of Shannon entropies.
Here, the uncertainty measures of atmospheric dispersion are considered for different
downwind distances for the same set of fuzziness of input parameters in all the cases.
For various values of distance along the downwind direction we can accordingly find
out the pairs of Shannon entropies from the fuzzy membership functions of pollu-
tant concentration of the Gaussian plume model. The Shannon entropies both for
the left reference functions and for the right reference functions concerned decrease
exponentially with increase in the values of distance along the downwind direction
when we used the Gaussian plume model. We have seen that the spread of fuzzi-
ness given by the length of fuzzy intervals concerned defining the concentration of
pollutant decreases with increase in downwind distance. Therefore, we can conclude
that effect of fuzziness of the parameters concerned on concentration of pollutant
reduces with increase in downwind distance. In other words, when downwind dis-
tance is considerably long, concentration of pollutant does not depend on whether
the parameters concerned are fuzzy or not.
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